// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // Copyright (C) 2014, Itseez, Inc., all rights reserved. // Third party copyrights are property of their respective owners. #define SQRT_2 0.707106781188f #define sin_120 0.866025403784f #define fft5_2 0.559016994374f #define fft5_3 -0.951056516295f #define fft5_4 -1.538841768587f #define fft5_5 0.363271264002f #ifdef DOUBLE_SUPPORT #ifdef cl_amd_fp64 #pragma OPENCL EXTENSION cl_amd_fp64:enable #elif defined (cl_khr_fp64) #pragma OPENCL EXTENSION cl_khr_fp64:enable #endif #endif __attribute__((always_inline)) CT mul_complex(CT a, CT b) { return (CT)(fma(a.x, b.x, -a.y * b.y), fma(a.x, b.y, a.y * b.x)); } __attribute__((always_inline)) CT twiddle(CT a) { return (CT)(a.y, -a.x); } __attribute__((always_inline)) void butterfly2(CT a0, CT a1, __local CT* smem, __global const CT* twiddles, const int x, const int block_size) { const int k = x & (block_size - 1); a1 = mul_complex(twiddles[k], a1); const int dst_ind = (x << 1) - k; smem[dst_ind] = a0 + a1; smem[dst_ind+block_size] = a0 - a1; } __attribute__((always_inline)) void butterfly4(CT a0, CT a1, CT a2, CT a3, __local CT* smem, __global const CT* twiddles, const int x, const int block_size) { const int k = x & (block_size - 1); a1 = mul_complex(twiddles[k], a1); a2 = mul_complex(twiddles[k + block_size], a2); a3 = mul_complex(twiddles[k + 2*block_size], a3); const int dst_ind = ((x - k) << 2) + k; CT b0 = a0 + a2; a2 = a0 - a2; CT b1 = a1 + a3; a3 = twiddle(a1 - a3); smem[dst_ind] = b0 + b1; smem[dst_ind + block_size] = a2 + a3; smem[dst_ind + 2*block_size] = b0 - b1; smem[dst_ind + 3*block_size] = a2 - a3; } __attribute__((always_inline)) void butterfly3(CT a0, CT a1, CT a2, __local CT* smem, __global const CT* twiddles, const int x, const int block_size) { const int k = x % block_size; a1 = mul_complex(twiddles[k], a1); a2 = mul_complex(twiddles[k+block_size], a2); const int dst_ind = ((x - k) * 3) + k; CT b1 = a1 + a2; a2 = twiddle(sin_120*(a1 - a2)); CT b0 = a0 - (CT)(0.5f)*b1; smem[dst_ind] = a0 + b1; smem[dst_ind + block_size] = b0 + a2; smem[dst_ind + 2*block_size] = b0 - a2; } __attribute__((always_inline)) void butterfly5(CT a0, CT a1, CT a2, CT a3, CT a4, __local CT* smem, __global const CT* twiddles, const int x, const int block_size) { const int k = x % block_size; a1 = mul_complex(twiddles[k], a1); a2 = mul_complex(twiddles[k + block_size], a2); a3 = mul_complex(twiddles[k+2*block_size], a3); a4 = mul_complex(twiddles[k+3*block_size], a4); const int dst_ind = ((x - k) * 5) + k; __local CT* dst = smem + dst_ind; CT b0, b1, b5; b1 = a1 + a4; a1 -= a4; a4 = a3 + a2; a3 -= a2; a2 = b1 + a4; b0 = a0 - (CT)0.25f * a2; b1 = fft5_2 * (b1 - a4); a4 = fft5_3 * (CT)(-a1.y - a3.y, a1.x + a3.x); b5 = (CT)(a4.x - fft5_5 * a1.y, a4.y + fft5_5 * a1.x); a4.x += fft5_4 * a3.y; a4.y -= fft5_4 * a3.x; a1 = b0 + b1; b0 -= b1; dst[0] = a0 + a2; dst[block_size] = a1 + a4; dst[2 * block_size] = b0 + b5; dst[3 * block_size] = b0 - b5; dst[4 * block_size] = a1 - a4; } __attribute__((always_inline)) void fft_radix2(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t) { CT a0, a1; if (x < t) { a0 = smem[x]; a1 = smem[x+t]; } barrier(CLK_LOCAL_MEM_FENCE); if (x < t) butterfly2(a0, a1, smem, twiddles, x, block_size); barrier(CLK_LOCAL_MEM_FENCE); } __attribute__((always_inline)) void fft_radix2_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t) { const int x2 = x1 + t/2; CT a0, a1, a2, a3; if (x1 < t/2) { a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x2]; a3 = smem[x2+t]; } barrier(CLK_LOCAL_MEM_FENCE); if (x1 < t/2) { butterfly2(a0, a1, smem, twiddles, x1, block_size); butterfly2(a2, a3, smem, twiddles, x2, block_size); } barrier(CLK_LOCAL_MEM_FENCE); } __attribute__((always_inline)) void fft_radix2_B3(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t) { const int x2 = x1 + t/3; const int x3 = x1 + 2*t/3; CT a0, a1, a2, a3, a4, a5; if (x1 < t/3) { a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x2]; a3 = smem[x2+t]; a4 = smem[x3]; a5 = smem[x3+t]; } barrier(CLK_LOCAL_MEM_FENCE); if (x1 < t/3) { butterfly2(a0, a1, smem, twiddles, x1, block_size); butterfly2(a2, a3, smem, twiddles, x2, block_size); butterfly2(a4, a5, smem, twiddles, x3, block_size); } barrier(CLK_LOCAL_MEM_FENCE); } __attribute__((always_inline)) void fft_radix2_B4(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t) { const int thread_block = t/4; const int x2 = x1 + thread_block; const int x3 = x1 + 2*thread_block; const int x4 = x1 + 3*thread_block; CT a0, a1, a2, a3, a4, a5, a6, a7; if (x1 < t/4) { a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x2]; a3 = smem[x2+t]; a4 = smem[x3]; a5 = smem[x3+t]; a6 = smem[x4]; a7 = smem[x4+t]; } barrier(CLK_LOCAL_MEM_FENCE); if (x1 < t/4) { butterfly2(a0, a1, smem, twiddles, x1, block_size); butterfly2(a2, a3, smem, twiddles, x2, block_size); butterfly2(a4, a5, smem, twiddles, x3, block_size); butterfly2(a6, a7, smem, twiddles, x4, block_size); } barrier(CLK_LOCAL_MEM_FENCE); } __attribute__((always_inline)) void fft_radix2_B5(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t) { const int thread_block = t/5; const int x2 = x1 + thread_block; const int x3 = x1 + 2*thread_block; const int x4 = x1 + 3*thread_block; const int x5 = x1 + 4*thread_block; CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9; if (x1 < t/5) { a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x2]; a3 = smem[x2+t]; a4 = smem[x3]; a5 = smem[x3+t]; a6 = smem[x4]; a7 = smem[x4+t]; a8 = smem[x5]; a9 = smem[x5+t]; } barrier(CLK_LOCAL_MEM_FENCE); if (x1 < t/5) { butterfly2(a0, a1, smem, twiddles, x1, block_size); butterfly2(a2, a3, smem, twiddles, x2, block_size); butterfly2(a4, a5, smem, twiddles, x3, block_size); butterfly2(a6, a7, smem, twiddles, x4, block_size); butterfly2(a8, a9, smem, twiddles, x5, block_size); } barrier(CLK_LOCAL_MEM_FENCE); } __attribute__((always_inline)) void fft_radix4(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t) { CT a0, a1, a2, a3; if (x < t) { a0 = smem[x]; a1 = smem[x+t]; a2 = smem[x+2*t]; a3 = smem[x+3*t]; } barrier(CLK_LOCAL_MEM_FENCE); if (x < t) butterfly4(a0, a1, a2, a3, smem, twiddles, x, block_size); barrier(CLK_LOCAL_MEM_FENCE); } __attribute__((always_inline)) void fft_radix4_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t) { const int x2 = x1 + t/2; CT a0, a1, a2, a3, a4, a5, a6, a7; if (x1 < t/2) { a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t]; a3 = smem[x1+3*t]; a4 = smem[x2]; a5 = smem[x2+t]; a6 = smem[x2+2*t]; a7 = smem[x2+3*t]; } barrier(CLK_LOCAL_MEM_FENCE); if (x1 < t/2) { butterfly4(a0, a1, a2, a3, smem, twiddles, x1, block_size); butterfly4(a4, a5, a6, a7, smem, twiddles, x2, block_size); } barrier(CLK_LOCAL_MEM_FENCE); } __attribute__((always_inline)) void fft_radix4_B3(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t) { const int x2 = x1 + t/3; const int x3 = x2 + t/3; CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11; if (x1 < t/3) { a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t]; a3 = smem[x1+3*t]; a4 = smem[x2]; a5 = smem[x2+t]; a6 = smem[x2+2*t]; a7 = smem[x2+3*t]; a8 = smem[x3]; a9 = smem[x3+t]; a10 = smem[x3+2*t]; a11 = smem[x3+3*t]; } barrier(CLK_LOCAL_MEM_FENCE); if (x1 < t/3) { butterfly4(a0, a1, a2, a3, smem, twiddles, x1, block_size); butterfly4(a4, a5, a6, a7, smem, twiddles, x2, block_size); butterfly4(a8, a9, a10, a11, smem, twiddles, x3, block_size); } barrier(CLK_LOCAL_MEM_FENCE); } __attribute__((always_inline)) void fft_radix8(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t) { const int k = x % block_size; CT a0, a1, a2, a3, a4, a5, a6, a7; if (x < t) { int tw_ind = block_size / 8; a0 = smem[x]; a1 = mul_complex(twiddles[k], smem[x + t]); a2 = mul_complex(twiddles[k + block_size],smem[x+2*t]); a3 = mul_complex(twiddles[k+2*block_size],smem[x+3*t]); a4 = mul_complex(twiddles[k+3*block_size],smem[x+4*t]); a5 = mul_complex(twiddles[k+4*block_size],smem[x+5*t]); a6 = mul_complex(twiddles[k+5*block_size],smem[x+6*t]); a7 = mul_complex(twiddles[k+6*block_size],smem[x+7*t]); CT b0, b1, b6, b7; b0 = a0 + a4; a4 = a0 - a4; b1 = a1 + a5; a5 = a1 - a5; a5 = (CT)(SQRT_2) * (CT)(a5.x + a5.y, -a5.x + a5.y); b6 = twiddle(a2 - a6); a2 = a2 + a6; b7 = a3 - a7; b7 = (CT)(SQRT_2) * (CT)(-b7.x + b7.y, -b7.x - b7.y); a3 = a3 + a7; a0 = b0 + a2; a2 = b0 - a2; a1 = b1 + a3; a3 = twiddle(b1 - a3); a6 = a4 - b6; a4 = a4 + b6; a7 = twiddle(a5 - b7); a5 = a5 + b7; } barrier(CLK_LOCAL_MEM_FENCE); if (x < t) { const int dst_ind = ((x - k) << 3) + k; __local CT* dst = smem + dst_ind; dst[0] = a0 + a1; dst[block_size] = a4 + a5; dst[2 * block_size] = a2 + a3; dst[3 * block_size] = a6 + a7; dst[4 * block_size] = a0 - a1; dst[5 * block_size] = a4 - a5; dst[6 * block_size] = a2 - a3; dst[7 * block_size] = a6 - a7; } barrier(CLK_LOCAL_MEM_FENCE); } __attribute__((always_inline)) void fft_radix3(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t) { CT a0, a1, a2; if (x < t) { a0 = smem[x]; a1 = smem[x+t]; a2 = smem[x+2*t]; } barrier(CLK_LOCAL_MEM_FENCE); if (x < t) butterfly3(a0, a1, a2, smem, twiddles, x, block_size); barrier(CLK_LOCAL_MEM_FENCE); } __attribute__((always_inline)) void fft_radix3_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t) { const int x2 = x1 + t/2; CT a0, a1, a2, a3, a4, a5; if (x1 < t/2) { a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t]; a3 = smem[x2]; a4 = smem[x2+t]; a5 = smem[x2+2*t]; } barrier(CLK_LOCAL_MEM_FENCE); if (x1 < t/2) { butterfly3(a0, a1, a2, smem, twiddles, x1, block_size); butterfly3(a3, a4, a5, smem, twiddles, x2, block_size); } barrier(CLK_LOCAL_MEM_FENCE); } __attribute__((always_inline)) void fft_radix3_B3(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t) { const int x2 = x1 + t/3; const int x3 = x2 + t/3; CT a0, a1, a2, a3, a4, a5, a6, a7, a8; if (x1 < t/3) { a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t]; a3 = smem[x2]; a4 = smem[x2+t]; a5 = smem[x2+2*t]; a6 = smem[x3]; a7 = smem[x3+t]; a8 = smem[x3+2*t]; } barrier(CLK_LOCAL_MEM_FENCE); if (x1 < t/3) { butterfly3(a0, a1, a2, smem, twiddles, x1, block_size); butterfly3(a3, a4, a5, smem, twiddles, x2, block_size); butterfly3(a6, a7, a8, smem, twiddles, x3, block_size); } barrier(CLK_LOCAL_MEM_FENCE); } __attribute__((always_inline)) void fft_radix3_B4(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t) { const int thread_block = t/4; const int x2 = x1 + thread_block; const int x3 = x1 + 2*thread_block; const int x4 = x1 + 3*thread_block; CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11; if (x1 < t/4) { a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t]; a3 = smem[x2]; a4 = smem[x2+t]; a5 = smem[x2+2*t]; a6 = smem[x3]; a7 = smem[x3+t]; a8 = smem[x3+2*t]; a9 = smem[x4]; a10 = smem[x4+t]; a11 = smem[x4+2*t]; } barrier(CLK_LOCAL_MEM_FENCE); if (x1 < t/4) { butterfly3(a0, a1, a2, smem, twiddles, x1, block_size); butterfly3(a3, a4, a5, smem, twiddles, x2, block_size); butterfly3(a6, a7, a8, smem, twiddles, x3, block_size); butterfly3(a9, a10, a11, smem, twiddles, x4, block_size); } barrier(CLK_LOCAL_MEM_FENCE); } __attribute__((always_inline)) void fft_radix5(__local CT* smem, __global const CT* twiddles, const int x, const int block_size, const int t) { const int k = x % block_size; CT a0, a1, a2, a3, a4; if (x < t) { a0 = smem[x]; a1 = smem[x + t]; a2 = smem[x+2*t]; a3 = smem[x+3*t]; a4 = smem[x+4*t]; } barrier(CLK_LOCAL_MEM_FENCE); if (x < t) butterfly5(a0, a1, a2, a3, a4, smem, twiddles, x, block_size); barrier(CLK_LOCAL_MEM_FENCE); } __attribute__((always_inline)) void fft_radix5_B2(__local CT* smem, __global const CT* twiddles, const int x1, const int block_size, const int t) { const int x2 = x1+t/2; CT a0, a1, a2, a3, a4, a5, a6, a7, a8, a9; if (x1 < t/2) { a0 = smem[x1]; a1 = smem[x1 + t]; a2 = smem[x1+2*t]; a3 = smem[x1+3*t]; a4 = smem[x1+4*t]; a5 = smem[x2]; a6 = smem[x2 + t]; a7 = smem[x2+2*t]; a8 = smem[x2+3*t]; a9 = smem[x2+4*t]; } barrier(CLK_LOCAL_MEM_FENCE); if (x1 < t/2) { butterfly5(a0, a1, a2, a3, a4, smem, twiddles, x1, block_size); butterfly5(a5, a6, a7, a8, a9, smem, twiddles, x2, block_size); } barrier(CLK_LOCAL_MEM_FENCE); } #ifdef DFT_SCALE #define SCALE_VAL(x, scale) x*scale #else #define SCALE_VAL(x, scale) x #endif __kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols, __global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, __global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz) { const int x = get_global_id(0); const int y = get_group_id(1); const int block_size = LOCAL_SIZE/kercn; if (y < nz) { __local CT smem[LOCAL_SIZE]; __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset); const int ind = x; #ifdef IS_1D FT scale = (FT) 1/dst_cols; #else FT scale = (FT) 1/(dst_cols*dst_rows); #endif #ifdef COMPLEX_INPUT __global const CT* src = (__global const CT*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset))); #pragma unroll for (int i=0; i<kercn; i++) smem[x+i*block_size] = src[i*block_size]; #else __global const FT* src = (__global const FT*)(src_ptr + mad24(y, src_step, mad24(x, (int)sizeof(FT), src_offset))); #pragma unroll for (int i=0; i<kercn; i++) smem[x+i*block_size] = (CT)(src[i*block_size], 0.f); #endif barrier(CLK_LOCAL_MEM_FENCE); RADIX_PROCESS; #ifdef COMPLEX_OUTPUT #ifdef NO_CONJUGATE // copy result without complex conjugate const int cols = dst_cols/2 + 1; #else const int cols = dst_cols; #endif __global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, dst_offset)); #pragma unroll for (int i=x; i<cols; i+=block_size) dst[i] = SCALE_VAL(smem[i], scale); #ifdef REAL_INPUT #ifdef COMPLEX_OUTPUT #ifdef IS_1D for(int i=x+1; i < (dst_cols+1)/2; i+=block_size) { dst[dst_cols-i] = (CT)(SCALE_VAL(smem[i].x, scale), SCALE_VAL(-smem[i].y, scale)); } #endif #endif #endif #else // pack row to CCS __local FT* smem_1cn = (__local FT*) smem; __global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, dst_offset)); for (int i=x; i<dst_cols-1; i+=block_size) dst[i+1] = SCALE_VAL(smem_1cn[i+2], scale); if (x == 0) dst[0] = SCALE_VAL(smem_1cn[0], scale); #endif } else { // fill with zero other rows #ifdef COMPLEX_OUTPUT __global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, dst_offset)); #else __global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, dst_offset)); #endif #pragma unroll for (int i=x; i<dst_cols; i+=block_size) dst[i] = 0.f; } } __kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols, __global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, __global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz) { const int x = get_group_id(0); const int y = get_global_id(1); if (x < nz) { __local CT smem[LOCAL_SIZE]; __global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset)); __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset); const int ind = y; const int block_size = LOCAL_SIZE/kercn; FT scale = 1.f/(dst_rows*dst_cols); #pragma unroll for (int i=0; i<kercn; i++) smem[y+i*block_size] = *((__global const CT*)(src + i*block_size*src_step)); barrier(CLK_LOCAL_MEM_FENCE); RADIX_PROCESS; #ifdef COMPLEX_OUTPUT __global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset)); #pragma unroll for (int i=0; i<kercn; i++) *((__global CT*)(dst + i*block_size*dst_step)) = SCALE_VAL(smem[y + i*block_size], scale); #else if (x == 0) { // pack first column to CCS __local FT* smem_1cn = (__local FT*) smem; __global uchar* dst = dst_ptr + mad24(y+1, dst_step, dst_offset); for (int i=y; i<dst_rows-1; i+=block_size, dst+=dst_step*block_size) *((__global FT*) dst) = SCALE_VAL(smem_1cn[i+2], scale); if (y == 0) *((__global FT*) (dst_ptr + dst_offset)) = SCALE_VAL(smem_1cn[0], scale); } else if (x == (dst_cols+1)/2) { // pack last column to CCS (if needed) __local FT* smem_1cn = (__local FT*) smem; __global uchar* dst = dst_ptr + mad24(dst_cols-1, (int)sizeof(FT), mad24(y+1, dst_step, dst_offset)); for (int i=y; i<dst_rows-1; i+=block_size, dst+=dst_step*block_size) *((__global FT*) dst) = SCALE_VAL(smem_1cn[i+2], scale); if (y == 0) *((__global FT*) (dst_ptr + mad24(dst_cols-1, (int)sizeof(FT), dst_offset))) = SCALE_VAL(smem_1cn[0], scale); } else { __global uchar* dst = dst_ptr + mad24(x, (int)sizeof(FT)*2, mad24(y, dst_step, dst_offset - (int)sizeof(FT))); #pragma unroll for (int i=y; i<dst_rows; i+=block_size, dst+=block_size*dst_step) vstore2(SCALE_VAL(smem[i], scale), 0, (__global FT*) dst); } #endif } } __kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols, __global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, __global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz) { const int x = get_global_id(0); const int y = get_group_id(1); const int block_size = LOCAL_SIZE/kercn; #ifdef IS_1D const FT scale = (FT) 1/dst_cols; #else const FT scale = (FT) 1/(dst_cols*dst_rows); #endif if (y < nz) { __local CT smem[LOCAL_SIZE]; __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset); const int ind = x; #if defined(COMPLEX_INPUT) && !defined(NO_CONJUGATE) __global const CT* src = (__global const CT*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset))); #pragma unroll for (int i=0; i<kercn; i++) { smem[x+i*block_size].x = src[i*block_size].x; smem[x+i*block_size].y = -src[i*block_size].y; } #else #if !defined(REAL_INPUT) && defined(NO_CONJUGATE) __global const CT* src = (__global const CT*)(src_ptr + mad24(y, src_step, mad24(2, (int)sizeof(FT), src_offset))); #pragma unroll for (int i=x; i<(LOCAL_SIZE-1)/2; i+=block_size) { smem[i+1].x = src[i].x; smem[i+1].y = -src[i].y; smem[LOCAL_SIZE-i-1] = src[i]; } #else #pragma unroll for (int i=x; i<(LOCAL_SIZE-1)/2; i+=block_size) { CT src = vload2(0, (__global const FT*)(src_ptr + mad24(y, src_step, mad24(2*i+1, (int)sizeof(FT), src_offset)))); smem[i+1].x = src.x; smem[i+1].y = -src.y; smem[LOCAL_SIZE-i-1] = src; } #endif if (x==0) { smem[0].x = *(__global const FT*)(src_ptr + mad24(y, src_step, src_offset)); smem[0].y = 0.f; if(LOCAL_SIZE % 2 ==0) { #if !defined(REAL_INPUT) && defined(NO_CONJUGATE) smem[LOCAL_SIZE/2].x = src[LOCAL_SIZE/2-1].x; #else smem[LOCAL_SIZE/2].x = *(__global const FT*)(src_ptr + mad24(y, src_step, mad24(LOCAL_SIZE-1, (int)sizeof(FT), src_offset))); #endif smem[LOCAL_SIZE/2].y = 0.f; } } #endif barrier(CLK_LOCAL_MEM_FENCE); RADIX_PROCESS; // copy data to dst #ifdef COMPLEX_OUTPUT __global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset))); #pragma unroll for (int i=0; i<kercn; i++) { dst[i*block_size].x = SCALE_VAL(smem[x + i*block_size].x, scale); dst[i*block_size].y = SCALE_VAL(-smem[x + i*block_size].y, scale); } #else __global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(FT)), dst_offset))); #pragma unroll for (int i=0; i<kercn; i++) { dst[i*block_size] = SCALE_VAL(smem[x + i*block_size].x, scale); } #endif } else { // fill with zero other rows #ifdef COMPLEX_OUTPUT __global CT* dst = (__global CT*)(dst_ptr + mad24(y, dst_step, dst_offset)); #else __global FT* dst = (__global FT*)(dst_ptr + mad24(y, dst_step, dst_offset)); #endif #pragma unroll for (int i=x; i<dst_cols; i+=block_size) dst[i] = 0.f; } } __kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols, __global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, __global CT* twiddles_ptr, int twiddles_step, int twiddles_offset, const int t, const int nz) { const int x = get_group_id(0); const int y = get_global_id(1); #ifdef COMPLEX_INPUT if (x < nz) { __local CT smem[LOCAL_SIZE]; __global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(CT)), src_offset)); __global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset)); __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset); const int ind = y; const int block_size = LOCAL_SIZE/kercn; #pragma unroll for (int i=0; i<kercn; i++) { CT temp = *((__global const CT*)(src + i*block_size*src_step)); smem[y+i*block_size].x = temp.x; smem[y+i*block_size].y = -temp.y; } barrier(CLK_LOCAL_MEM_FENCE); RADIX_PROCESS; // copy data to dst #pragma unroll for (int i=0; i<kercn; i++) { __global CT* res = (__global CT*)(dst + i*block_size*dst_step); res[0].x = smem[y + i*block_size].x; res[0].y = -smem[y + i*block_size].y; } } #else if (x < nz) { __global const CT* twiddles = (__global const CT*)(twiddles_ptr + twiddles_offset); const int ind = y; const int block_size = LOCAL_SIZE/kercn; __local CT smem[LOCAL_SIZE]; #ifdef EVEN if (x!=0 && (x!=(nz-1))) #else if (x!=0) #endif { __global const uchar* src = src_ptr + mad24(y, src_step, mad24(2*x-1, (int)sizeof(FT), src_offset)); #pragma unroll for (int i=0; i<kercn; i++) { CT temp = vload2(0, (__global const FT*)(src + i*block_size*src_step)); smem[y+i*block_size].x = temp.x; smem[y+i*block_size].y = -temp.y; } } else { int ind = x==0 ? 0: 2*x-1; __global const FT* src = (__global const FT*)(src_ptr + mad24(1, src_step, mad24(ind, (int)sizeof(FT), src_offset))); int step = src_step/(int)sizeof(FT); #pragma unroll for (int i=y; i<(LOCAL_SIZE-1)/2; i+=block_size) { smem[i+1].x = src[2*i*step]; smem[i+1].y = -src[(2*i+1)*step]; smem[LOCAL_SIZE-i-1].x = src[2*i*step];; smem[LOCAL_SIZE-i-1].y = src[(2*i+1)*step]; } if (y==0) { smem[0].x = *(__global const FT*)(src_ptr + mad24(ind, (int)sizeof(FT), src_offset)); smem[0].y = 0.f; if(LOCAL_SIZE % 2 ==0) { smem[LOCAL_SIZE/2].x = src[(LOCAL_SIZE-2)*step]; smem[LOCAL_SIZE/2].y = 0.f; } } } barrier(CLK_LOCAL_MEM_FENCE); RADIX_PROCESS; // copy data to dst __global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(CT)), dst_offset)); #pragma unroll for (int i=0; i<kercn; i++) { __global CT* res = (__global CT*)(dst + i*block_size*dst_step); res[0].x = smem[y + i*block_size].x; res[0].y = -smem[y + i*block_size].y; } } #endif }