tr_chars_benchmark.cpp 5.51 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Itseez Inc or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

42 43
#include <iostream>
#include <opencv2/opencv_modules.hpp>
44

45
#ifdef HAVE_OPENCV_TEXT
46

47 48
#include "opencv2/datasets/tr_chars.hpp"
#include <opencv2/core.hpp>
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#include "opencv2/text.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"

#include <cstdio>
#include <cstdlib> // atoi

#include <string>
#include <vector>

using namespace std;
using namespace cv;
using namespace cv::datasets;
using namespace cv::text;

int main(int argc, char *argv[])
{
    const char *keys =
            "{ help h usage ? |    | show this message }"
            "{ path p         |true| path to dataset description file ( list_English_Img.m ) and Img folder.}";
    CommandLineParser parser(argc, argv, keys);
    string path(parser.get<string>("path"));
    if (parser.has("help") || path=="true")
    {
        parser.printMessage();
        return -1;
    }

    Ptr<TR_chars> dataset = TR_chars::create();
    dataset->load(path);

    // ***************
    // dataset. train, test contain information about each element of appropriate sets and splits.
    // For example, let output first elements of these vectors and their sizes for last split.
    // And number of splits.
    int numSplits = dataset->getNumSplits();
    printf("splits number: %u\n", numSplits);

    vector< Ptr<Object> > &currTrain = dataset->getTrain(numSplits-1);
    vector< Ptr<Object> > &currTest = dataset->getTest(numSplits-1);
    vector< Ptr<Object> > &currValidation = dataset->getValidation(numSplits-1);
    printf("train size: %u\n", (unsigned int)currTrain.size());
    printf("test size: %u\n", (unsigned int)currTest.size());
    printf("validation size: %u\n", (unsigned int)currValidation.size());


    // WARNING: The order of classes' labels is different in Chars74k and in the output of our classifier
    string src_classes = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; // labels order as in the clasifier output
    string tar_classes = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; // labels order as in the Chars74k dataset

    Ptr<OCRHMMDecoder::ClassifierCallback> ocr = loadOCRHMMClassifierCNN("OCRBeamSearch_CNN_model_data.xml.gz");

    int numOK = 0;
    int upperNumOK = 0;

    for (unsigned int i=0; i<(unsigned int)currTest.size(); i++)
    {
        TR_charsObj *exampleTest = static_cast<TR_charsObj *>(currTest[i].get());
        printf("processed image: %u, name: %s\n", i, exampleTest->imgName.c_str());
        printf("  label: %u,", exampleTest->label);

        string imfilename = path+string("/Img/")+exampleTest->imgName.c_str()+string(".png");
        Mat image  = imread(imfilename);
        vector<int> out_classes;
        vector<double> out_confidences;
        ocr->eval(image, out_classes, out_confidences);
        int prediction = 1 + tar_classes.find_first_of(src_classes[out_classes[0]]);
        printf(" prediction: %u\n", prediction);

        if (exampleTest->label == prediction)
            numOK++;

        char l = tar_classes[exampleTest->label];
        char p = tar_classes[prediction];
        if (toupper(l) == toupper(p))
            upperNumOK++;
    }

    printf("\n---------------------------------------------\n");
    printf("Chars74k Classification Accuracy (case-sensitive): %f\n",(float)numOK/currTest.size());
    printf("Chars74k Classification Accuracy (case-insensitive): %f\n",(float)upperNumOK/currTest.size());

    return 0;
}
133 134 135 136 137 138 139 140 141 142

#else

int main()
{
    std::cerr << "OpenCV was built without text module" << std::endl;
    return 0;
}

#endif // HAVE_OPENCV_TEXT