#pragma once #include <opencv2/viz.hpp> #include "interactor_style.h" #include "viz_types.h" #include "common.h" struct cv::viz::Viz3d::VizImpl { public: typedef cv::Ptr<VizImpl> Ptr; typedef Viz3d::KeyboardCallback KeyboardCallback; typedef Viz3d::MouseCallback MouseCallback; VizImpl (const String &name); virtual ~VizImpl (); //to refactor bool removePointCloud (const String& id = "cloud"); inline bool removePolygonMesh (const String& id = "polygon") { return removePointCloud (id); } bool removeShape (const String& id = "cloud"); bool removeText3D (const String& id = "cloud"); bool removeAllPointClouds (); //create Viz3d::removeAllWidgets() bool removeAllShapes (); //to refactor bool addPolygonMesh (const Mesh3d& mesh, const cv::Mat& mask, const String& id = "polygon"); bool updatePolygonMesh (const Mesh3d& mesh, const cv::Mat& mask, const String& id = "polygon"); bool addPolylineFromPolygonMesh (const Mesh3d& mesh, const String& id = "polyline"); // to refactor: Widget3D:: & Viz3d:: bool setPointCloudRenderingProperties (int property, double value, const String& id = "cloud"); bool getPointCloudRenderingProperties (int property, double &value, const String& id = "cloud"); bool setShapeRenderingProperties (int property, double value, const String& id); /** \brief Set whether the point cloud is selected or not * \param[in] selected whether the cloud is selected or not (true = selected) * \param[in] id the point cloud object id (default: cloud) */ // probably should just remove bool setPointCloudSelected (const bool selected, const String& id = "cloud" ); /** \brief Returns true when the user tried to close the window */ bool wasStopped () const { if (interactor_ != NULL) return (stopped_); else return true; } /** \brief Set the stopped flag back to false */ void resetStoppedFlag () { if (interactor_ != NULL) stopped_ = false; } /** \brief Stop the interaction and close the visualizaton window. */ void close () { stopped_ = true; interactor_->TerminateApp (); // This tends to close the window... } // to refactor bool addPolygon(const cv::Mat& cloud, const Color& color, const String& id = "polygon"); bool addArrow (const Point3f& pt1, const Point3f& pt2, const Color& color, bool display_length, const String& id = "arrow"); bool addArrow (const Point3f& pt1, const Point3f& pt2, const Color& color_line, const Color& color_text, const String& id = "arrow"); // Probably remove this bool addModelFromPolyData (vtkSmartPointer<vtkPolyData> polydata, const String& id = "PolyData"); bool addModelFromPolyData (vtkSmartPointer<vtkPolyData> polydata, vtkSmartPointer<vtkTransform> transform, const String& id = "PolyData"); // I think this should be moved to 'static Widget Widget::fromPlyFile(const String&)'; bool addModelFromPLYFile (const String &filename, const String& id = "PLYModel"); bool addModelFromPLYFile (const String &filename, vtkSmartPointer<vtkTransform> transform, const String& id = "PLYModel"); // to implement in Viz3d with shorter name void setRepresentationToSurfaceForAllActors(); void setRepresentationToPointsForAllActors(); void setRepresentationToWireframeForAllActors(); // //////////////////////////////////////////////////////////////////////////////////// // All camera methods to refactor into set/getViewwerPose, setCamera() // and 'Camera' class itself with various constructors/fields void initCameraParameters (); /** \brief Initialize camera parameters with some default values. */ bool cameraParamsSet () const; /** \brief Checks whether the camera parameters were manually loaded from file.*/ void updateCamera (); /** \brief Update camera parameters and render. */ void resetCamera (); /** \brief Reset camera parameters and render. */ /** \brief Reset the camera direction from {0, 0, 0} to the center_{x, y, z} of a given dataset. * \param[in] id the point cloud object id (default: cloud) */ void resetCameraViewpoint (const String& id = "cloud"); /** \brief Set the camera pose given by position, viewpoint and up vector * \param[in] pos camera location * \param[in] view the view point of the camera * \param[in] up the view up direction of the camera */ void setCameraPosition (const cv::Vec3d& pos, const cv::Vec3d& view, const cv::Vec3d& up); /** \brief Set the camera location and viewup according to the given arguments * \param[in] pos_x,y,z the x,y,z coordinate of the camera location * \param[in] up_x,y,z the x,y,z component of the view up direction of the camera */ void setCameraPosition (double pos_x, double pos_y, double pos_z, double up_x, double up_y, double up_z); /** \brief Set the camera parameters via an intrinsics and and extrinsics matrix * \note This assumes that the pixels are square and that the center of the image is at the center of the sensor. * \param[in] intrinsics the intrinsics that will be used to compute the VTK camera parameters * \param[in] extrinsics the extrinsics that will be used to compute the VTK camera parameters */ void setCameraParameters (const cv::Matx33f& intrinsics, const Affine3f& extrinsics); void setCameraParameters (const Camera &camera); void setCameraClipDistances (double near, double far); void setCameraFieldOfView (double fovy); void getCameras (Camera& camera); //to implement Viz3d set/getViewerPose() Affine3f getViewerPose(); //to implemnt in Viz3d void saveScreenshot (const String &file); void setWindowPosition (int x, int y); void setWindowSize (int xw, int yw); void setFullScreen (bool mode); void setWindowName (const String &name); void setBackgroundColor (const Color& color); void spin (); void spinOnce (int time = 1, bool force_redraw = false); void registerKeyboardCallback(KeyboardCallback callback, void* cookie = 0); void registerMouseCallback(MouseCallback callback, void* cookie = 0); //declare above (to move to up) void showWidget(const String &id, const Widget &widget, const Affine3f &pose = Affine3f::Identity()); void removeWidget(const String &id); Widget getWidget(const String &id) const; void setWidgetPose(const String &id, const Affine3f &pose); void updateWidgetPose(const String &id, const Affine3f &pose); Affine3f getWidgetPose(const String &id) const; private: vtkSmartPointer<vtkRenderWindowInteractor> interactor_; struct ExitMainLoopTimerCallback : public vtkCommand { static ExitMainLoopTimerCallback* New() { return new ExitMainLoopTimerCallback; } virtual void Execute(vtkObject* vtkNotUsed(caller), unsigned long event_id, void* call_data) { if (event_id != vtkCommand::TimerEvent) return; int timer_id = *reinterpret_cast<int*> (call_data); if (timer_id != right_timer_id) return; // Stop vtk loop and send notification to app to wake it up viz_->interactor_->TerminateApp (); } int right_timer_id; VizImpl* viz_; }; struct ExitCallback : public vtkCommand { static ExitCallback* New () { return new ExitCallback; } virtual void Execute (vtkObject*, unsigned long event_id, void*) { if (event_id == vtkCommand::ExitEvent) { viz_->stopped_ = true; viz_->interactor_->TerminateApp (); } } VizImpl* viz_; }; /** \brief Set to false if the interaction loop is running. */ bool stopped_; double s_lastDone_; /** \brief Global timer ID. Used in destructor only. */ int timer_id_; /** \brief Callback object enabling us to leave the main loop, when a timer fires. */ vtkSmartPointer<ExitMainLoopTimerCallback> exit_main_loop_timer_callback_; vtkSmartPointer<ExitCallback> exit_callback_; vtkSmartPointer<vtkRenderer> renderer_; vtkSmartPointer<vtkRenderWindow> window_; /** \brief The render window interactor style. */ vtkSmartPointer<InteractorStyle> style_; /** \brief Internal list with actor pointers and name IDs for point clouds. */ cv::Ptr<CloudActorMap> cloud_actor_map_; /** \brief Internal list with actor pointers and name IDs for shapes. */ cv::Ptr<ShapeActorMap> shape_actor_map_; /** \brief Internal list with actor pointers and name IDs for all widget actors */ cv::Ptr<WidgetActorMap> widget_actor_map_; /** \brief Boolean that holds whether or not the camera parameters were manually initialized*/ bool camera_set_; bool removeActorFromRenderer (const vtkSmartPointer<vtkLODActor> &actor); bool removeActorFromRenderer (const vtkSmartPointer<vtkActor> &actor); bool removeActorFromRenderer (const vtkSmartPointer<vtkProp> &actor); //void addActorToRenderer (const vtkSmartPointer<vtkProp> &actor); /** \brief Internal method. Creates a vtk actor from a vtk polydata object. * \param[in] data the vtk polydata object to create an actor for * \param[out] actor the resultant vtk actor object * \param[in] use_scalars set scalar properties to the mapper if it exists in the data. Default: true. */ void createActorFromVTKDataSet (const vtkSmartPointer<vtkDataSet> &data, vtkSmartPointer<vtkLODActor> &actor, bool use_scalars = true); /** \brief Updates a set of cells (vtkIdTypeArray) if the number of points in a cloud changes * \param[out] cells the vtkIdTypeArray object (set of cells) to update * \param[out] initcells a previously saved set of cells. If the number of points in the current cloud is * higher than the number of cells in \a cells, and initcells contains enough data, then a copy from it * will be made instead of regenerating the entire array. * \param[in] nr_points the number of points in the new cloud. This dictates how many cells we need to * generate */ void updateCells (vtkSmartPointer<vtkIdTypeArray> &cells, vtkSmartPointer<vtkIdTypeArray> &initcells, vtkIdType nr_points); void allocVtkPolyData (vtkSmartPointer<vtkAppendPolyData> &polydata); void allocVtkPolyData (vtkSmartPointer<vtkPolyData> &polydata); void allocVtkUnstructuredGrid (vtkSmartPointer<vtkUnstructuredGrid> &polydata); }; namespace cv { namespace viz { //void getTransformationMatrix (const Eigen::Vector4f &origin, const Eigen::Quaternionf& orientation, Eigen::Matrix4f &transformation); vtkSmartPointer<vtkMatrix4x4> convertToVtkMatrix (const cv::Matx44f &m); cv::Matx44f convertToMatx(const vtkSmartPointer<vtkMatrix4x4>& vtk_matrix); /** \brief Convert origin and orientation to vtkMatrix4x4 * \param[in] origin the point cloud origin * \param[in] orientation the point cloud orientation * \param[out] vtk_matrix the resultant VTK 4x4 matrix */ void convertToVtkMatrix (const Eigen::Vector4f &origin, const Eigen::Quaternion<float> &orientation, vtkSmartPointer<vtkMatrix4x4> &vtk_matrix); struct NanFilter { template<typename _Tp, typename _Msk> struct Impl { typedef Vec<_Tp, 3> _Out; static _Out* copy(const Mat& source, _Out* output, const Mat& nan_mask) { CV_Assert(DataDepth<_Tp>::value == source.depth() && source.size() == nan_mask.size()); CV_Assert(nan_mask.channels() == 3 || nan_mask.channels() == 4); CV_DbgAssert(DataDepth<_Msk>::value == nan_mask.depth()); int s_chs = source.channels(); int m_chs = nan_mask.channels(); for(int y = 0; y < source.rows; ++y) { const _Tp* srow = source.ptr<_Tp>(y); const _Msk* mrow = nan_mask.ptr<_Msk>(y); for(int x = 0; x < source.cols; ++x, srow += s_chs, mrow += m_chs) if (!isNan(mrow[0]) && !isNan(mrow[1]) && !isNan(mrow[2])) *output++ = _Out(srow); } return output; } static _Out* copyColor(const Mat& source, _Out* output, const Mat& nan_mask) { CV_Assert(DataDepth<_Tp>::value == source.depth() && source.size() == nan_mask.size()); CV_Assert(nan_mask.channels() == 3 || nan_mask.channels() == 4); CV_DbgAssert(DataDepth<_Msk>::value == nan_mask.depth()); int s_chs = source.channels(); int m_chs = nan_mask.channels(); for(int y = 0; y < source.rows; ++y) { const _Tp* srow = source.ptr<_Tp>(y); const _Msk* mrow = nan_mask.ptr<_Msk>(y); for(int x = 0; x < source.cols; ++x, srow += s_chs, mrow += m_chs) if (!isNan(mrow[0]) && !isNan(mrow[1]) && !isNan(mrow[2])) { *output = _Out(srow); std::swap((*output)[0], (*output)[2]); // BGR -> RGB ++output; } } return output; } }; template<typename _Tp> static inline Vec<_Tp, 3>* copy(const Mat& source, Vec<_Tp, 3>* output, const Mat& nan_mask) { CV_Assert(nan_mask.depth() == CV_32F || nan_mask.depth() == CV_64F); typedef Vec<_Tp, 3>* (*copy_func)(const Mat&, Vec<_Tp, 3>*, const Mat&); const static copy_func table[2] = { &NanFilter::Impl<_Tp, float>::copy, &NanFilter::Impl<_Tp, double>::copy }; return table[nan_mask.depth() - 5](source, output, nan_mask); } template<typename _Tp> static inline Vec<_Tp, 3>* copyColor(const Mat& source, Vec<_Tp, 3>* output, const Mat& nan_mask) { CV_Assert(nan_mask.depth() == CV_32F || nan_mask.depth() == CV_64F); typedef Vec<_Tp, 3>* (*copy_func)(const Mat&, Vec<_Tp, 3>*, const Mat&); const static copy_func table[2] = { &NanFilter::Impl<_Tp, float>::copyColor, &NanFilter::Impl<_Tp, double>::copyColor }; return table[nan_mask.depth() - 5](source, output, nan_mask); } }; struct ApplyAffine { const Affine3f& affine_; ApplyAffine(const Affine3f& affine) : affine_(affine) {} template<typename _Tp> Point3_<_Tp> operator()(const Point3_<_Tp>& p) const { return affine_ * p; } template<typename _Tp> Vec<_Tp, 3> operator()(const Vec<_Tp, 3>& v) const { const float* m = affine_.matrix.val; Vec<_Tp, 3> result; result[0] = (_Tp)(m[0] * v[0] + m[1] * v[1] + m[ 2] * v[2] + m[ 3]); result[1] = (_Tp)(m[4] * v[0] + m[5] * v[1] + m[ 6] * v[2] + m[ 7]); result[2] = (_Tp)(m[8] * v[0] + m[9] * v[1] + m[10] * v[2] + m[11]); return result; } private: ApplyAffine(const ApplyAffine&); ApplyAffine& operator=(const ApplyAffine&); }; inline Color vtkcolor(const Color& color) { Color scaled_color = color * (1.0/255.0); std::swap(scaled_color[0], scaled_color[2]); return scaled_color; } inline Vec3d vtkpoint(const Point3f& point) { return Vec3d(point.x, point.y, point.z); } template<typename _Tp> inline _Tp normalized(const _Tp& v) { return v * 1/cv::norm(v); } } }