/*#****************************************************************************** ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. ** ** By downloading, copying, installing or using the software you agree to this license. ** If you do not agree to this license, do not download, install, ** copy or use the software. ** ** ** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) ** ** Creation - enhancement process 2007-2011 ** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France ** ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr). ** Refer to the following research paper for more information: ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book: ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. ** ** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author : ** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper: ** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007 ** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions. ** ====> more informations in the above cited Jeanny Heraults's book. ** ** License Agreement ** For Open Source Computer Vision Library ** ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** ** For Human Visual System tools (hvstools) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. ** ** Redistribution and use in source and binary forms, with or without modification, ** are permitted provided that the following conditions are met: ** ** * Redistributions of source code must retain the above copyright notice, ** this list of conditions and the following disclaimer. ** ** * Redistributions in binary form must reproduce the above copyright notice, ** this list of conditions and the following disclaimer in the documentation ** and/or other materials provided with the distribution. ** ** * The name of the copyright holders may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** This software is provided by the copyright holders and contributors "as is" and ** any express or implied warranties, including, but not limited to, the implied ** warranties of merchantability and fitness for a particular purpose are disclaimed. ** In no event shall the Intel Corporation or contributors be liable for any direct, ** indirect, incidental, special, exemplary, or consequential damages ** (including, but not limited to, procurement of substitute goods or services; ** loss of use, data, or profits; or business interruption) however caused ** and on any theory of liability, whether in contract, strict liability, ** or tort (including negligence or otherwise) arising in any way out of ** the use of this software, even if advised of the possibility of such damage. *******************************************************************************/ #include "precomp.hpp" #include "retinafilter.hpp" // @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC : www.listic.univ-savoie.fr, Gipsa-Lab, France: www.gipsa-lab.inpg.fr/ #include <iostream> #include <cmath> namespace cv { // standard constructor without any log sampling of the input frame RetinaFilter::RetinaFilter(const unsigned int sizeRows, const unsigned int sizeColumns, const bool colorMode, const RETINA_COLORSAMPLINGMETHOD samplingMethod, const bool useRetinaLogSampling, const double reductionFactor, const double samplingStrenght) : _retinaParvoMagnoMappedFrame(0), _retinaParvoMagnoMapCoefTable(0), _photoreceptorsPrefilter((1-(int)useRetinaLogSampling)*sizeRows+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeRows, reductionFactor), (1-(int)useRetinaLogSampling)*sizeColumns+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeColumns, reductionFactor), 4), _ParvoRetinaFilter((1-(int)useRetinaLogSampling)*sizeRows+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeRows, reductionFactor), (1-(int)useRetinaLogSampling)*sizeColumns+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeColumns, reductionFactor)), _MagnoRetinaFilter((1-(int)useRetinaLogSampling)*sizeRows+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeRows, reductionFactor), (1-(int)useRetinaLogSampling)*sizeColumns+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeColumns, reductionFactor)), _colorEngine((1-(int)useRetinaLogSampling)*sizeRows+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeRows, reductionFactor), (1-(int)useRetinaLogSampling)*sizeColumns+useRetinaLogSampling*ImageLogPolProjection::predictOutputSize(sizeColumns, reductionFactor), samplingMethod), // configure retina photoreceptors log sampling... if necessary _photoreceptorsLogSampling(NULL) { #ifdef RETINADEBUG std::cout<<"RetinaFilter::size( "<<_photoreceptorsPrefilter.getNBrows()<<", "<<_photoreceptorsPrefilter.getNBcolumns()<<")"<<" =? "<<_photoreceptorsPrefilter.getNBpixels()<<std::endl; #endif if (useRetinaLogSampling) { _photoreceptorsLogSampling = new ImageLogPolProjection(sizeRows, sizeColumns, ImageLogPolProjection::RETINALOGPROJECTION, true); if (!_photoreceptorsLogSampling->initProjection(reductionFactor, samplingStrenght)) { std::cerr<<"RetinaFilter::Problem initializing photoreceptors log sampling, could not setup retina filter"<<std::endl; delete _photoreceptorsLogSampling; _photoreceptorsLogSampling=NULL; } else { #ifdef RETINADEBUG std::cout<<"_photoreceptorsLogSampling::size( "<<_photoreceptorsLogSampling->getNBrows()<<", "<<_photoreceptorsLogSampling->getNBcolumns()<<")"<<" =? "<<_photoreceptorsLogSampling->getNBpixels()<<std::endl; #endif } } // set default processing activities _useParvoOutput=true; _useMagnoOutput=true; _useColorMode=colorMode; // create hybrid output and related coefficient table _createHybridTable(); // set default parameters setGlobalParameters(); // stability controls values init _setInitPeriodCount(); _globalTemporalConstant=25; // reset all buffers clearAllBuffers(); // std::cout<<"RetinaFilter::size( "<<this->getNBrows()<<", "<<this->getNBcolumns()<<")"<<_filterOutput.size()<<" =? "<<_filterOutput.getNBpixels()<<std::endl; } // destructor RetinaFilter::~RetinaFilter() { if (_photoreceptorsLogSampling!=NULL) delete _photoreceptorsLogSampling; } // function that clears all buffers of the object void RetinaFilter::clearAllBuffers() { _photoreceptorsPrefilter.clearAllBuffers(); _ParvoRetinaFilter.clearAllBuffers(); _MagnoRetinaFilter.clearAllBuffers(); _colorEngine.clearAllBuffers(); if (_photoreceptorsLogSampling!=NULL) _photoreceptorsLogSampling->clearAllBuffers(); // stability controls value init _setInitPeriodCount(); } /** * resize retina filter object (resize all allocated buffers * @param NBrows: the new height size * @param NBcolumns: the new width size */ void RetinaFilter::resize(const unsigned int NBrows, const unsigned int NBcolumns) { unsigned int rows=NBrows, cols=NBcolumns; // resize optionnal member and adjust other modules size if required if (_photoreceptorsLogSampling) { _photoreceptorsLogSampling->resize(NBrows, NBcolumns); rows=_photoreceptorsLogSampling->getOutputNBrows(); cols=_photoreceptorsLogSampling->getOutputNBcolumns(); } _photoreceptorsPrefilter.resize(rows, cols); _ParvoRetinaFilter.resize(rows, cols); _MagnoRetinaFilter.resize(rows, cols); _colorEngine.resize(rows, cols); // reset parvo magno mapping _createHybridTable(); // clean buffers clearAllBuffers(); } // stability controls value init void RetinaFilter::_setInitPeriodCount() { // find out the maximum temporal constant value and apply a security factor // false value (obviously too long) but appropriate for simple use _globalTemporalConstant=(unsigned int)(_ParvoRetinaFilter.getPhotoreceptorsTemporalConstant()+_ParvoRetinaFilter.getHcellsTemporalConstant()+_MagnoRetinaFilter.getTemporalConstant()); // reset frame counter _ellapsedFramesSinceLastReset=0; } void RetinaFilter::_createHybridTable() { // create hybrid output and related coefficient table _retinaParvoMagnoMappedFrame.resize(_photoreceptorsPrefilter.getNBpixels()); _retinaParvoMagnoMapCoefTable.resize(_photoreceptorsPrefilter.getNBpixels()*2); // fill _hybridParvoMagnoCoefTable int i, j, halfRows=_photoreceptorsPrefilter.getNBrows()/2, halfColumns=_photoreceptorsPrefilter.getNBcolumns()/2; float *hybridParvoMagnoCoefTablePTR= &_retinaParvoMagnoMapCoefTable[0]; float minDistance=MIN(halfRows, halfColumns)*0.7f; for (i=0;i<(int)_photoreceptorsPrefilter.getNBrows();++i) { for (j=0;j<(int)_photoreceptorsPrefilter.getNBcolumns();++j) { float distanceToCenter=sqrt(((float)(i-halfRows)*(i-halfRows)+(j-halfColumns)*(j-halfColumns))); if (distanceToCenter<minDistance) { float a=*(hybridParvoMagnoCoefTablePTR++)=0.5f+0.5f*(float)cos(CV_PI*distanceToCenter/minDistance); *(hybridParvoMagnoCoefTablePTR++)=1.f-a; }else { *(hybridParvoMagnoCoefTablePTR++)=0.f; *(hybridParvoMagnoCoefTablePTR++)=1.f; } } } } // setup parameters function and global data filling void RetinaFilter::setGlobalParameters(const float OPLspatialResponse1, const float OPLtemporalresponse1, const float OPLassymetryGain, const float OPLspatialResponse2, const float OPLtemporalresponse2, const float LPfilterSpatialResponse, const float LPfilterGain, const float LPfilterTemporalresponse, const float MovingContoursExtractorCoefficient, const bool normalizeParvoOutput_0_maxOutputValue, const bool normalizeMagnoOutput_0_maxOutputValue, const float maxOutputValue, const float maxInputValue, const float meanValue) { _normalizeParvoOutput_0_maxOutputValue=normalizeParvoOutput_0_maxOutputValue; _normalizeMagnoOutput_0_maxOutputValue=normalizeMagnoOutput_0_maxOutputValue; _maxOutputValue=maxOutputValue; _photoreceptorsPrefilter.setV0CompressionParameter(0.9f, maxInputValue, meanValue); _photoreceptorsPrefilter.setLPfilterParameters(10, 0, 1.5, 1); // keeps low pass filter with high cut frequency in memory (usefull for the tone mapping function) _photoreceptorsPrefilter.setLPfilterParameters(10, 0, 3.0, 2); // keeps low pass filter with low cut frequency in memory (usefull for the tone mapping function) _photoreceptorsPrefilter.setLPfilterParameters(0, 0, 10, 3); // keeps low pass filter with low cut frequency in memory (usefull for the tone mapping function) //this->setV0CompressionParameter(0.6, maxInputValue, meanValue); // keeps log compression sensitivity parameter (usefull for the tone mapping function) _ParvoRetinaFilter.setOPLandParvoFiltersParameters(0,OPLtemporalresponse1, OPLspatialResponse1, OPLassymetryGain, OPLtemporalresponse2, OPLspatialResponse2); _ParvoRetinaFilter.setV0CompressionParameter(0.9f, maxInputValue, meanValue); _MagnoRetinaFilter.setCoefficientsTable(LPfilterGain, LPfilterTemporalresponse, LPfilterSpatialResponse, MovingContoursExtractorCoefficient, 0, 2.0f*LPfilterSpatialResponse); _MagnoRetinaFilter.setV0CompressionParameter(0.7f, maxInputValue, meanValue); // stability controls value init _setInitPeriodCount(); } bool RetinaFilter::checkInput(const std::valarray<float> &input, const bool) { BasicRetinaFilter *inputTarget=&_photoreceptorsPrefilter; if (_photoreceptorsLogSampling) inputTarget=_photoreceptorsLogSampling; bool test=input.size()==inputTarget->getNBpixels() || input.size()==(inputTarget->getNBpixels()*3) ; if (!test) { std::cerr<<"RetinaFilter::checkInput: input buffer does not match retina buffer size, conversion aborted"<<std::endl; std::cout<<"RetinaFilter::checkInput: input size="<<input.size()<<" / "<<"retina size="<<inputTarget->getNBpixels()<<std::endl; return false; } return true; } // main function that runs the filter for a given input frame bool RetinaFilter::runFilter(const std::valarray<float> &imageInput, const bool useAdaptiveFiltering, const bool processRetinaParvoMagnoMapping, const bool useColorMode, const bool inputIsColorMultiplexed) { // preliminary check bool processSuccess=true; if (!checkInput(imageInput, useColorMode)) return false; // run the color multiplexing if needed and compute each suub filter of the retina: // -> local adaptation // -> contours OPL extraction // -> moving contours extraction // stability controls value update ++_ellapsedFramesSinceLastReset; _useColorMode=useColorMode; /* pointer to the appropriate input data after, * by default, if graylevel mode, the input is processed, * if color or something else must be considered, specific preprocessing are applied */ const std::valarray<float> *selectedPhotoreceptorsLocalAdaptationInput= &imageInput; const std::valarray<float> *selectedPhotoreceptorsColorInput=&imageInput; //********** Following is input data specific photoreceptors processing if (_photoreceptorsLogSampling) { _photoreceptorsLogSampling->runProjection(imageInput, useColorMode); selectedPhotoreceptorsColorInput=selectedPhotoreceptorsLocalAdaptationInput=&(_photoreceptorsLogSampling->getSampledFrame()); } if (useColorMode&& (!inputIsColorMultiplexed)) // not multiplexed color input case { _colorEngine.runColorMultiplexing(*selectedPhotoreceptorsColorInput); selectedPhotoreceptorsLocalAdaptationInput=&(_colorEngine.getMultiplexedFrame()); } //********** Following is generic Retina processing // photoreceptors local adaptation _photoreceptorsPrefilter.runFilter_LocalAdapdation(*selectedPhotoreceptorsLocalAdaptationInput, _ParvoRetinaFilter.getHorizontalCellsOutput()); // safety pixel values checks //_photoreceptorsPrefilter.normalizeGrayOutput_0_maxOutputValue(_maxOutputValue); // run parvo filter _ParvoRetinaFilter.runFilter(_photoreceptorsPrefilter.getOutput(), _useParvoOutput); if (_useParvoOutput) { _ParvoRetinaFilter.normalizeGrayOutputCentredSigmoide(); // models the saturation of the cells, usefull for visualisation of the ON-OFF Parvo Output, Bipolar cells outputs do not change !!! _ParvoRetinaFilter.centerReductImageLuminance(); // best for further spectrum analysis if (_normalizeParvoOutput_0_maxOutputValue) _ParvoRetinaFilter.normalizeGrayOutput_0_maxOutputValue(_maxOutputValue); } if (_useParvoOutput&&_useMagnoOutput) { _MagnoRetinaFilter.runFilter(_ParvoRetinaFilter.getBipolarCellsON(), _ParvoRetinaFilter.getBipolarCellsOFF()); if (_normalizeMagnoOutput_0_maxOutputValue) { _MagnoRetinaFilter.normalizeGrayOutput_0_maxOutputValue(_maxOutputValue); } _MagnoRetinaFilter.normalizeGrayOutputNearZeroCentreredSigmoide(); } if (_useParvoOutput&&_useMagnoOutput&&processRetinaParvoMagnoMapping) { _processRetinaParvoMagnoMapping(); if (_useColorMode) _colorEngine.runColorDemultiplexing(_retinaParvoMagnoMappedFrame, useAdaptiveFiltering, _maxOutputValue);//_ColorEngine->getMultiplexedFrame());//_ParvoRetinaFilter->getPhotoreceptorsLPfilteringOutput()); return processSuccess; } if (_useParvoOutput&&_useColorMode) { _colorEngine.runColorDemultiplexing(_ParvoRetinaFilter.getOutput(), useAdaptiveFiltering, _maxOutputValue);//_ColorEngine->getMultiplexedFrame());//_ParvoRetinaFilter->getPhotoreceptorsLPfilteringOutput()); // compute A Cr1 Cr2 to LMS color space conversion //if (true) // _applyImageColorSpaceConversion(_ColorEngine->getChrominance(), lmsTempBuffer.Buffer(), _LMStoACr1Cr2); } return processSuccess; } const std::valarray<float> &RetinaFilter::getContours() { if (_useColorMode) return _colorEngine.getLuminance(); else return _ParvoRetinaFilter.getOutput(); } // run the initilized retina filter in order to perform gray image tone mapping, after this call all retina outputs are updated void RetinaFilter::runGrayToneMapping(const std::valarray<float> &grayImageInput, std::valarray<float> &grayImageOutput, const float PhotoreceptorsCompression, const float ganglionCellsCompression) { // preliminary check if (!checkInput(grayImageInput, false)) return; this->_runGrayToneMapping(grayImageInput, grayImageOutput, PhotoreceptorsCompression, ganglionCellsCompression); } // run the initilized retina filter in order to perform gray image tone mapping, after this call all retina outputs are updated void RetinaFilter::_runGrayToneMapping(const std::valarray<float> &grayImageInput, std::valarray<float> &grayImageOutput, const float PhotoreceptorsCompression, const float ganglionCellsCompression) { // stability controls value update ++_ellapsedFramesSinceLastReset; std::valarray<float> temp2(grayImageInput.size()); // apply tone mapping on the multiplexed image // -> photoreceptors local adaptation (large area adaptation) _photoreceptorsPrefilter.runFilter_LPfilter(grayImageInput, grayImageOutput, 2); // compute low pass filtering modeling the horizontal cells filtering to acess local luminance _photoreceptorsPrefilter.setV0CompressionParameterToneMapping(PhotoreceptorsCompression, grayImageOutput.sum()/(float)_photoreceptorsPrefilter.getNBpixels()); _photoreceptorsPrefilter.runFilter_LocalAdapdation(grayImageInput, grayImageOutput, temp2); // adapt contrast to local luminance // high pass filter //_spatiotemporalLPfilter(_localBuffer, _filterOutput, 2); // compute low pass filtering (high cut frequency (remove spatio-temporal noise) //for (unsigned int i=0;i<_NBpixels;++i) // _localBuffer[i]-= _filterOutput[i]/2.0; // -> ganglion cells local adaptation (short area adaptation) _photoreceptorsPrefilter.runFilter_LPfilter(temp2, grayImageOutput, 1); // compute low pass filtering (high cut frequency (remove spatio-temporal noise) _photoreceptorsPrefilter.setV0CompressionParameterToneMapping(ganglionCellsCompression, temp2.max(), temp2.sum()/(float)_photoreceptorsPrefilter.getNBpixels()); _photoreceptorsPrefilter.runFilter_LocalAdapdation(temp2, grayImageOutput, grayImageOutput); // adapt contrast to local luminance } // run the initilized retina filter in order to perform color tone mapping, after this call all retina outputs are updated void RetinaFilter::runRGBToneMapping(const std::valarray<float> &RGBimageInput, std::valarray<float> &RGBimageOutput, const bool useAdaptiveFiltering, const float PhotoreceptorsCompression, const float ganglionCellsCompression) { // preliminary check if (!checkInput(RGBimageInput, true)) return; // multiplex the image with the color sampling method specified in the constructor _colorEngine.runColorMultiplexing(RGBimageInput); // apply tone mapping on the multiplexed image _runGrayToneMapping(_colorEngine.getMultiplexedFrame(), RGBimageOutput, PhotoreceptorsCompression, ganglionCellsCompression); // demultiplex tone maped image _colorEngine.runColorDemultiplexing(RGBimageOutput, useAdaptiveFiltering, _photoreceptorsPrefilter.getMaxInputValue());//_ColorEngine->getMultiplexedFrame());//_ParvoRetinaFilter->getPhotoreceptorsLPfilteringOutput()); // rescaling result between 0 and 255 _colorEngine.normalizeRGBOutput_0_maxOutputValue(255.0); // return the result RGBimageOutput=_colorEngine.getDemultiplexedColorFrame(); } void RetinaFilter::runLMSToneMapping(const std::valarray<float> &, std::valarray<float> &, const bool, const float, const float) { std::cerr<<"not working, sorry"<<std::endl; /* // preliminary check const std::valarray<float> &bufferInput=checkInput(LMSimageInput, true); if (!bufferInput) return NULL; if (!_useColorMode) std::cerr<<"RetinaFilter::Can not call tone mapping oeration if the retina filter was created for gray scale images"<<std::endl; // create a temporary buffer of size nrows, Mcolumns, 3 layers std::valarray<float> lmsTempBuffer(LMSimageInput); std::cout<<"RetinaFilter::--->min LMS value="<<lmsTempBuffer.min()<<std::endl; // setup local adaptation parameter at the photoreceptors level setV0CompressionParameter(PhotoreceptorsCompression, _maxInputValue); // get the local energy of each color channel // ->L _spatiotemporalLPfilter(LMSimageInput, _filterOutput, 1); setV0CompressionParameterToneMapping(PhotoreceptorsCompression, _maxInputValue, this->sum()/_NBpixels); _localLuminanceAdaptation(LMSimageInput, _filterOutput, lmsTempBuffer.Buffer()); // ->M _spatiotemporalLPfilter(LMSimageInput+_NBpixels, _filterOutput, 1); setV0CompressionParameterToneMapping(PhotoreceptorsCompression, _maxInputValue, this->sum()/_NBpixels); _localLuminanceAdaptation(LMSimageInput+_NBpixels, _filterOutput, lmsTempBuffer.Buffer()+_NBpixels); // ->S _spatiotemporalLPfilter(LMSimageInput+_NBpixels*2, _filterOutput, 1); setV0CompressionParameterToneMapping(PhotoreceptorsCompression, _maxInputValue, this->sum()/_NBpixels); _localLuminanceAdaptation(LMSimageInput+_NBpixels*2, _filterOutput, lmsTempBuffer.Buffer()+_NBpixels*2); // eliminate negative values for (unsigned int i=0;i<lmsTempBuffer.size();++i) if (lmsTempBuffer.Buffer()[i]<0) lmsTempBuffer.Buffer()[i]=0; std::cout<<"RetinaFilter::->min LMS value="<<lmsTempBuffer.min()<<std::endl; // compute LMS to A Cr1 Cr2 color space conversion _applyImageColorSpaceConversion(lmsTempBuffer.Buffer(), lmsTempBuffer.Buffer(), _LMStoACr1Cr2); TemplateBuffer <float> acr1cr2TempBuffer(_NBrows, _NBcolumns, 3); memcpy(acr1cr2TempBuffer.Buffer(), lmsTempBuffer.Buffer(), sizeof(float)*_NBpixels*3); // compute A Cr1 Cr2 to LMS color space conversion _applyImageColorSpaceConversion(acr1cr2TempBuffer.Buffer(), lmsTempBuffer.Buffer(), _ACr1Cr2toLMS); // eliminate negative values for (unsigned int i=0;i<lmsTempBuffer.size();++i) if (lmsTempBuffer.Buffer()[i]<0) lmsTempBuffer.Buffer()[i]=0; // rewrite output to the appropriate buffer _colorEngine->setDemultiplexedColorFrame(lmsTempBuffer.Buffer()); */ } // return image with center Parvo and peripheral Magno channels void RetinaFilter::_processRetinaParvoMagnoMapping() { register float *hybridParvoMagnoPTR= &_retinaParvoMagnoMappedFrame[0]; register const float *parvoOutputPTR= get_data(_ParvoRetinaFilter.getOutput()); register const float *magnoXOutputPTR= get_data(_MagnoRetinaFilter.getOutput()); register float *hybridParvoMagnoCoefTablePTR= &_retinaParvoMagnoMapCoefTable[0]; for (unsigned int i=0 ; i<_photoreceptorsPrefilter.getNBpixels() ; ++i, hybridParvoMagnoCoefTablePTR+=2) { float hybridValue=*(parvoOutputPTR++)**(hybridParvoMagnoCoefTablePTR)+*(magnoXOutputPTR++)**(hybridParvoMagnoCoefTablePTR+1); *(hybridParvoMagnoPTR++)=hybridValue; } TemplateBuffer<float>::normalizeGrayOutput_0_maxOutputValue(&_retinaParvoMagnoMappedFrame[0], _photoreceptorsPrefilter.getNBpixels()); } bool RetinaFilter::getParvoFoveaResponse(std::valarray<float> &parvoFovealResponse) { if (!_useParvoOutput) return false; if (parvoFovealResponse.size() != _ParvoRetinaFilter.getNBpixels()) return false; register const float *parvoOutputPTR= get_data(_ParvoRetinaFilter.getOutput()); register float *fovealParvoResponsePTR= &parvoFovealResponse[0]; register float *hybridParvoMagnoCoefTablePTR= &_retinaParvoMagnoMapCoefTable[0]; for (unsigned int i=0 ; i<_photoreceptorsPrefilter.getNBpixels() ; ++i, hybridParvoMagnoCoefTablePTR+=2) { *(fovealParvoResponsePTR++)=*(parvoOutputPTR++)**(hybridParvoMagnoCoefTablePTR); } return true; } // method to retrieve the parafoveal magnocellular pathway response (no energy motion in fovea) bool RetinaFilter::getMagnoParaFoveaResponse(std::valarray<float> &magnoParafovealResponse) { if (!_useMagnoOutput) return false; if (magnoParafovealResponse.size() != _MagnoRetinaFilter.getNBpixels()) return false; register const float *magnoXOutputPTR= get_data(_MagnoRetinaFilter.getOutput()); register float *parafovealMagnoResponsePTR=&magnoParafovealResponse[0]; register float *hybridParvoMagnoCoefTablePTR=&_retinaParvoMagnoMapCoefTable[0]+1; for (unsigned int i=0 ; i<_photoreceptorsPrefilter.getNBpixels() ; ++i, hybridParvoMagnoCoefTablePTR+=2) { *(parafovealMagnoResponsePTR++)=*(magnoXOutputPTR++)**(hybridParvoMagnoCoefTablePTR); } return true; } }