/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; #if !defined (HAVE_CUDA) void cv::gpu::meanStdDev(const GpuMat&, Scalar&, Scalar&) { throw_nogpu(); } double cv::gpu::norm(const GpuMat&, int) { throw_nogpu(); return 0.0; } double cv::gpu::norm(const GpuMat&, int, GpuMat&) { throw_nogpu(); return 0.0; } double cv::gpu::norm(const GpuMat&, const GpuMat&, int) { throw_nogpu(); return 0.0; } Scalar cv::gpu::sum(const GpuMat&) { throw_nogpu(); return Scalar(); } Scalar cv::gpu::sum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); } Scalar cv::gpu::absSum(const GpuMat&) { throw_nogpu(); return Scalar(); } Scalar cv::gpu::absSum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); } Scalar cv::gpu::sqrSum(const GpuMat&) { throw_nogpu(); return Scalar(); } Scalar cv::gpu::sqrSum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); } void cv::gpu::minMax(const GpuMat&, double*, double*, const GpuMat&) { throw_nogpu(); } void cv::gpu::minMax(const GpuMat&, double*, double*, const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&) { throw_nogpu(); } void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); } int cv::gpu::countNonZero(const GpuMat&) { throw_nogpu(); return 0; } int cv::gpu::countNonZero(const GpuMat&, GpuMat&) { throw_nogpu(); return 0; } void cv::gpu::reduce(const GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); } #else namespace { class DeviceBuffer { public: explicit DeviceBuffer(int count_ = 1) : count(count_) { cudaSafeCall( cudaMalloc(&pdev, count * sizeof(double)) ); } ~DeviceBuffer() { cudaSafeCall( cudaFree(pdev) ); } operator double*() {return pdev;} void download(double* hptr) { double hbuf; cudaSafeCall( cudaMemcpy(&hbuf, pdev, sizeof(double), cudaMemcpyDeviceToHost) ); *hptr = hbuf; } void download(double** hptrs) { AutoBuffer<double, 2 * sizeof(double)> hbuf(count); cudaSafeCall( cudaMemcpy((void*)hbuf, pdev, count * sizeof(double), cudaMemcpyDeviceToHost) ); for (int i = 0; i < count; ++i) *hptrs[i] = hbuf[i]; } private: double* pdev; int count; }; } //////////////////////////////////////////////////////////////////////// // meanStdDev void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev) { CV_Assert(src.type() == CV_8UC1); NppiSize sz; sz.width = src.cols; sz.height = src.rows; DeviceBuffer dbuf(2); nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), sz, dbuf, (double*)dbuf + 1) ); cudaSafeCall( cudaDeviceSynchronize() ); double* ptrs[2] = {mean.val, stddev.val}; dbuf.download(ptrs); } //////////////////////////////////////////////////////////////////////// // norm double cv::gpu::norm(const GpuMat& src, int normType) { GpuMat buf; return norm(src, normType, buf); } double cv::gpu::norm(const GpuMat& src, int normType, GpuMat& buf) { GpuMat src_single_channel = src.reshape(1); if (normType == NORM_L1) return absSum(src_single_channel, buf)[0]; if (normType == NORM_L2) return sqrt(sqrSum(src_single_channel, buf)[0]); if (normType == NORM_INF) { double min_val, max_val; minMax(src_single_channel, &min_val, &max_val, GpuMat(), buf); return std::max(std::abs(min_val), std::abs(max_val)); } CV_Error(CV_StsBadArg, "norm: unsupported norm type"); return 0; } double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType) { CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert(src1.type() == CV_8UC1); CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2); typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2, NppiSize oSizeROI, Npp64f* pRetVal); static const npp_norm_diff_func_t npp_norm_diff_func[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R}; NppiSize sz; sz.width = src1.cols; sz.height = src1.rows; int funcIdx = normType >> 1; double retVal; DeviceBuffer dbuf; nppSafeCall( npp_norm_diff_func[funcIdx](src1.ptr<Npp8u>(), static_cast<int>(src1.step), src2.ptr<Npp8u>(), static_cast<int>(src2.step), sz, dbuf) ); cudaSafeCall( cudaDeviceSynchronize() ); dbuf.download(&retVal); return retVal; } //////////////////////////////////////////////////////////////////////// // Sum namespace cv { namespace gpu { namespace device { namespace matrix_reductions { namespace sum { template <typename T> void sumCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn); template <typename T> void sumMultipassCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn); template <typename T> void absSumCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn); template <typename T> void absSumMultipassCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn); template <typename T> void sqrSumCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn); template <typename T> void sqrSumMultipassCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn); void getBufSizeRequired(int cols, int rows, int cn, int& bufcols, int& bufrows); } } }}} Scalar cv::gpu::sum(const GpuMat& src) { GpuMat buf; return sum(src, buf); } Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf) { using namespace ::cv::gpu::device::matrix_reductions::sum; typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int); static Caller multipass_callers[7] = { sumMultipassCaller<unsigned char>, sumMultipassCaller<char>, sumMultipassCaller<unsigned short>, sumMultipassCaller<short>, sumMultipassCaller<int>, sumMultipassCaller<float>, 0 }; static Caller singlepass_callers[7] = { sumCaller<unsigned char>, sumCaller<char>, sumCaller<unsigned short>, sumCaller<short>, sumCaller<int>, sumCaller<float>, 0 }; Size buf_size; getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); Caller* callers = multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = singlepass_callers; Caller caller = callers[src.depth()]; if (!caller) CV_Error(CV_StsBadArg, "sum: unsupported type"); double result[4]; caller(src, buf, result, src.channels()); return Scalar(result[0], result[1], result[2], result[3]); } Scalar cv::gpu::absSum(const GpuMat& src) { GpuMat buf; return absSum(src, buf); } Scalar cv::gpu::absSum(const GpuMat& src, GpuMat& buf) { using namespace ::cv::gpu::device::matrix_reductions::sum; typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int); static Caller multipass_callers[7] = { absSumMultipassCaller<unsigned char>, absSumMultipassCaller<char>, absSumMultipassCaller<unsigned short>, absSumMultipassCaller<short>, absSumMultipassCaller<int>, absSumMultipassCaller<float>, 0 }; static Caller singlepass_callers[7] = { absSumCaller<unsigned char>, absSumCaller<char>, absSumCaller<unsigned short>, absSumCaller<short>, absSumCaller<int>, absSumCaller<float>, 0 }; Size buf_size; getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); Caller* callers = multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = singlepass_callers; Caller caller = callers[src.depth()]; if (!caller) CV_Error(CV_StsBadArg, "absSum: unsupported type"); double result[4]; caller(src, buf, result, src.channels()); return Scalar(result[0], result[1], result[2], result[3]); } Scalar cv::gpu::sqrSum(const GpuMat& src) { GpuMat buf; return sqrSum(src, buf); } Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf) { using namespace ::cv::gpu::device::matrix_reductions::sum; typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int); static Caller multipass_callers[7] = { sqrSumMultipassCaller<unsigned char>, sqrSumMultipassCaller<char>, sqrSumMultipassCaller<unsigned short>, sqrSumMultipassCaller<short>, sqrSumMultipassCaller<int>, sqrSumMultipassCaller<float>, 0 }; static Caller singlepass_callers[7] = { sqrSumCaller<unsigned char>, sqrSumCaller<char>, sqrSumCaller<unsigned short>, sqrSumCaller<short>, sqrSumCaller<int>, sqrSumCaller<float>, 0 }; Caller* callers = multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = singlepass_callers; Size buf_size; getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); Caller caller = callers[src.depth()]; if (!caller) CV_Error(CV_StsBadArg, "sqrSum: unsupported type"); double result[4]; caller(src, buf, result, src.channels()); return Scalar(result[0], result[1], result[2], result[3]); } //////////////////////////////////////////////////////////////////////// // Find min or max namespace cv { namespace gpu { namespace device { namespace matrix_reductions { namespace minmax { void getBufSizeRequired(int cols, int rows, int elem_size, int& bufcols, int& bufrows); template <typename T> void minMaxCaller(const DevMem2Db src, double* minval, double* maxval, PtrStepb buf); template <typename T> void minMaxMaskCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf); template <typename T> void minMaxMultipassCaller(const DevMem2Db src, double* minval, double* maxval, PtrStepb buf); template <typename T> void minMaxMaskMultipassCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf); } } }}} void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask) { GpuMat buf; minMax(src, minVal, maxVal, mask, buf); } void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf) { using namespace ::cv::gpu::device::matrix_reductions::minmax; typedef void (*Caller)(const DevMem2Db, double*, double*, PtrStepb); typedef void (*MaskedCaller)(const DevMem2Db, const PtrStepb, double*, double*, PtrStepb); static Caller multipass_callers[7] = { minMaxMultipassCaller<unsigned char>, minMaxMultipassCaller<char>, minMaxMultipassCaller<unsigned short>, minMaxMultipassCaller<short>, minMaxMultipassCaller<int>, minMaxMultipassCaller<float>, 0 }; static Caller singlepass_callers[7] = { minMaxCaller<unsigned char>, minMaxCaller<char>, minMaxCaller<unsigned short>, minMaxCaller<short>, minMaxCaller<int>, minMaxCaller<float>, minMaxCaller<double> }; static MaskedCaller masked_multipass_callers[7] = { minMaxMaskMultipassCaller<unsigned char>, minMaxMaskMultipassCaller<char>, minMaxMaskMultipassCaller<unsigned short>, minMaxMaskMultipassCaller<short>, minMaxMaskMultipassCaller<int>, minMaxMaskMultipassCaller<float>, 0 }; static MaskedCaller masked_singlepass_callers[7] = { minMaxMaskCaller<unsigned char>, minMaxMaskCaller<char>, minMaxMaskCaller<unsigned short>, minMaxMaskCaller<short>, minMaxMaskCaller<int>, minMaxMaskCaller<float>, minMaxMaskCaller<double> }; CV_Assert(src.channels() == 1); CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size())); double minVal_; if (!minVal) minVal = &minVal_; double maxVal_; if (!maxVal) maxVal = &maxVal_; Size buf_size; getBufSizeRequired(src.cols, src.rows, static_cast<int>(src.elemSize()), buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); if (mask.empty()) { Caller* callers = multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = singlepass_callers; Caller caller = callers[src.type()]; if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type"); caller(src, minVal, maxVal, buf); } else { MaskedCaller* callers = masked_multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = masked_singlepass_callers; MaskedCaller caller = callers[src.type()]; if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type"); caller(src, mask, minVal, maxVal, buf); } } //////////////////////////////////////////////////////////////////////// // Locate min and max namespace cv { namespace gpu { namespace device { namespace matrix_reductions { namespace minmaxloc { void getBufSizeRequired(int cols, int rows, int elem_size, int& b1cols, int& b1rows, int& b2cols, int& b2rows); template <typename T> void minMaxLocCaller(const DevMem2Db src, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf); template <typename T> void minMaxLocMaskCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf); template <typename T> void minMaxLocMultipassCaller(const DevMem2Db src, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf); template <typename T> void minMaxLocMaskMultipassCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf); } } }}} void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, const GpuMat& mask) { GpuMat valBuf, locBuf; minMaxLoc(src, minVal, maxVal, minLoc, maxLoc, mask, valBuf, locBuf); } void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, const GpuMat& mask, GpuMat& valBuf, GpuMat& locBuf) { using namespace ::cv::gpu::device::matrix_reductions::minmaxloc; typedef void (*Caller)(const DevMem2Db, double*, double*, int[2], int[2], PtrStepb, PtrStepb); typedef void (*MaskedCaller)(const DevMem2Db, const PtrStepb, double*, double*, int[2], int[2], PtrStepb, PtrStepb); static Caller multipass_callers[7] = { minMaxLocMultipassCaller<unsigned char>, minMaxLocMultipassCaller<char>, minMaxLocMultipassCaller<unsigned short>, minMaxLocMultipassCaller<short>, minMaxLocMultipassCaller<int>, minMaxLocMultipassCaller<float>, 0 }; static Caller singlepass_callers[7] = { minMaxLocCaller<unsigned char>, minMaxLocCaller<char>, minMaxLocCaller<unsigned short>, minMaxLocCaller<short>, minMaxLocCaller<int>, minMaxLocCaller<float>, minMaxLocCaller<double> }; static MaskedCaller masked_multipass_callers[7] = { minMaxLocMaskMultipassCaller<unsigned char>, minMaxLocMaskMultipassCaller<char>, minMaxLocMaskMultipassCaller<unsigned short>, minMaxLocMaskMultipassCaller<short>, minMaxLocMaskMultipassCaller<int>, minMaxLocMaskMultipassCaller<float>, 0 }; static MaskedCaller masked_singlepass_callers[7] = { minMaxLocMaskCaller<unsigned char>, minMaxLocMaskCaller<char>, minMaxLocMaskCaller<unsigned short>, minMaxLocMaskCaller<short>, minMaxLocMaskCaller<int>, minMaxLocMaskCaller<float>, minMaxLocMaskCaller<double> }; CV_Assert(src.channels() == 1); CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size())); double minVal_; if (!minVal) minVal = &minVal_; double maxVal_; if (!maxVal) maxVal = &maxVal_; int minLoc_[2]; int maxLoc_[2]; Size valbuf_size, locbuf_size; getBufSizeRequired(src.cols, src.rows, static_cast<int>(src.elemSize()), valbuf_size.width, valbuf_size.height, locbuf_size.width, locbuf_size.height); ensureSizeIsEnough(valbuf_size, CV_8U, valBuf); ensureSizeIsEnough(locbuf_size, CV_8U, locBuf); if (mask.empty()) { Caller* callers = multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = singlepass_callers; Caller caller = callers[src.type()]; if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type"); caller(src, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf); } else { MaskedCaller* callers = masked_multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = masked_singlepass_callers; MaskedCaller caller = callers[src.type()]; if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type"); caller(src, mask, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf); } if (minLoc) { minLoc->x = minLoc_[0]; minLoc->y = minLoc_[1]; } if (maxLoc) { maxLoc->x = maxLoc_[0]; maxLoc->y = maxLoc_[1]; } } ////////////////////////////////////////////////////////////////////////////// // Count non-zero elements namespace cv { namespace gpu { namespace device { namespace matrix_reductions { namespace countnonzero { void getBufSizeRequired(int cols, int rows, int& bufcols, int& bufrows); template <typename T> int countNonZeroCaller(const DevMem2Db src, PtrStepb buf); template <typename T> int countNonZeroMultipassCaller(const DevMem2Db src, PtrStepb buf); } } }}} int cv::gpu::countNonZero(const GpuMat& src) { GpuMat buf; return countNonZero(src, buf); } int cv::gpu::countNonZero(const GpuMat& src, GpuMat& buf) { using namespace ::cv::gpu::device::matrix_reductions::countnonzero; typedef int (*Caller)(const DevMem2Db src, PtrStepb buf); static Caller multipass_callers[7] = { countNonZeroMultipassCaller<unsigned char>, countNonZeroMultipassCaller<char>, countNonZeroMultipassCaller<unsigned short>, countNonZeroMultipassCaller<short>, countNonZeroMultipassCaller<int>, countNonZeroMultipassCaller<float>, 0 }; static Caller singlepass_callers[7] = { countNonZeroCaller<unsigned char>, countNonZeroCaller<char>, countNonZeroCaller<unsigned short>, countNonZeroCaller<short>, countNonZeroCaller<int>, countNonZeroCaller<float>, countNonZeroCaller<double> }; CV_Assert(src.channels() == 1); Size buf_size; getBufSizeRequired(src.cols, src.rows, buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); Caller* callers = multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = singlepass_callers; Caller caller = callers[src.type()]; if (!caller) CV_Error(CV_StsBadArg, "countNonZero: unsupported type"); return caller(src, buf); } ////////////////////////////////////////////////////////////////////////////// // reduce namespace cv { namespace gpu { namespace device { namespace matrix_reductions { template <typename T, typename S, typename D> void reduceRows_gpu(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream); template <typename T, typename S, typename D> void reduceCols_gpu(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream); } }}} void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int dtype, Stream& stream) { using namespace ::cv::gpu::device::matrix_reductions; CV_Assert(src.depth() <= CV_32F && src.channels() <= 4 && dtype <= CV_32F); CV_Assert(dim == 0 || dim == 1); CV_Assert(reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG || reduceOp == CV_REDUCE_MAX || reduceOp == CV_REDUCE_MIN); if (dtype < 0) dtype = src.depth(); dst.create(1, dim == 0 ? src.cols : src.rows, CV_MAKETYPE(dtype, src.channels())); if (dim == 0) { typedef void (*caller_t)(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream); static const caller_t callers[6][6] = { { reduceRows_gpu<unsigned char, int, unsigned char>, 0/*reduceRows_gpu<unsigned char, int, signed char>*/, 0/*reduceRows_gpu<unsigned char, int, unsigned short>*/, 0/*reduceRows_gpu<unsigned char, int, short>*/, reduceRows_gpu<unsigned char, int, int>, reduceRows_gpu<unsigned char, int, float> }, { 0/*reduceRows_gpu<signed char, int, unsigned char>*/, 0/*reduceRows_gpu<signed char, int, signed char>*/, 0/*reduceRows_gpu<signed char, int, unsigned short>*/, 0/*reduceRows_gpu<signed char, int, short>*/, 0/*reduceRows_gpu<signed char, int, int>*/, 0/*reduceRows_gpu<signed char, int, float>*/ }, { 0/*reduceRows_gpu<unsigned short, int, unsigned char>*/, 0/*reduceRows_gpu<unsigned short, int, signed char>*/, reduceRows_gpu<unsigned short, int, unsigned short>, 0/*reduceRows_gpu<unsigned short, int, short>*/, reduceRows_gpu<unsigned short, int, int>, reduceRows_gpu<unsigned short, int, float> }, { 0/*reduceRows_gpu<short, int, unsigned char>*/, 0/*reduceRows_gpu<short, int, signed char>*/, 0/*reduceRows_gpu<short, int, unsigned short>*/, reduceRows_gpu<short, int, short>, reduceRows_gpu<short, int, int>, reduceRows_gpu<short, int, float> }, { 0/*reduceRows_gpu<int, int, unsigned char>*/, 0/*reduceRows_gpu<int, int, signed char>*/, 0/*reduceRows_gpu<int, int, unsigned short>*/, 0/*reduceRows_gpu<int, int, short>*/, reduceRows_gpu<int, int, int>, reduceRows_gpu<int, int, float> }, { 0/*reduceRows_gpu<float, float, unsigned char>*/, 0/*reduceRows_gpu<float, float, signed char>*/, 0/*reduceRows_gpu<float, float, unsigned short>*/, 0/*reduceRows_gpu<float, float, short>*/, 0/*reduceRows_gpu<float, float, int>*/, reduceRows_gpu<float, float, float> } }; const caller_t func = callers[src.depth()][dst.depth()]; if (!func) CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats"); func(src.reshape(1), dst.reshape(1), reduceOp, StreamAccessor::getStream(stream)); } else { typedef void (*caller_t)(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream); static const caller_t callers[6][6] = { { reduceCols_gpu<unsigned char, int, unsigned char>, 0/*reduceCols_gpu<unsigned char, int, signed char>*/, 0/*reduceCols_gpu<unsigned char, int, unsigned short>*/, 0/*reduceCols_gpu<unsigned char, int, short>*/, reduceCols_gpu<unsigned char, int, int>, reduceCols_gpu<unsigned char, int, float> }, { 0/*reduceCols_gpu<signed char, int, unsigned char>*/, 0/*reduceCols_gpu<signed char, int, signed char>*/, 0/*reduceCols_gpu<signed char, int, unsigned short>*/, 0/*reduceCols_gpu<signed char, int, short>*/, 0/*reduceCols_gpu<signed char, int, int>*/, 0/*reduceCols_gpu<signed char, int, float>*/ }, { 0/*reduceCols_gpu<unsigned short, int, unsigned char>*/, 0/*reduceCols_gpu<unsigned short, int, signed char>*/, reduceCols_gpu<unsigned short, int, unsigned short>, 0/*reduceCols_gpu<unsigned short, int, short>*/, reduceCols_gpu<unsigned short, int, int>, reduceCols_gpu<unsigned short, int, float> }, { 0/*reduceCols_gpu<short, int, unsigned char>*/, 0/*reduceCols_gpu<short, int, signed char>*/, 0/*reduceCols_gpu<short, int, unsigned short>*/, reduceCols_gpu<short, int, short>, reduceCols_gpu<short, int, int>, reduceCols_gpu<short, int, float> }, { 0/*reduceCols_gpu<int, int, unsigned char>*/, 0/*reduceCols_gpu<int, int, signed char>*/, 0/*reduceCols_gpu<int, int, unsigned short>*/, 0/*reduceCols_gpu<int, int, short>*/, reduceCols_gpu<int, int, int>, reduceCols_gpu<int, int, float> }, { 0/*reduceCols_gpu<float, unsigned char>*/, 0/*reduceCols_gpu<float, signed char>*/, 0/*reduceCols_gpu<float, unsigned short>*/, 0/*reduceCols_gpu<float, short>*/, 0/*reduceCols_gpu<float, int>*/, reduceCols_gpu<float, float, float> } }; const caller_t func = callers[src.depth()][dst.depth()]; if (!func) CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats"); func(src, src.channels(), dst, reduceOp, StreamAccessor::getStream(stream)); } } #endif