/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Niko Li, newlife20080214@gmail.com // Wang Weiyan, wangweiyanster@gmail.com // Jia Haipeng, jiahaipeng95@gmail.com // Wu Xinglong, wxl370@126.com // Wang Yao, bitwangyaoyao@gmail.com // Sen Liu, swjtuls1987@126.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels.hpp" using namespace cv; using namespace cv::ocl; /* these settings affect the quality of detection: change with care */ #define CV_ADJUST_FEATURES 1 #define CV_ADJUST_WEIGHTS 0 typedef int sumtype; typedef double sqsumtype; typedef struct CvHidHaarFeature { struct { sumtype *p0, *p1, *p2, *p3; float weight; } rect[CV_HAAR_FEATURE_MAX]; } CvHidHaarFeature; typedef struct CvHidHaarTreeNode { CvHidHaarFeature feature; float threshold; int left; int right; } CvHidHaarTreeNode; typedef struct CvHidHaarClassifier { int count; //CvHaarFeature* orig_feature; CvHidHaarTreeNode *node; float *alpha; } CvHidHaarClassifier; typedef struct CvHidHaarStageClassifier { int count; float threshold; CvHidHaarClassifier *classifier; int two_rects; struct CvHidHaarStageClassifier *next; struct CvHidHaarStageClassifier *child; struct CvHidHaarStageClassifier *parent; } CvHidHaarStageClassifier; struct CvHidHaarClassifierCascade { int count; int is_stump_based; int has_tilted_features; int is_tree; double inv_window_area; CvMat sum, sqsum, tilted; CvHidHaarStageClassifier *stage_classifier; sqsumtype *pq0, *pq1, *pq2, *pq3; sumtype *p0, *p1, *p2, *p3; void **ipp_stages; }; typedef struct { int width_height; int grpnumperline_totalgrp; int imgoff; float factor; } detect_piramid_info; #ifdef _MSC_VER #define _ALIGNED_ON(_ALIGNMENT) __declspec(align(_ALIGNMENT)) typedef _ALIGNED_ON(128) struct GpuHidHaarTreeNode { _ALIGNED_ON(64) int p[CV_HAAR_FEATURE_MAX][4]; float weight[CV_HAAR_FEATURE_MAX] ; float threshold ; _ALIGNED_ON(16) float alpha[3] ; _ALIGNED_ON(4) int left ; _ALIGNED_ON(4) int right ; } GpuHidHaarTreeNode; typedef _ALIGNED_ON(32) struct GpuHidHaarClassifier { _ALIGNED_ON(4) int count; _ALIGNED_ON(8) GpuHidHaarTreeNode *node ; _ALIGNED_ON(8) float *alpha ; } GpuHidHaarClassifier; typedef _ALIGNED_ON(64) struct GpuHidHaarStageClassifier { _ALIGNED_ON(4) int count ; _ALIGNED_ON(4) float threshold ; _ALIGNED_ON(4) int two_rects ; _ALIGNED_ON(8) GpuHidHaarClassifier *classifier ; _ALIGNED_ON(8) struct GpuHidHaarStageClassifier *next; _ALIGNED_ON(8) struct GpuHidHaarStageClassifier *child ; _ALIGNED_ON(8) struct GpuHidHaarStageClassifier *parent ; } GpuHidHaarStageClassifier; typedef _ALIGNED_ON(64) struct GpuHidHaarClassifierCascade { _ALIGNED_ON(4) int count ; _ALIGNED_ON(4) int is_stump_based ; _ALIGNED_ON(4) int has_tilted_features ; _ALIGNED_ON(4) int is_tree ; _ALIGNED_ON(4) int pq0 ; _ALIGNED_ON(4) int pq1 ; _ALIGNED_ON(4) int pq2 ; _ALIGNED_ON(4) int pq3 ; _ALIGNED_ON(4) int p0 ; _ALIGNED_ON(4) int p1 ; _ALIGNED_ON(4) int p2 ; _ALIGNED_ON(4) int p3 ; _ALIGNED_ON(4) float inv_window_area ; } GpuHidHaarClassifierCascade; #else #define _ALIGNED_ON(_ALIGNMENT) __attribute__((aligned(_ALIGNMENT) )) typedef struct _ALIGNED_ON(128) GpuHidHaarTreeNode { int p[CV_HAAR_FEATURE_MAX][4] _ALIGNED_ON(64); float weight[CV_HAAR_FEATURE_MAX];// _ALIGNED_ON(16); float threshold;// _ALIGNED_ON(4); float alpha[3] _ALIGNED_ON(16); int left _ALIGNED_ON(4); int right _ALIGNED_ON(4); } GpuHidHaarTreeNode; typedef struct _ALIGNED_ON(32) GpuHidHaarClassifier { int count _ALIGNED_ON(4); GpuHidHaarTreeNode *node _ALIGNED_ON(8); float *alpha _ALIGNED_ON(8); } GpuHidHaarClassifier; typedef struct _ALIGNED_ON(64) GpuHidHaarStageClassifier { int count _ALIGNED_ON(4); float threshold _ALIGNED_ON(4); int two_rects _ALIGNED_ON(4); GpuHidHaarClassifier *classifier _ALIGNED_ON(8); struct GpuHidHaarStageClassifier *next _ALIGNED_ON(8); struct GpuHidHaarStageClassifier *child _ALIGNED_ON(8); struct GpuHidHaarStageClassifier *parent _ALIGNED_ON(8); } GpuHidHaarStageClassifier; typedef struct _ALIGNED_ON(64) GpuHidHaarClassifierCascade { int count _ALIGNED_ON(4); int is_stump_based _ALIGNED_ON(4); int has_tilted_features _ALIGNED_ON(4); int is_tree _ALIGNED_ON(4); int pq0 _ALIGNED_ON(4); int pq1 _ALIGNED_ON(4); int pq2 _ALIGNED_ON(4); int pq3 _ALIGNED_ON(4); int p0 _ALIGNED_ON(4); int p1 _ALIGNED_ON(4); int p2 _ALIGNED_ON(4); int p3 _ALIGNED_ON(4); float inv_window_area _ALIGNED_ON(4); } GpuHidHaarClassifierCascade; #endif const int icv_object_win_border = 1; const float icv_stage_threshold_bias = 0.0001f; double globaltime = 0; /* create more efficient internal representation of haar classifier cascade */ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarClassifierCascade *cascade, int *size, int *totalclassifier) { GpuHidHaarClassifierCascade *out = 0; int i, j, k, l; int datasize; int total_classifiers = 0; int total_nodes = 0; char errorstr[256]; GpuHidHaarStageClassifier *stage_classifier_ptr; GpuHidHaarClassifier *haar_classifier_ptr; GpuHidHaarTreeNode *haar_node_ptr; CvSize orig_window_size; int has_tilted_features = 0; if( !CV_IS_HAAR_CLASSIFIER(cascade) ) CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); if( cascade->hid_cascade ) CV_Error( CV_StsError, "hid_cascade has been already created" ); if( !cascade->stage_classifier ) CV_Error( CV_StsNullPtr, "" ); if( cascade->count <= 0 ) CV_Error( CV_StsOutOfRange, "Negative number of cascade stages" ); orig_window_size = cascade->orig_window_size; /* check input structure correctness and calculate total memory size needed for internal representation of the classifier cascade */ for( i = 0; i < cascade->count; i++ ) { CvHaarStageClassifier *stage_classifier = cascade->stage_classifier + i; if( !stage_classifier->classifier || stage_classifier->count <= 0 ) { sprintf( errorstr, "header of the stage classifier #%d is invalid " "(has null pointers or non-positive classfier count)", i ); CV_Error( CV_StsError, errorstr ); } total_classifiers += stage_classifier->count; for( j = 0; j < stage_classifier->count; j++ ) { CvHaarClassifier *classifier = stage_classifier->classifier + j; total_nodes += classifier->count; for( l = 0; l < classifier->count; l++ ) { for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) { if( classifier->haar_feature[l].rect[k].r.width ) { CvRect r = classifier->haar_feature[l].rect[k].r; int tilted = classifier->haar_feature[l].tilted; has_tilted_features |= tilted != 0; if( r.width < 0 || r.height < 0 || r.y < 0 || r.x + r.width > orig_window_size.width || (!tilted && (r.x < 0 || r.y + r.height > orig_window_size.height)) || (tilted && (r.x - r.height < 0 || r.y + r.width + r.height > orig_window_size.height))) { sprintf( errorstr, "rectangle #%d of the classifier #%d of " "the stage classifier #%d is not inside " "the reference (original) cascade window", k, j, i ); CV_Error( CV_StsNullPtr, errorstr ); } } } } } } // this is an upper boundary for the whole hidden cascade size datasize = sizeof(GpuHidHaarClassifierCascade) + sizeof(GpuHidHaarStageClassifier) * cascade->count + sizeof(GpuHidHaarClassifier) * total_classifiers + sizeof(GpuHidHaarTreeNode) * total_nodes; *totalclassifier = total_classifiers; *size = datasize; out = (GpuHidHaarClassifierCascade *)cvAlloc( datasize ); memset( out, 0, sizeof(*out) ); /* init header */ out->count = cascade->count; stage_classifier_ptr = (GpuHidHaarStageClassifier *)(out + 1); haar_classifier_ptr = (GpuHidHaarClassifier *)(stage_classifier_ptr + cascade->count); haar_node_ptr = (GpuHidHaarTreeNode *)(haar_classifier_ptr + total_classifiers); out->is_stump_based = 1; out->has_tilted_features = has_tilted_features; out->is_tree = 0; /* initialize internal representation */ for( i = 0; i < cascade->count; i++ ) { CvHaarStageClassifier *stage_classifier = cascade->stage_classifier + i; GpuHidHaarStageClassifier *hid_stage_classifier = stage_classifier_ptr + i; hid_stage_classifier->count = stage_classifier->count; hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias; hid_stage_classifier->classifier = haar_classifier_ptr; hid_stage_classifier->two_rects = 1; haar_classifier_ptr += stage_classifier->count; for( j = 0; j < stage_classifier->count; j++ ) { CvHaarClassifier *classifier = stage_classifier->classifier + j; GpuHidHaarClassifier *hid_classifier = hid_stage_classifier->classifier + j; int node_count = classifier->count; float *alpha_ptr = &haar_node_ptr->alpha[0]; hid_classifier->count = node_count; hid_classifier->node = haar_node_ptr; hid_classifier->alpha = alpha_ptr; for( l = 0; l < node_count; l++ ) { GpuHidHaarTreeNode *node = hid_classifier->node + l; CvHaarFeature *feature = classifier->haar_feature + l; memset( node, -1, sizeof(*node) ); node->threshold = classifier->threshold[l]; node->left = classifier->left[l]; node->right = classifier->right[l]; if( fabs(feature->rect[2].weight) < DBL_EPSILON || feature->rect[2].r.width == 0 || feature->rect[2].r.height == 0 ) { node->p[2][0] = 0; node->p[2][1] = 0; node->p[2][2] = 0; node->p[2][3] = 0; node->weight[2] = 0; } else hid_stage_classifier->two_rects = 0; memcpy( node->alpha, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0])); haar_node_ptr = haar_node_ptr + 1; } out->is_stump_based &= node_count == 1; } } cascade->hid_cascade = (CvHidHaarClassifierCascade *)out; assert( (char *)haar_node_ptr - (char *)out <= datasize ); return out; } #define sum_elem_ptr(sum,row,col) \ ((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype))) #define sqsum_elem_ptr(sqsum,row,col) \ ((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype))) #define calc_sum(rect,offset) \ ((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset]) static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_cascade, double scale, int step) { GpuHidHaarClassifierCascade *cascade; int coi0 = 0, coi1 = 0; int i; int datasize; int total; CvRect equRect; double weight_scale; GpuHidHaarStageClassifier *stage_classifier; if( !CV_IS_HAAR_CLASSIFIER(_cascade) ) CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); if( scale <= 0 ) CV_Error( CV_StsOutOfRange, "Scale must be positive" ); if( coi0 || coi1 ) CV_Error( CV_BadCOI, "COI is not supported" ); if( !_cascade->hid_cascade ) gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total); cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade; stage_classifier = (GpuHidHaarStageClassifier *) (cascade + 1); _cascade->scale = scale; _cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale ); _cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale ); equRect.x = equRect.y = cvRound(scale); equRect.width = cvRound((_cascade->orig_window_size.width - 2) * scale); equRect.height = cvRound((_cascade->orig_window_size.height - 2) * scale); weight_scale = 1. / (equRect.width * equRect.height); cascade->inv_window_area = weight_scale; cascade->pq0 = equRect.x; cascade->pq1 = equRect.y; cascade->pq2 = equRect.x + equRect.width; cascade->pq3 = equRect.y + equRect.height; cascade->p0 = equRect.x; cascade->p1 = equRect.y; cascade->p2 = equRect.x + equRect.width; cascade->p3 = equRect.y + equRect.height; /* init pointers in haar features according to real window size and given image pointers */ for( i = 0; i < _cascade->count; i++ ) { int j, k, l; for( j = 0; j < stage_classifier[i].count; j++ ) { for( l = 0; l < stage_classifier[i].classifier[j].count; l++ ) { CvHaarFeature *feature = &_cascade->stage_classifier[i].classifier[j].haar_feature[l]; GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l]; double sum0 = 0, area0 = 0; CvRect r[3]; int base_w = -1, base_h = -1; int new_base_w = 0, new_base_h = 0; int kx, ky; int flagx = 0, flagy = 0; int x0 = 0, y0 = 0; int nr; /* align blocks */ for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) { if(!hidnode->p[k][0]) break; r[k] = feature->rect[k].r; base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width - 1) ); base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x - 1) ); base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height - 1) ); base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y - 1) ); } nr = k; base_w += 1; base_h += 1; if(base_w == 0) base_w = 1; kx = r[0].width / base_w; if(base_h == 0) base_h = 1; ky = r[0].height / base_h; if( kx <= 0 ) { flagx = 1; new_base_w = cvRound( r[0].width * scale ) / kx; x0 = cvRound( r[0].x * scale ); } if( ky <= 0 ) { flagy = 1; new_base_h = cvRound( r[0].height * scale ) / ky; y0 = cvRound( r[0].y * scale ); } for( k = 0; k < nr; k++ ) { CvRect tr; double correction_ratio; if( flagx ) { tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0; tr.width = r[k].width * new_base_w / base_w; } else { tr.x = cvRound( r[k].x * scale ); tr.width = cvRound( r[k].width * scale ); } if( flagy ) { tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0; tr.height = r[k].height * new_base_h / base_h; } else { tr.y = cvRound( r[k].y * scale ); tr.height = cvRound( r[k].height * scale ); } #if CV_ADJUST_WEIGHTS { // RAINER START const float orig_feature_size = (float)(feature->rect[k].r.width) * feature->rect[k].r.height; const float orig_norm_size = (float)(_cascade->orig_window_size.width) * (_cascade->orig_window_size.height); const float feature_size = float(tr.width * tr.height); //const float normSize = float(equRect.width*equRect.height); float target_ratio = orig_feature_size / orig_norm_size; //float isRatio = featureSize / normSize; //correctionRatio = targetRatio / isRatio / normSize; correction_ratio = target_ratio / feature_size; // RAINER END } #else correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5); #endif if( !feature->tilted ) { hidnode->p[k][0] = tr.x; hidnode->p[k][1] = tr.y; hidnode->p[k][2] = tr.x + tr.width; hidnode->p[k][3] = tr.y + tr.height; } else { hidnode->p[k][2] = (tr.y + tr.width) * step + tr.x + tr.width; hidnode->p[k][3] = (tr.y + tr.width + tr.height) * step + tr.x + tr.width - tr.height; hidnode->p[k][0] = tr.y * step + tr.x; hidnode->p[k][1] = (tr.y + tr.height) * step + tr.x - tr.height; } hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio); if( k == 0 ) area0 = tr.width * tr.height; else sum0 += hidnode->weight[k] * tr.width * tr.height; } hidnode->weight[0] = (float)(-sum0 / area0); } /* l */ } /* j */ } } static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade) { GpuHidHaarClassifierCascade *cascade; int i; int datasize; int total; CvRect equRect; double weight_scale; GpuHidHaarStageClassifier *stage_classifier; if( !CV_IS_HAAR_CLASSIFIER(_cascade) ) CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); if( !_cascade->hid_cascade ) gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total); cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade; stage_classifier = (GpuHidHaarStageClassifier *) cascade + 1; _cascade->scale = 1.0; _cascade->real_window_size.width = _cascade->orig_window_size.width ; _cascade->real_window_size.height = _cascade->orig_window_size.height; equRect.x = equRect.y = 1; equRect.width = _cascade->orig_window_size.width - 2; equRect.height = _cascade->orig_window_size.height - 2; weight_scale = 1; cascade->inv_window_area = weight_scale; cascade->p0 = equRect.x; cascade->p1 = equRect.y; cascade->p2 = equRect.height; cascade->p3 = equRect.width ; for( i = 0; i < _cascade->count; i++ ) { int j, l; for( j = 0; j < stage_classifier[i].count; j++ ) { for( l = 0; l < stage_classifier[i].classifier[j].count; l++ ) { const CvHaarFeature *feature = &_cascade->stage_classifier[i].classifier[j].haar_feature[l]; GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l]; for( int k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) { const CvRect tr = feature->rect[k].r; if (tr.width == 0) break; double correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5); hidnode->p[k][0] = tr.x; hidnode->p[k][1] = tr.y; hidnode->p[k][2] = tr.width; hidnode->p[k][3] = tr.height; hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio); } } /* l */ } /* j */ } } CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemStorage *storage, double scaleFactor, int minNeighbors, int flags, CvSize minSize, CvSize maxSize) { CvHaarClassifierCascade *cascade = oldCascade; const double GROUP_EPS = 0.2; CvSeq *result_seq = 0; cv::ConcurrentRectVector allCandidates; std::vector<cv::Rect> rectList; std::vector<int> rweights; double factor; int datasize=0; int totalclassifier=0; GpuHidHaarClassifierCascade *gcascade; GpuHidHaarStageClassifier *stage; GpuHidHaarClassifier *classifier; GpuHidHaarTreeNode *node; int *candidate; cl_int status; bool findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0; if( maxSize.height == 0 || maxSize.width == 0 ) { maxSize.height = gimg.rows; maxSize.width = gimg.cols; } if( !CV_IS_HAAR_CLASSIFIER(cascade) ) CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" ); if( !storage ) CV_Error( CV_StsNullPtr, "Null storage pointer" ); if( CV_MAT_DEPTH(gimg.type()) != CV_8U ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" ); if( scaleFactor <= 1 ) CV_Error( CV_StsOutOfRange, "scale factor must be > 1" ); if( findBiggestObject ) flags &= ~CV_HAAR_SCALE_IMAGE; if( !cascade->hid_cascade ) gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier); result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage ); if( CV_MAT_CN(gimg.type()) > 1 ) { oclMat gtemp; cvtColor( gimg, gtemp, CV_BGR2GRAY ); gimg = gtemp; } if( findBiggestObject ) flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING); if( gimg.cols < minSize.width || gimg.rows < minSize.height ) CV_Error(CV_StsError, "Image too small"); cl_command_queue qu = getClCommandQueue(Context::getContext()); if( (flags & CV_HAAR_SCALE_IMAGE) ) { CvSize winSize0 = cascade->orig_window_size; int totalheight = 0; int indexy = 0; CvSize sz; vector<CvSize> sizev; vector<float> scalev; for(factor = 1.f;; factor *= scaleFactor) { CvSize winSize = { cvRound(winSize0.width * factor), cvRound(winSize0.height * factor) }; sz.width = cvRound( gimg.cols / factor ) + 1; sz.height = cvRound( gimg.rows / factor ) + 1; CvSize sz1 = { sz.width - winSize0.width - 1, sz.height - winSize0.height - 1 }; if( sz1.width <= 0 || sz1.height <= 0 ) break; if( winSize.width > maxSize.width || winSize.height > maxSize.height ) break; if( winSize.width < minSize.width || winSize.height < minSize.height ) continue; totalheight += sz.height; sizev.push_back(sz); scalev.push_back(factor); } oclMat gimg1(gimg.rows, gimg.cols, CV_8UC1); oclMat gsum(totalheight + 4, gimg.cols + 1, CV_32SC1); oclMat gsqsum(totalheight + 4, gimg.cols + 1, CV_32FC1); cl_mem stagebuffer; cl_mem nodebuffer; cl_mem candidatebuffer; cl_mem scaleinfobuffer; cv::Rect roi, roi2; cv::Mat imgroi, imgroisq; cv::ocl::oclMat resizeroi, gimgroi, gimgroisq; int grp_per_CU = 12; size_t blocksize = 8; size_t localThreads[3] = { blocksize, blocksize , 1 }; size_t globalThreads[3] = { grp_per_CU *(gsum.clCxt->getDeviceInfo().maxComputeUnits) *localThreads[0], localThreads[1], 1 }; int outputsz = 256 * globalThreads[0] / localThreads[0]; int loopcount = sizev.size(); detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); for( int i = 0; i < loopcount; i++ ) { sz = sizev[i]; factor = scalev[i]; roi = Rect(0, indexy, sz.width, sz.height); roi2 = Rect(0, 0, sz.width - 1, sz.height - 1); resizeroi = gimg1(roi2); gimgroi = gsum(roi); gimgroisq = gsqsum(roi); int width = gimgroi.cols - 1 - cascade->orig_window_size.width; int height = gimgroi.rows - 1 - cascade->orig_window_size.height; scaleinfo[i].width_height = (width << 16) | height; int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; scaleinfo[i].imgoff = gimgroi.offset >> 2; scaleinfo[i].factor = factor; cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR); cv::ocl::integral(resizeroi, gimgroi, gimgroisq); indexy += sz.height; } gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; stage = (GpuHidHaarStageClassifier *)(gcascade + 1); classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); node = (GpuHidHaarTreeNode *)(classifier->node); int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode); candidate = (int *)malloc(4 * sizeof(int) * outputsz); gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 ); stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count); openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode)); openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0, nodenum * sizeof(GpuHidHaarTreeNode), node, 0, NULL, NULL)); candidatebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_WRITE_ONLY, 4 * sizeof(int) * outputsz); scaleinfobuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); openCLSafeCall(clEnqueueWriteBuffer(qu, scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL)); int startstage = 0; int endstage = gcascade->count; int startnode = 0; int pixelstep = gsum.step / 4; int splitstage = 3; int splitnode = stage[0].count + stage[1].count + stage[2].count; cl_int4 p, pq; p.s[0] = gcascade->p0; p.s[1] = gcascade->p1; p.s[2] = gcascade->p2; p.s[3] = gcascade->p3; pq.s[0] = gcascade->pq0; pq.s[1] = gcascade->pq1; pq.s[2] = gcascade->pq2; pq.s[3] = gcascade->pq3; float correction = gcascade->inv_window_area; vector<pair<size_t, const void *> > args; args.push_back ( make_pair(sizeof(cl_mem) , (void *)&stagebuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&scaleinfobuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&nodebuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&candidatebuffer )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&pixelstep )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&loopcount )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitnode )); args.push_back ( make_pair(sizeof(cl_int4) , (void *)&p )); args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq )); args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction )); if(gcascade->is_stump_based && gsum.clCxt->supportsFeature(FEATURE_CL_INTEL_DEVICE)) { //setup local group size for "pixel step" = 1 localThreads[0] = 16; localThreads[1] = 32; localThreads[2] = 1; //calc maximal number of workgroups int WGNumX = 1+(sizev[0].width /(localThreads[0])); int WGNumY = 1+(sizev[0].height/(localThreads[1])); int WGNumZ = loopcount; int WGNumTotal = 0; //accurate number of non-empty workgroups int WGNumSampled = 0; //accurate number of workgroups processed only 1/4 part of all pixels. it is made for large images with scale <= 2 oclMat oclWGInfo(1,sizeof(cl_int4) * WGNumX*WGNumY*WGNumZ,CV_8U); { cl_int4* pWGInfo = (cl_int4*)clEnqueueMapBuffer(getClCommandQueue(oclWGInfo.clCxt),(cl_mem)oclWGInfo.datastart,true,CL_MAP_WRITE, 0, oclWGInfo.step, 0,0,0,&status); openCLVerifyCall(status); for(int z=0;z<WGNumZ;++z) { int Width = (scaleinfo[z].width_height >> 16)&0xFFFF; int Height = (scaleinfo[z].width_height >> 0 )& 0xFFFF; for(int y=0;y<WGNumY;++y) { int gy = y*localThreads[1]; if(gy>=Height) continue; // no data to process for(int x=0;x<WGNumX;++x) { int gx = x*localThreads[0]; if(gx>=Width) continue; // no data to process if(scaleinfo[z].factor<=2) { WGNumSampled++; } // save no-empty workgroup info into array pWGInfo[WGNumTotal].s[0] = scaleinfo[z].width_height; pWGInfo[WGNumTotal].s[1] = (gx << 16) | gy; pWGInfo[WGNumTotal].s[2] = scaleinfo[z].imgoff; memcpy(&(pWGInfo[WGNumTotal].s[3]),&(scaleinfo[z].factor),sizeof(float)); WGNumTotal++; } } } openCLSafeCall(clEnqueueUnmapMemObject(getClCommandQueue(oclWGInfo.clCxt),(cl_mem)oclWGInfo.datastart,pWGInfo,0,0,0)); pWGInfo = NULL; } #define NODE_SIZE 12 // pack node info to have less memory loads on the device side oclMat oclNodesPK(1,sizeof(cl_int) * NODE_SIZE * nodenum,CV_8U); { cl_int status; cl_int* pNodesPK = (cl_int*)clEnqueueMapBuffer(getClCommandQueue(oclNodesPK.clCxt),(cl_mem)oclNodesPK.datastart,true,CL_MAP_WRITE, 0, oclNodesPK.step, 0,0,0,&status); openCLVerifyCall(status); //use known local data stride to precalulate indexes int DATA_SIZE_X = (localThreads[0]+cascade->orig_window_size.width); // check that maximal value is less than maximal unsigned short assert(DATA_SIZE_X*cascade->orig_window_size.height+cascade->orig_window_size.width < (int)USHRT_MAX); for(int i = 0;i<nodenum;++i) {//process each node from classifier struct NodePK { unsigned short slm_index[3][4]; float weight[3]; float threshold; float alpha[2]; }; struct NodePK * pOut = (struct NodePK *)(pNodesPK + NODE_SIZE*i); for(int k=0;k<3;++k) {// calc 4 short indexes in shared local mem for each rectangle instead of 2 (x,y) pair. int* p = &(node[i].p[k][0]); pOut->slm_index[k][0] = (unsigned short)(p[1]*DATA_SIZE_X+p[0]); pOut->slm_index[k][1] = (unsigned short)(p[1]*DATA_SIZE_X+p[2]); pOut->slm_index[k][2] = (unsigned short)(p[3]*DATA_SIZE_X+p[0]); pOut->slm_index[k][3] = (unsigned short)(p[3]*DATA_SIZE_X+p[2]); } //store used float point values for each node pOut->weight[0] = node[i].weight[0]; pOut->weight[1] = node[i].weight[1]; pOut->weight[2] = node[i].weight[2]; pOut->threshold = node[i].threshold; pOut->alpha[0] = node[i].alpha[0]; pOut->alpha[1] = node[i].alpha[1]; } openCLSafeCall(clEnqueueUnmapMemObject(getClCommandQueue(oclNodesPK.clCxt),(cl_mem)oclNodesPK.datastart,pNodesPK,0,0,0)); pNodesPK = NULL; } // add 2 additional buffers (WGinfo and packed nodes) as 2 last args args.push_back ( make_pair(sizeof(cl_mem) , (void *)&oclNodesPK.datastart )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&oclWGInfo.datastart )); //form build options for kernel string options = "-D PACKED_CLASSIFIER"; options += format(" -D NODE_SIZE=%d",NODE_SIZE); options += format(" -D WND_SIZE_X=%d",cascade->orig_window_size.width); options += format(" -D WND_SIZE_Y=%d",cascade->orig_window_size.height); options += format(" -D STUMP_BASED=%d",gcascade->is_stump_based); options += format(" -D SPLITNODE=%d",splitnode); options += format(" -D SPLITSTAGE=%d",splitstage); options += format(" -D OUTPUTSZ=%d",outputsz); // init candiate global count by 0 int pattern = 0; openCLSafeCall(clEnqueueWriteBuffer(qu, candidatebuffer, 1, 0, 1 * sizeof(pattern),&pattern, 0, NULL, NULL)); if(WGNumTotal>WGNumSampled) {// small images and each pixel is processed // setup global sizes to have linear array of workgroups with WGNum size int pixelstep = 1; size_t LS[3]={localThreads[0]/pixelstep,localThreads[1]/pixelstep,1}; globalThreads[0] = LS[0]*(WGNumTotal-WGNumSampled); globalThreads[1] = LS[1]; globalThreads[2] = 1; string options1 = options; options1 += format(" -D PIXEL_STEP=%d",pixelstep); options1 += format(" -D WGSTART=%d",WGNumSampled); options1 += format(" -D LSx=%d",LS[0]); options1 += format(" -D LSy=%d",LS[1]); // execute face detector openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascadePacked", globalThreads, LS, args, -1, -1, options1.c_str()); } if(WGNumSampled>0) {// large images each 4th pixel is processed // setup global sizes to have linear array of workgroups with WGNum size int pixelstep = 2; size_t LS[3]={localThreads[0]/pixelstep,localThreads[1]/pixelstep,1}; globalThreads[0] = LS[0]*WGNumSampled; globalThreads[1] = LS[1]; globalThreads[2] = 1; string options2 = options; options2 += format(" -D PIXEL_STEP=%d",pixelstep); options2 += format(" -D WGSTART=%d",0); options2 += format(" -D LSx=%d",LS[0]); options2 += format(" -D LSy=%d",LS[1]); // execute face detector openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascadePacked", globalThreads, LS, args, -1, -1, options2.c_str()); } //read candidate buffer back and put it into host list openCLReadBuffer( gsum.clCxt, candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); assert(candidate[0]<outputsz); //printf("candidate[0]=%d\n",candidate[0]); for(int i = 1; i <= candidate[0]; i++) { allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],candidate[4 * i + 2], candidate[4 * i + 3])); } } else { const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options); openCLReadBuffer( gsum.clCxt, candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); for(int i = 0; i < outputsz; i++) if(candidate[4 * i + 2] != 0) allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], candidate[4 * i + 2], candidate[4 * i + 3])); } free(scaleinfo); free(candidate); openCLSafeCall(clReleaseMemObject(stagebuffer)); openCLSafeCall(clReleaseMemObject(scaleinfobuffer)); openCLSafeCall(clReleaseMemObject(nodebuffer)); openCLSafeCall(clReleaseMemObject(candidatebuffer)); } else { CvSize winsize0 = cascade->orig_window_size; int n_factors = 0; oclMat gsum; oclMat gsqsum; cv::ocl::integral(gimg, gsum, gsqsum); CvSize sz; vector<CvSize> sizev; vector<float> scalev; gpuSetHaarClassifierCascade(cascade); gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; stage = (GpuHidHaarStageClassifier *)(gcascade + 1); classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); node = (GpuHidHaarTreeNode *)(classifier->node); cl_mem stagebuffer; cl_mem nodebuffer; cl_mem candidatebuffer; cl_mem scaleinfobuffer; cl_mem pbuffer; cl_mem correctionbuffer; for( n_factors = 0, factor = 1; cvRound(factor * winsize0.width) < gimg.cols - 10 && cvRound(factor * winsize0.height) < gimg.rows - 10; n_factors++, factor *= scaleFactor ) { CvSize winSize = { cvRound( winsize0.width * factor ), cvRound( winsize0.height * factor ) }; if( winSize.width < minSize.width || winSize.height < minSize.height ) { continue; } sizev.push_back(winSize); scalev.push_back(factor); } int loopcount = scalev.size(); if(loopcount == 0) { loopcount = 1; n_factors = 1; sizev.push_back(minSize); scalev.push_back( std::min(cvRound(minSize.width / winsize0.width), cvRound(minSize.height / winsize0.height)) ); } detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * loopcount); float *correction = (float *)malloc(sizeof(float) * loopcount); int grp_per_CU = 12; size_t blocksize = 8; size_t localThreads[3] = { blocksize, blocksize , 1 }; size_t globalThreads[3] = { grp_per_CU *gsum.clCxt->getDeviceInfo().maxComputeUnits *localThreads[0], localThreads[1], 1 }; int outputsz = 256 * globalThreads[0] / localThreads[0]; int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode); nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode)); openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0, nodenum * sizeof(GpuHidHaarTreeNode), node, 0, NULL, NULL)); cl_mem newnodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_WRITE, loopcount * nodenum * sizeof(GpuHidHaarTreeNode)); int startstage = 0; int endstage = gcascade->count; for(int i = 0; i < loopcount; i++) { sz = sizev[i]; factor = scalev[i]; double ystep = std::max(2., factor); int equRect_x = cvRound(factor * gcascade->p0); int equRect_y = cvRound(factor * gcascade->p1); int equRect_w = cvRound(factor * gcascade->p3); int equRect_h = cvRound(factor * gcascade->p2); p[i].s[0] = equRect_x; p[i].s[1] = equRect_y; p[i].s[2] = equRect_x + equRect_w; p[i].s[3] = equRect_y + equRect_h; correction[i] = 1. / (equRect_w * equRect_h); int width = (gsum.cols - 1 - sz.width + ystep - 1) / ystep; int height = (gsum.rows - 1 - sz.height + ystep - 1) / ystep; int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; scaleinfo[i].width_height = (width << 16) | height; scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; scaleinfo[i].imgoff = 0; scaleinfo[i].factor = factor; int startnodenum = nodenum * i; float factor2 = (float)factor; vector<pair<size_t, const void *> > args1; args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&nodebuffer )); args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&newnodebuffer )); args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 )); args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] )); args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); size_t globalThreads2[3] = {nodenum, 1, 1}; openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); } int step = gsum.step / 4; int startnode = 0; int splitstage = 3; stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count); openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); candidatebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, 4 * sizeof(int) * outputsz); scaleinfobuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); openCLSafeCall(clEnqueueWriteBuffer(qu, scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL)); pbuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(cl_int4) * loopcount); openCLSafeCall(clEnqueueWriteBuffer(qu, pbuffer, 1, 0, sizeof(cl_int4)*loopcount, p, 0, NULL, NULL)); correctionbuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(cl_float) * loopcount); openCLSafeCall(clEnqueueWriteBuffer(qu, correctionbuffer, 1, 0, sizeof(cl_float)*loopcount, correction, 0, NULL, NULL)); vector<pair<size_t, const void *> > args; args.push_back ( make_pair(sizeof(cl_mem) , (void *)&stagebuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&scaleinfobuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&newnodebuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&candidatebuffer )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.rows )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.cols )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&step )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&loopcount )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&pbuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&correctionbuffer )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&nodenum )); const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options); candidate = (int *)clEnqueueMapBuffer(qu, candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, &status); for(int i = 0; i < outputsz; i++) { if(candidate[4 * i + 2] != 0) allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], candidate[4 * i + 2], candidate[4 * i + 3])); } free(scaleinfo); free(p); free(correction); clEnqueueUnmapMemObject(qu, candidatebuffer, candidate, 0, 0, 0); openCLSafeCall(clReleaseMemObject(stagebuffer)); openCLSafeCall(clReleaseMemObject(scaleinfobuffer)); openCLSafeCall(clReleaseMemObject(nodebuffer)); openCLSafeCall(clReleaseMemObject(newnodebuffer)); openCLSafeCall(clReleaseMemObject(candidatebuffer)); openCLSafeCall(clReleaseMemObject(pbuffer)); openCLSafeCall(clReleaseMemObject(correctionbuffer)); } cvFree(&cascade->hid_cascade); rectList.resize(allCandidates.size()); if(!allCandidates.empty()) std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin()); if( minNeighbors != 0 || findBiggestObject ) groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS); else rweights.resize(rectList.size(), 0); if( findBiggestObject && rectList.size() ) { CvAvgComp result_comp = {{0, 0, 0, 0}, 0}; for( size_t i = 0; i < rectList.size(); i++ ) { cv::Rect r = rectList[i]; if( r.area() > cv::Rect(result_comp.rect).area() ) { result_comp.rect = r; result_comp.neighbors = rweights[i]; } } cvSeqPush( result_seq, &result_comp ); } else { for( size_t i = 0; i < rectList.size(); i++ ) { CvAvgComp c; c.rect = rectList[i]; c.neighbors = rweights[i]; cvSeqPush( result_seq, &c ); } } return result_seq; } struct getRect { Rect operator()(const CvAvgComp &e) const { return e.rect; } }; void cv::ocl::OclCascadeClassifier::detectMultiScale(oclMat &gimg, CV_OUT std::vector<cv::Rect>& faces, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize) { CvSeq* _objects; MemStorage storage(cvCreateMemStorage(0)); _objects = oclHaarDetectObjects(gimg, storage, scaleFactor, minNeighbors, flags, minSize, maxSize); vector<CvAvgComp> vecAvgComp; Seq<CvAvgComp>(_objects).copyTo(vecAvgComp); faces.resize(vecAvgComp.size()); std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect()); } struct OclBuffers { cl_mem stagebuffer; cl_mem nodebuffer; cl_mem candidatebuffer; cl_mem scaleinfobuffer; cl_mem pbuffer; cl_mem correctionbuffer; cl_mem newnodebuffer; }; void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std::vector<cv::Rect>& faces, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize) { int blocksize = 8; int grp_per_CU = 12; size_t localThreads[3] = { blocksize, blocksize, 1 }; size_t globalThreads[3] = { grp_per_CU * cv::ocl::Context::getContext()->getDeviceInfo().maxComputeUnits *localThreads[0], localThreads[1], 1 }; int outputsz = 256 * globalThreads[0] / localThreads[0]; Init(gimg.rows, gimg.cols, scaleFactor, flags, outputsz, localThreads, minSize, maxSize); const double GROUP_EPS = 0.2; cv::ConcurrentRectVector allCandidates; std::vector<cv::Rect> rectList; std::vector<int> rweights; CvHaarClassifierCascade *cascade = oldCascade; GpuHidHaarClassifierCascade *gcascade; GpuHidHaarStageClassifier *stage; if( CV_MAT_DEPTH(gimg.type()) != CV_8U ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" ); if( CV_MAT_CN(gimg.type()) > 1 ) { oclMat gtemp; cvtColor( gimg, gtemp, CV_BGR2GRAY ); gimg = gtemp; } int *candidate; cl_command_queue qu = getClCommandQueue(Context::getContext()); if( (flags & CV_HAAR_SCALE_IMAGE) ) { int indexy = 0; CvSize sz; cv::Rect roi, roi2; cv::ocl::oclMat resizeroi, gimgroi, gimgroisq; for( int i = 0; i < m_loopcount; i++ ) { sz = sizev[i]; roi = Rect(0, indexy, sz.width, sz.height); roi2 = Rect(0, 0, sz.width - 1, sz.height - 1); resizeroi = gimg1(roi2); gimgroi = gsum(roi); gimgroisq = gsqsum(roi); cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR); cv::ocl::integral(resizeroi, gimgroi, gimgroisq); indexy += sz.height; } gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade); stage = (GpuHidHaarStageClassifier *)(gcascade + 1); int startstage = 0; int endstage = gcascade->count; int startnode = 0; int pixelstep = gsum.step / 4; int splitstage = 3; int splitnode = stage[0].count + stage[1].count + stage[2].count; cl_int4 p, pq; p.s[0] = gcascade->p0; p.s[1] = gcascade->p1; p.s[2] = gcascade->p2; p.s[3] = gcascade->p3; pq.s[0] = gcascade->pq0; pq.s[1] = gcascade->pq1; pq.s[2] = gcascade->pq2; pq.s[3] = gcascade->pq3; float correction = gcascade->inv_window_area; vector<pair<size_t, const void *> > args; args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&pixelstep )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitnode )); args.push_back ( make_pair(sizeof(cl_int4) , (void *)&p )); args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq )); args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction )); const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options); candidate = (int *)malloc(4 * sizeof(int) * outputsz); memset(candidate, 0, 4 * sizeof(int) * outputsz); openCLReadBuffer( gsum.clCxt, ((OclBuffers *)buffers)->candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); for(int i = 0; i < outputsz; i++) { if(candidate[4 * i + 2] != 0) { allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], candidate[4 * i + 2], candidate[4 * i + 3])); } } free((void *)candidate); candidate = NULL; } else { cv::ocl::integral(gimg, gsum, gsqsum); gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; int step = gsum.step / 4; int startnode = 0; int splitstage = 3; int startstage = 0; int endstage = gcascade->count; vector<pair<size_t, const void *> > args; args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.rows )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.cols )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&step )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->pbuffer )); args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->correctionbuffer )); args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_nodenum )); const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options); candidate = (int *)clEnqueueMapBuffer(qu, ((OclBuffers *)buffers)->candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, NULL); for(int i = 0; i < outputsz; i++) { if(candidate[4 * i + 2] != 0) allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], candidate[4 * i + 2], candidate[4 * i + 3])); } clEnqueueUnmapMemObject(qu, ((OclBuffers *)buffers)->candidatebuffer, candidate, 0, 0, 0); } rectList.resize(allCandidates.size()); if(!allCandidates.empty()) std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin()); if( minNeighbors != 0 || findBiggestObject ) groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS); else rweights.resize(rectList.size(), 0); GenResult(faces, rectList, rweights); } void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols, double scaleFactor, int flags, const int outputsz, const size_t localThreads[], CvSize minSize, CvSize maxSize) { if(initialized) { return; // we only allow one time initialization } CvHaarClassifierCascade *cascade = oldCascade; if( !CV_IS_HAAR_CLASSIFIER(cascade) ) CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" ); if( scaleFactor <= 1 ) CV_Error( CV_StsOutOfRange, "scale factor must be > 1" ); if( cols < minSize.width || rows < minSize.height ) CV_Error(CV_StsError, "Image too small"); int datasize=0; int totalclassifier=0; if( !cascade->hid_cascade ) { gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier); } if( maxSize.height == 0 || maxSize.width == 0 ) { maxSize.height = rows; maxSize.width = cols; } findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0; if( findBiggestObject ) flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING); CreateBaseBufs(datasize, totalclassifier, flags, outputsz); CreateFactorRelatedBufs(rows, cols, flags, scaleFactor, localThreads, minSize, maxSize); m_scaleFactor = scaleFactor; m_rows = rows; m_cols = cols; m_flags = flags; m_minSize = minSize; m_maxSize = maxSize; // initialize nodes GpuHidHaarClassifierCascade *gcascade; GpuHidHaarStageClassifier *stage; GpuHidHaarClassifier *classifier; GpuHidHaarTreeNode *node; cl_command_queue qu = getClCommandQueue(Context::getContext()); if( (flags & CV_HAAR_SCALE_IMAGE) ) { gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade); stage = (GpuHidHaarStageClassifier *)(gcascade + 1); classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); node = (GpuHidHaarTreeNode *)(classifier->node); gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 ); openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier) * gcascade->count, stage, 0, NULL, NULL)); openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, m_nodenum * sizeof(GpuHidHaarTreeNode), node, 0, NULL, NULL)); } else { gpuSetHaarClassifierCascade(cascade); gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; stage = (GpuHidHaarStageClassifier *)(gcascade + 1); classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); node = (GpuHidHaarTreeNode *)(classifier->node); openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, m_nodenum * sizeof(GpuHidHaarTreeNode), node, 0, NULL, NULL)); cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * m_loopcount); float *correction = (float *)malloc(sizeof(float) * m_loopcount); double factor; for(int i = 0; i < m_loopcount; i++) { factor = scalev[i]; int equRect_x = (int)(factor * gcascade->p0 + 0.5); int equRect_y = (int)(factor * gcascade->p1 + 0.5); int equRect_w = (int)(factor * gcascade->p3 + 0.5); int equRect_h = (int)(factor * gcascade->p2 + 0.5); p[i].s[0] = equRect_x; p[i].s[1] = equRect_y; p[i].s[2] = equRect_x + equRect_w; p[i].s[3] = equRect_y + equRect_h; correction[i] = 1. / (equRect_w * equRect_h); int startnodenum = m_nodenum * i; float factor2 = (float)factor; vector<pair<size_t, const void *> > args1; args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer )); args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer )); args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 )); args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] )); args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); size_t globalThreads2[3] = {m_nodenum, 1, 1}; openCLExecuteKernel(Context::getContext(), &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); } openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->pbuffer, 1, 0, sizeof(cl_int4)*m_loopcount, p, 0, NULL, NULL)); openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->correctionbuffer, 1, 0, sizeof(cl_float)*m_loopcount, correction, 0, NULL, NULL)); free(p); free(correction); } initialized = true; } void cv::ocl::OclCascadeClassifierBuf::CreateBaseBufs(const int datasize, const int totalclassifier, const int flags, const int outputsz) { if (!initialized) { buffers = malloc(sizeof(OclBuffers)); size_t tempSize = sizeof(GpuHidHaarStageClassifier) * ((GpuHidHaarClassifierCascade *)oldCascade->hid_cascade)->count; m_nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - tempSize - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode); ((OclBuffers *)buffers)->stagebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, tempSize); ((OclBuffers *)buffers)->nodebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, m_nodenum * sizeof(GpuHidHaarTreeNode)); } if (initialized && ((m_flags & CV_HAAR_SCALE_IMAGE) ^ (flags & CV_HAAR_SCALE_IMAGE))) { openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer)); } if (flags & CV_HAAR_SCALE_IMAGE) { ((OclBuffers *)buffers)->candidatebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_WRITE_ONLY, 4 * sizeof(int) * outputsz); } else { ((OclBuffers *)buffers)->candidatebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, 4 * sizeof(int) * outputsz); } } void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs( const int rows, const int cols, const int flags, const double scaleFactor, const size_t localThreads[], CvSize minSize, CvSize maxSize) { if (initialized) { if ((m_flags & CV_HAAR_SCALE_IMAGE) && !(flags & CV_HAAR_SCALE_IMAGE)) { gimg1.release(); gsum.release(); gsqsum.release(); } else if (!(m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE)) { openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); } else if ((m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE)) { if (fabs(m_scaleFactor - scaleFactor) < 1e-6 && (rows == m_rows && cols == m_cols) && (minSize.width == m_minSize.width) && (minSize.height == m_minSize.height) && (maxSize.width == m_maxSize.width) && (maxSize.height == m_maxSize.height)) { return; } } else { if (fabs(m_scaleFactor - scaleFactor) < 1e-6 && (rows == m_rows && cols == m_cols) && (minSize.width == m_minSize.width) && (minSize.height == m_minSize.height) && (maxSize.width == m_maxSize.width) && (maxSize.height == m_maxSize.height)) { return; } else { openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); } } } int loopcount; int indexy = 0; int totalheight = 0; double factor; Rect roi; CvSize sz; CvSize winSize0 = oldCascade->orig_window_size; detect_piramid_info *scaleinfo; cl_command_queue qu = getClCommandQueue(Context::getContext()); if (flags & CV_HAAR_SCALE_IMAGE) { for(factor = 1.f;; factor *= scaleFactor) { CvSize winSize = { cvRound(winSize0.width * factor), cvRound(winSize0.height * factor) }; sz.width = cvRound( cols / factor ) + 1; sz.height = cvRound( rows / factor ) + 1; CvSize sz1 = { sz.width - winSize0.width - 1, sz.height - winSize0.height - 1 }; if( sz1.width <= 0 || sz1.height <= 0 ) break; if( winSize.width > maxSize.width || winSize.height > maxSize.height ) break; if( winSize.width < minSize.width || winSize.height < minSize.height ) continue; totalheight += sz.height; sizev.push_back(sz); scalev.push_back(static_cast<float>(factor)); } loopcount = sizev.size(); gimg1.create(rows, cols, CV_8UC1); gsum.create(totalheight + 4, cols + 1, CV_32SC1); gsqsum.create(totalheight + 4, cols + 1, CV_32FC1); scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); for( int i = 0; i < loopcount; i++ ) { sz = sizev[i]; roi = Rect(0, indexy, sz.width, sz.height); int width = sz.width - 1 - oldCascade->orig_window_size.width; int height = sz.height - 1 - oldCascade->orig_window_size.height; int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; ((detect_piramid_info *)scaleinfo)[i].width_height = (width << 16) | height; ((detect_piramid_info *)scaleinfo)[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; ((detect_piramid_info *)scaleinfo)[i].imgoff = gsum(roi).offset >> 2; ((detect_piramid_info *)scaleinfo)[i].factor = scalev[i]; indexy += sz.height; } } else { for(factor = 1; cvRound(factor * winSize0.width) < cols - 10 && cvRound(factor * winSize0.height) < rows - 10; factor *= scaleFactor) { CvSize winSize = { cvRound( winSize0.width * factor ), cvRound( winSize0.height * factor ) }; if( winSize.width < minSize.width || winSize.height < minSize.height ) { continue; } sizev.push_back(winSize); scalev.push_back(factor); } loopcount = scalev.size(); if(loopcount == 0) { loopcount = 1; sizev.push_back(minSize); scalev.push_back( std::min(cvRound(minSize.width / winSize0.width), cvRound(minSize.height / winSize0.height)) ); } ((OclBuffers *)buffers)->pbuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, sizeof(cl_int4) * loopcount); ((OclBuffers *)buffers)->correctionbuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, sizeof(cl_float) * loopcount); ((OclBuffers *)buffers)->newnodebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_WRITE, loopcount * m_nodenum * sizeof(GpuHidHaarTreeNode)); scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); for( int i = 0; i < loopcount; i++ ) { sz = sizev[i]; factor = scalev[i]; double ystep = cv::max(2.,factor); int width = cvRound((cols - 1 - sz.width + ystep - 1) / ystep); int height = cvRound((rows - 1 - sz.height + ystep - 1) / ystep); int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; ((detect_piramid_info *)scaleinfo)[i].width_height = (width << 16) | height; ((detect_piramid_info *)scaleinfo)[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; ((detect_piramid_info *)scaleinfo)[i].imgoff = 0; ((detect_piramid_info *)scaleinfo)[i].factor = factor; } } if (loopcount != m_loopcount) { if (initialized) { openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer)); } ((OclBuffers *)buffers)->scaleinfobuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); } openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL)); free(scaleinfo); m_loopcount = loopcount; } void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector<cv::Rect>& faces, const std::vector<cv::Rect> &rectList, const std::vector<int> &rweights) { MemStorage tempStorage(cvCreateMemStorage(0)); CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), tempStorage ); if( findBiggestObject && rectList.size() ) { CvAvgComp result_comp = {{0, 0, 0, 0}, 0}; for( size_t i = 0; i < rectList.size(); i++ ) { cv::Rect r = rectList[i]; if( r.area() > cv::Rect(result_comp.rect).area() ) { result_comp.rect = r; result_comp.neighbors = rweights[i]; } } cvSeqPush( result_seq, &result_comp ); } else { for( size_t i = 0; i < rectList.size(); i++ ) { CvAvgComp c; c.rect = rectList[i]; c.neighbors = rweights[i]; cvSeqPush( result_seq, &c ); } } vector<CvAvgComp> vecAvgComp; Seq<CvAvgComp>(result_seq).copyTo(vecAvgComp); faces.resize(vecAvgComp.size()); std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect()); } void cv::ocl::OclCascadeClassifierBuf::release() { if(initialized) { openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer)); openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer)); openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->nodebuffer)); openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer)); if( (m_flags & CV_HAAR_SCALE_IMAGE) ) { cvFree(&oldCascade->hid_cascade); } else { openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); } free(buffers); buffers = NULL; initialized = false; } } #ifndef _MAX_PATH #define _MAX_PATH 1024 #endif