facemark_demo_lbf.cpp 6.22 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
This file was part of GSoC Project: Facemark API for OpenCV
Final report: https://gist.github.com/kurnianggoro/74de9121e122ad0bd825176751d47ecc
Student: Laksono Kurnianggoro
Mentor: Delia Passalacqua
*/

/*----------------------------------------------
 * Usage:
 * facemark_demo_lbf <face_cascade_model> <saved_model_filename> <training_images> <annotation_files> [test_files]
 *
 * Example:
 * facemark_demo_lbf ../face_cascade.xml ../LBF.model ../images_train.txt ../points_train.txt ../test.txt
 *
 * Notes:
 * the user should provides the list of training images_train
 * accompanied by their corresponding landmarks location in separated files.
 * example of contents for images_train.txt:
 * ../trainset/image_0001.png
 * ../trainset/image_0002.png
 * example of contents for points_train.txt:
 * ../trainset/image_0001.pts
 * ../trainset/image_0002.pts
 * where the image_xxxx.pts contains the position of each face landmark.
 * example of the contents:
 *  version: 1
 *  n_points:  68
 *  {
 *  115.167660 220.807529
 *  116.164839 245.721357
 *  120.208690 270.389841
 *  ...
 *  }
 * example of the dataset is available at https://ibug.doc.ic.ac.uk/download/annotations/ibug.zip
 *--------------------------------------------------*/

Alexander Alekhin's avatar
Alexander Alekhin committed
37 38 39 40 41 42 43 44 45 46 47 48 49
#include <stdio.h>
#include <fstream>
#include <sstream>
#include <iostream>
#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/face.hpp"

using namespace std;
using namespace cv;
using namespace cv::face;

Alexander Alekhin's avatar
Alexander Alekhin committed
50 51 52
static bool myDetector( InputArray image, OutputArray roi, CascadeClassifier *face_detector);
static bool parseArguments(int argc, char** argv, CommandLineParser & , String & cascade,
   String & model, String & images, String & annotations, String & testImages
Alexander Alekhin's avatar
Alexander Alekhin committed
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
);

int main(int argc, char** argv)
{
    CommandLineParser parser(argc, argv,"");
    String cascade_path,model_path,images_path, annotations_path, test_images_path;
    if(!parseArguments(argc, argv, parser,cascade_path,model_path,images_path, annotations_path, test_images_path))
       return -1;

    /*create the facemark instance*/
    FacemarkLBF::Params params;
    params.model_filename = model_path;
    params.cascade_face = cascade_path;
    Ptr<Facemark> facemark = FacemarkLBF::create(params);

Alexander Alekhin's avatar
Alexander Alekhin committed
68
    CascadeClassifier face_cascade;
Alexander Alekhin's avatar
Alexander Alekhin committed
69
    face_cascade.load(params.cascade_face.c_str());
Alexander Alekhin's avatar
Alexander Alekhin committed
70
    facemark->setFaceDetector((FN_FaceDetector)myDetector, &face_cascade);
Alexander Alekhin's avatar
Alexander Alekhin committed
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

    /*Loads the dataset*/
    std::vector<String> images_train;
    std::vector<String> landmarks_train;
    loadDatasetList(images_path,annotations_path,images_train,landmarks_train);

    Mat image;
    std::vector<Point2f> facial_points;
    for(size_t i=0;i<images_train.size();i++){
        printf("%i/%i :: %s\n", (int)(i+1), (int)images_train.size(),images_train[i].c_str());
        image = imread(images_train[i].c_str());
        loadFacePoints(landmarks_train[i],facial_points);
        facemark->addTrainingSample(image, facial_points);
    }

    /*train the Algorithm*/
    facemark->training();

    /*test using some images*/
    String testFiles(images_path), testPts(annotations_path);
    if(!test_images_path.empty()){
        testFiles = test_images_path;
        testPts = test_images_path; //unused
    }
    std::vector<String> images;
    std::vector<String> facePoints;
    loadDatasetList(testFiles, testPts, images, facePoints);

    std::vector<Rect> rects;
    CascadeClassifier cc(params.cascade_face.c_str());
    for(size_t i=0;i<images.size();i++){
        std::vector<std::vector<Point2f> > landmarks;
        cout<<images[i];
        Mat img = imread(images[i]);
        facemark->getFaces(img, rects);
        facemark->fit(img, rects, landmarks);

        for(size_t j=0;j<rects.size();j++){
            drawFacemarks(img, landmarks[j], Scalar(0,0,255));
            rectangle(img, rects[j], Scalar(255,0,255));
        }

        if(rects.size()>0){
            cout<<endl;
            imshow("result", img);
            waitKey(0);
        }else{
            cout<<"face not found"<<endl;
        }
    }
}

Alexander Alekhin's avatar
Alexander Alekhin committed
123 124
bool myDetector(InputArray image, OutputArray faces, CascadeClassifier *face_cascade)
{
Alexander Alekhin's avatar
Alexander Alekhin committed
125 126
    Mat gray;

Alexander Alekhin's avatar
Alexander Alekhin committed
127 128 129
    if (image.channels() > 1)
        cvtColor(image, gray, COLOR_BGR2GRAY);
    else
Alexander Alekhin's avatar
Alexander Alekhin committed
130 131
        gray = image.getMat().clone();

Alexander Alekhin's avatar
Alexander Alekhin committed
132
    equalizeHist(gray, gray);
Alexander Alekhin's avatar
Alexander Alekhin committed
133

Alexander Alekhin's avatar
Alexander Alekhin committed
134 135 136
    std::vector<Rect> faces_;
    face_cascade->detectMultiScale(gray, faces_, 1.4, 2, CASCADE_SCALE_IMAGE, Size(30, 30));
    Mat(faces_).copyTo(faces);
Alexander Alekhin's avatar
Alexander Alekhin committed
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    return true;
}

bool parseArguments(int argc, char** argv, CommandLineParser & parser,
    String & cascade,
    String & model,
    String & images,
    String & annotations,
    String & test_images
){
    const String keys =
        "{ @c cascade         |      | (required) path to the face cascade xml file fo the face detector }"
        "{ @i images          |      | (required) path of a text file contains the list of paths to all training images}"
        "{ @a annotations     |      | (required) Path of a text file contains the list of paths to all annotations files}"
        "{ @m model           |      | (required) path to save the trained model }"
        "{ t test-images      |      | Path of a text file contains the list of paths to the test images}"
        "{ help h usage ?     |      | facemark_demo_lbf -cascade -images -annotations -model [-t] \n"
         " example: facemark_demo_lbf ../face_cascade.xml ../images_train.txt ../points_train.txt ../lbf.model}"
    ;
    parser = CommandLineParser(argc, argv,keys);
    parser.about("hello");

    if (parser.has("help")){
        parser.printMessage();
        return false;
    }

    cascade = String(parser.get<String>("cascade"));
    model = String(parser.get<string>("model"));
    images = String(parser.get<string>("images"));
    annotations = String(parser.get<string>("annotations"));
    test_images = String(parser.get<string>("t"));

    cout<<"cascade : "<<cascade.c_str()<<endl;
    cout<<"model : "<<model.c_str()<<endl;
    cout<<"images : "<<images.c_str()<<endl;
    cout<<"annotations : "<<annotations.c_str()<<endl;

    if(cascade.empty() || model.empty() || images.empty() || annotations.empty()){
        std::cerr << "one or more required arguments are not found" << '\n';

        parser.printMessage();
        return false;
    }

    return true;
}