lsvmc_matching.cpp 9.69 KB
Newer Older
Dinar Ahmatnurov's avatar
Dinar Ahmatnurov committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, University of Nizhny Novgorod, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "_lsvmc_matching.h"
#include <stdio.h>

#ifndef max
#define max(a,b)            (((a) > (b)) ? (a) : (b))
#endif

#ifndef min
#define min(a,b)            (((a) < (b)) ? (a) : (b))
#endif
namespace cv
{
namespace lsvm
{

void sort(int n, const float* x, int* indices);

/*
// Computation border size for feature map
//
// API
// int computeBorderSize(int maxXBorder, int maxYBorder, int *bx, int *by);
// INPUT
// maxXBorder        - the largest root filter size (X-direction)
// maxYBorder        - the largest root filter size (Y-direction)
// OUTPUT
// bx                - border size (X-direction)
// by                - border size (Y-direction)
// RESULT
// Error status
*/
int computeBorderSize(int maxXBorder, int maxYBorder, int *bx, int *by)
{
    *bx = (int)ceilf(((float) maxXBorder) / 2.0f + 1.0f);
    *by = (int)ceilf(((float) maxYBorder) / 2.0f + 1.0f);
    return LATENT_SVM_OK;
}

/*
// Addition nullable border to the feature map
//
// API
// int addNullableBorder(featureMap *map, int bx, int by);
// INPUT
// map               - feature map
// bx                - border size (X-direction)
// by                - border size (Y-direction)
// OUTPUT
// RESULT
// Error status
*/
94
int addNullableBorder(CvLSVMFeatureMapCascade *map, int bx, int by)
Dinar Ahmatnurov's avatar
Dinar Ahmatnurov committed
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
{
    int sizeX, sizeY, i, j, k;
    float *new_map;
    sizeX = map->sizeX + 2 * bx;
    sizeY = map->sizeY + 2 * by;
    new_map = (float *)malloc(sizeof(float) * sizeX * sizeY * map->numFeatures);
    for (i = 0; i < sizeX * sizeY * map->numFeatures; i++)
    {
        new_map[i] = 0.0;
    }
    for (i = by; i < map->sizeY + by; i++)
    {
        for (j = bx; j < map->sizeX + bx; j++)
        {
            for (k = 0; k < map->numFeatures; k++)
            {
                new_map[(i * sizeX + j) * map->numFeatures + k] =
                    map->map[((i - by) * map->sizeX + j - bx) * map->numFeatures + k];
            }
        }
    }
    map->sizeX = sizeX;
    map->sizeY = sizeY;
    free(map->map);
    map->map = new_map;
    return LATENT_SVM_OK;
}

/*
// Computation maximum filter size for each dimension
//
// API
127
// int getMaxFilterDims(const CvLSVMFilterObjectCascade **filters, int kComponents,
Dinar Ahmatnurov's avatar
Dinar Ahmatnurov committed
128 129 130 131 132 133 134 135 136 137 138 139 140
                        const int *kPartFilters, 
                        unsigned int *maxXBorder, unsigned int *maxYBorder);
// INPUT
// filters           - a set of filters (at first root filter, then part filters 
                       and etc. for all components)
// kComponents       - number of components
// kPartFilters      - number of part filters for each component
// OUTPUT
// maxXBorder        - maximum of filter size at the horizontal dimension
// maxYBorder        - maximum of filter size at the vertical dimension
// RESULT
// Error status
*/
141
int getMaxFilterDims(const CvLSVMFilterObjectCascade **filters, int kComponents,
Dinar Ahmatnurov's avatar
Dinar Ahmatnurov committed
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
                     const int *kPartFilters, 
                     unsigned int *maxXBorder, unsigned int *maxYBorder)
{
    int i, componentIndex;    
    *maxXBorder = filters[0]->sizeX;
    *maxYBorder = filters[0]->sizeY;
    componentIndex = kPartFilters[0] + 1;
    for (i = 1; i < kComponents; i++)
    {
        if (unsigned(filters[componentIndex]->sizeX) > *maxXBorder)
        {
            *maxXBorder = filters[componentIndex]->sizeX;
        }
        if (unsigned(filters[componentIndex]->sizeY) > *maxYBorder)
        {
            *maxYBorder = filters[componentIndex]->sizeY;
        }
        componentIndex += (kPartFilters[i] + 1);
    }
    return LATENT_SVM_OK;
}

void sort(int n, const float* x, int* indices)
{
	int i, j;
	for (i = 0; i < n; i++)
		for (j = i + 1; j < n; j++)
		{
			if (x[indices[j]] > x[indices[i]])
			{
				//float x_tmp = x[i];
				int index_tmp = indices[i];
				//x[i] = x[j];
				indices[i] = indices[j];
				//x[j] = x_tmp;
				indices[j] = index_tmp;
			}
		}
}

/*
// Perform non-maximum suppression algorithm (described in original paper)
// to remove "similar" bounding boxes
//
// API
// int nonMaximumSuppression(int numBoxes, const CvPoint *points,
                             const CvPoint *oppositePoints, const float *score,
                             float overlapThreshold,
                             int *numBoxesOut, CvPoint **pointsOut,
                             CvPoint **oppositePointsOut, float **scoreOut);
// INPUT
// numBoxes          - number of bounding boxes
// points            - array of left top corner coordinates
// oppositePoints    - array of right bottom corner coordinates
// score             - array of detection scores
// overlapThreshold  - threshold: bounding box is removed if overlap part
                       is greater than passed value
// OUTPUT
// numBoxesOut       - the number of bounding boxes algorithm returns
// pointsOut         - array of left top corner coordinates
// oppositePointsOut - array of right bottom corner coordinates
// scoreOut          - array of detection scores
// RESULT
// Error status
*/
int nonMaximumSuppression(int numBoxes, const CvPoint *points,
                          const CvPoint *oppositePoints, const float *score,
                          float overlapThreshold,
                          int *numBoxesOut, CvPoint **pointsOut,
                          CvPoint **oppositePointsOut, float **scoreOut)
{
    int i, j, index;
    float* box_area = (float*)malloc(numBoxes * sizeof(float));
    int* indices = (int*)malloc(numBoxes * sizeof(int));
    int* is_suppressed = (int*)malloc(numBoxes * sizeof(int));

    for (i = 0; i < numBoxes; i++)
    {
        indices[i] = i;
        is_suppressed[i] = 0;
        box_area[i] = (float)( (oppositePoints[i].x - points[i].x + 1) *
                                (oppositePoints[i].y - points[i].y + 1));
    }

    sort(numBoxes, score, indices);
    for (i = 0; i < numBoxes; i++)
    {
        if (!is_suppressed[indices[i]])
        {
            for (j = i + 1; j < numBoxes; j++)
            {
                if (!is_suppressed[indices[j]])
                {
                    int x1max = max(points[indices[i]].x, points[indices[j]].x);
                    int x2min = min(oppositePoints[indices[i]].x, oppositePoints[indices[j]].x);
                    int y1max = max(points[indices[i]].y, points[indices[j]].y);
                    int y2min = min(oppositePoints[indices[i]].y, oppositePoints[indices[j]].y);
                    int overlapWidth = x2min - x1max + 1;
                    int overlapHeight = y2min - y1max + 1;
                    if (overlapWidth > 0 && overlapHeight > 0)
                    {
                        float overlapPart = (overlapWidth * overlapHeight) / box_area[indices[j]];
                        if (overlapPart > overlapThreshold)
                        {
                            is_suppressed[indices[j]] = 1;
                        }
                    }
                }
            }
        }
    }

    *numBoxesOut = 0;
    for (i = 0; i < numBoxes; i++)
    {
        if (!is_suppressed[i]) (*numBoxesOut)++;
    }

    *pointsOut = (CvPoint *)malloc((*numBoxesOut) * sizeof(CvPoint));
    *oppositePointsOut = (CvPoint *)malloc((*numBoxesOut) * sizeof(CvPoint));
    *scoreOut = (float *)malloc((*numBoxesOut) * sizeof(float));
    index = 0;
    for (i = 0; i < numBoxes; i++)
    {
        if (!is_suppressed[indices[i]])
        {
            (*pointsOut)[index].x = points[indices[i]].x;
            (*pointsOut)[index].y = points[indices[i]].y;
            (*oppositePointsOut)[index].x = oppositePoints[indices[i]].x;
            (*oppositePointsOut)[index].y = oppositePoints[indices[i]].y;
            (*scoreOut)[index] = score[indices[i]];
            index++;
        }

    }

    free(indices);
    free(box_area);
    free(is_suppressed);

    return LATENT_SVM_OK;
}
}
}