// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "opencl_kernels_core.hpp" namespace cv { namespace hal { #if CV_NEON template<typename T> struct VSplit2; template<typename T> struct VSplit3; template<typename T> struct VSplit4; #define SPLIT2_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \ template<> \ struct name<data_type> \ { \ void operator()(const data_type* src, data_type* dst0, \ data_type* dst1) const \ { \ reg_type r = load_func(src); \ store_func(dst0, r.val[0]); \ store_func(dst1, r.val[1]); \ } \ } #define SPLIT3_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \ template<> \ struct name<data_type> \ { \ void operator()(const data_type* src, data_type* dst0, data_type* dst1, \ data_type* dst2) const \ { \ reg_type r = load_func(src); \ store_func(dst0, r.val[0]); \ store_func(dst1, r.val[1]); \ store_func(dst2, r.val[2]); \ } \ } #define SPLIT4_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \ template<> \ struct name<data_type> \ { \ void operator()(const data_type* src, data_type* dst0, data_type* dst1, \ data_type* dst2, data_type* dst3) const \ { \ reg_type r = load_func(src); \ store_func(dst0, r.val[0]); \ store_func(dst1, r.val[1]); \ store_func(dst2, r.val[2]); \ store_func(dst3, r.val[3]); \ } \ } SPLIT2_KERNEL_TEMPLATE(VSplit2, uchar , uint8x16x2_t, vld2q_u8 , vst1q_u8 ); SPLIT2_KERNEL_TEMPLATE(VSplit2, ushort, uint16x8x2_t, vld2q_u16, vst1q_u16); SPLIT2_KERNEL_TEMPLATE(VSplit2, int , int32x4x2_t, vld2q_s32, vst1q_s32); SPLIT2_KERNEL_TEMPLATE(VSplit2, int64 , int64x1x2_t, vld2_s64 , vst1_s64 ); SPLIT3_KERNEL_TEMPLATE(VSplit3, uchar , uint8x16x3_t, vld3q_u8 , vst1q_u8 ); SPLIT3_KERNEL_TEMPLATE(VSplit3, ushort, uint16x8x3_t, vld3q_u16, vst1q_u16); SPLIT3_KERNEL_TEMPLATE(VSplit3, int , int32x4x3_t, vld3q_s32, vst1q_s32); SPLIT3_KERNEL_TEMPLATE(VSplit3, int64 , int64x1x3_t, vld3_s64 , vst1_s64 ); SPLIT4_KERNEL_TEMPLATE(VSplit4, uchar , uint8x16x4_t, vld4q_u8 , vst1q_u8 ); SPLIT4_KERNEL_TEMPLATE(VSplit4, ushort, uint16x8x4_t, vld4q_u16, vst1q_u16); SPLIT4_KERNEL_TEMPLATE(VSplit4, int , int32x4x4_t, vld4q_s32, vst1q_s32); SPLIT4_KERNEL_TEMPLATE(VSplit4, int64 , int64x1x4_t, vld4_s64 , vst1_s64 ); #elif CV_SSE2 template <typename T> struct VSplit2 { VSplit2() : support(false) { } void operator()(const T *, T *, T *) const { } bool support; }; template <typename T> struct VSplit3 { VSplit3() : support(false) { } void operator()(const T *, T *, T *, T *) const { } bool support; }; template <typename T> struct VSplit4 { VSplit4() : support(false) { } void operator()(const T *, T *, T *, T *, T *) const { } bool support; }; #define SPLIT2_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \ template <> \ struct VSplit2<data_type> \ { \ enum \ { \ ELEMS_IN_VEC = 16 / sizeof(data_type) \ }; \ \ VSplit2() \ { \ support = checkHardwareSupport(CV_CPU_SSE2); \ } \ \ void operator()(const data_type * src, \ data_type * dst0, data_type * dst1) const \ { \ reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \ reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \ reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \ reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \ \ _mm_deinterleave(v_src0, v_src1, v_src2, v_src3); \ \ _mm_storeu_##flavor((cast_type *)(dst0), v_src0); \ _mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \ _mm_storeu_##flavor((cast_type *)(dst1), v_src2); \ _mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \ } \ \ bool support; \ } #define SPLIT3_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \ template <> \ struct VSplit3<data_type> \ { \ enum \ { \ ELEMS_IN_VEC = 16 / sizeof(data_type) \ }; \ \ VSplit3() \ { \ support = checkHardwareSupport(CV_CPU_SSE2); \ } \ \ void operator()(const data_type * src, \ data_type * dst0, data_type * dst1, data_type * dst2) const \ { \ reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \ reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \ reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \ reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \ reg_type v_src4 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 4)); \ reg_type v_src5 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 5)); \ \ _mm_deinterleave(v_src0, v_src1, v_src2, \ v_src3, v_src4, v_src5); \ \ _mm_storeu_##flavor((cast_type *)(dst0), v_src0); \ _mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \ _mm_storeu_##flavor((cast_type *)(dst1), v_src2); \ _mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \ _mm_storeu_##flavor((cast_type *)(dst2), v_src4); \ _mm_storeu_##flavor((cast_type *)(dst2 + ELEMS_IN_VEC), v_src5); \ } \ \ bool support; \ } #define SPLIT4_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \ template <> \ struct VSplit4<data_type> \ { \ enum \ { \ ELEMS_IN_VEC = 16 / sizeof(data_type) \ }; \ \ VSplit4() \ { \ support = checkHardwareSupport(CV_CPU_SSE2); \ } \ \ void operator()(const data_type * src, data_type * dst0, data_type * dst1, \ data_type * dst2, data_type * dst3) const \ { \ reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \ reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \ reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \ reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \ reg_type v_src4 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 4)); \ reg_type v_src5 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 5)); \ reg_type v_src6 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 6)); \ reg_type v_src7 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 7)); \ \ _mm_deinterleave(v_src0, v_src1, v_src2, v_src3, \ v_src4, v_src5, v_src6, v_src7); \ \ _mm_storeu_##flavor((cast_type *)(dst0), v_src0); \ _mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \ _mm_storeu_##flavor((cast_type *)(dst1), v_src2); \ _mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \ _mm_storeu_##flavor((cast_type *)(dst2), v_src4); \ _mm_storeu_##flavor((cast_type *)(dst2 + ELEMS_IN_VEC), v_src5); \ _mm_storeu_##flavor((cast_type *)(dst3), v_src6); \ _mm_storeu_##flavor((cast_type *)(dst3 + ELEMS_IN_VEC), v_src7); \ } \ \ bool support; \ } SPLIT2_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128); SPLIT2_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128); SPLIT2_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps); SPLIT3_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128); SPLIT3_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128); SPLIT3_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps); SPLIT4_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128); SPLIT4_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128); SPLIT4_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps); #endif template<typename T> static void split_( const T* src, T** dst, int len, int cn ) { int k = cn % 4 ? cn % 4 : 4; int i, j; if( k == 1 ) { T* dst0 = dst[0]; if(cn == 1) { memcpy(dst0, src, len * sizeof(T)); } else { for( i = 0, j = 0 ; i < len; i++, j += cn ) dst0[i] = src[j]; } } else if( k == 2 ) { T *dst0 = dst[0], *dst1 = dst[1]; i = j = 0; #if CV_NEON if(cn == 2) { int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T); int inc_j = 2 * inc_i; VSplit2<T> vsplit; for( ; i < len - inc_i; i += inc_i, j += inc_j) vsplit(src + j, dst0 + i, dst1 + i); } #elif CV_SSE2 if (cn == 2) { int inc_i = 32/sizeof(T); int inc_j = 2 * inc_i; VSplit2<T> vsplit; if (vsplit.support) { for( ; i <= len - inc_i; i += inc_i, j += inc_j) vsplit(src + j, dst0 + i, dst1 + i); } } #endif for( ; i < len; i++, j += cn ) { dst0[i] = src[j]; dst1[i] = src[j+1]; } } else if( k == 3 ) { T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2]; i = j = 0; #if CV_NEON if(cn == 3) { int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T); int inc_j = 3 * inc_i; VSplit3<T> vsplit; for( ; i <= len - inc_i; i += inc_i, j += inc_j) vsplit(src + j, dst0 + i, dst1 + i, dst2 + i); } #elif CV_SSE2 if (cn == 3) { int inc_i = 32/sizeof(T); int inc_j = 3 * inc_i; VSplit3<T> vsplit; if (vsplit.support) { for( ; i <= len - inc_i; i += inc_i, j += inc_j) vsplit(src + j, dst0 + i, dst1 + i, dst2 + i); } } #endif for( ; i < len; i++, j += cn ) { dst0[i] = src[j]; dst1[i] = src[j+1]; dst2[i] = src[j+2]; } } else { T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2], *dst3 = dst[3]; i = j = 0; #if CV_NEON if(cn == 4) { int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T); int inc_j = 4 * inc_i; VSplit4<T> vsplit; for( ; i <= len - inc_i; i += inc_i, j += inc_j) vsplit(src + j, dst0 + i, dst1 + i, dst2 + i, dst3 + i); } #elif CV_SSE2 if (cn == 4) { int inc_i = 32/sizeof(T); int inc_j = 4 * inc_i; VSplit4<T> vsplit; if (vsplit.support) { for( ; i <= len - inc_i; i += inc_i, j += inc_j) vsplit(src + j, dst0 + i, dst1 + i, dst2 + i, dst3 + i); } } #endif for( ; i < len; i++, j += cn ) { dst0[i] = src[j]; dst1[i] = src[j+1]; dst2[i] = src[j+2]; dst3[i] = src[j+3]; } } for( ; k < cn; k += 4 ) { T *dst0 = dst[k], *dst1 = dst[k+1], *dst2 = dst[k+2], *dst3 = dst[k+3]; for( i = 0, j = k; i < len; i++, j += cn ) { dst0[i] = src[j]; dst1[i] = src[j+1]; dst2[i] = src[j+2]; dst3[i] = src[j+3]; } } } void split8u(const uchar* src, uchar** dst, int len, int cn ) { CALL_HAL(split8u, cv_hal_split8u, src,dst, len, cn) split_(src, dst, len, cn); } void split16u(const ushort* src, ushort** dst, int len, int cn ) { CALL_HAL(split16u, cv_hal_split16u, src,dst, len, cn) split_(src, dst, len, cn); } void split32s(const int* src, int** dst, int len, int cn ) { CALL_HAL(split32s, cv_hal_split32s, src,dst, len, cn) split_(src, dst, len, cn); } void split64s(const int64* src, int64** dst, int len, int cn ) { CALL_HAL(split64s, cv_hal_split64s, src,dst, len, cn) split_(src, dst, len, cn); } }} // cv::hal:: /****************************************************************************************\ * split & merge * \****************************************************************************************/ typedef void (*SplitFunc)(const uchar* src, uchar** dst, int len, int cn); static SplitFunc getSplitFunc(int depth) { static SplitFunc splitTab[] = { (SplitFunc)GET_OPTIMIZED(cv::hal::split8u), (SplitFunc)GET_OPTIMIZED(cv::hal::split8u), (SplitFunc)GET_OPTIMIZED(cv::hal::split16u), (SplitFunc)GET_OPTIMIZED(cv::hal::split16u), (SplitFunc)GET_OPTIMIZED(cv::hal::split32s), (SplitFunc)GET_OPTIMIZED(cv::hal::split32s), (SplitFunc)GET_OPTIMIZED(cv::hal::split64s), 0 }; return splitTab[depth]; } #ifdef HAVE_IPP namespace cv { static bool ipp_split(const Mat& src, Mat* mv, int channels) { #ifdef HAVE_IPP_IW CV_INSTRUMENT_REGION_IPP() if(channels != 3 && channels != 4) return false; if(src.dims <= 2) { IppiSize size = ippiSize(src.size()); void *dstPtrs[4] = {NULL}; size_t dstStep = mv[0].step; for(int i = 0; i < channels; i++) { dstPtrs[i] = mv[i].ptr(); if(dstStep != mv[i].step) return false; } return CV_INSTRUMENT_FUN_IPP(llwiCopySplit, src.ptr(), (int)src.step, dstPtrs, (int)dstStep, size, (int)src.elemSize1(), channels, 0) >= 0; } else { const Mat *arrays[5] = {NULL}; uchar *ptrs[5] = {NULL}; arrays[0] = &src; for(int i = 1; i < channels; i++) { arrays[i] = &mv[i-1]; } NAryMatIterator it(arrays, ptrs); IppiSize size = { (int)it.size, 1 }; for( size_t i = 0; i < it.nplanes; i++, ++it ) { if(CV_INSTRUMENT_FUN_IPP(llwiCopySplit, ptrs[0], 0, (void**)&ptrs[1], 0, size, (int)src.elemSize1(), channels, 0) < 0) return false; } return true; } #else CV_UNUSED(src); CV_UNUSED(mv); CV_UNUSED(channels); return false; #endif } } #endif void cv::split(const Mat& src, Mat* mv) { CV_INSTRUMENT_REGION() int k, depth = src.depth(), cn = src.channels(); if( cn == 1 ) { src.copyTo(mv[0]); return; } for( k = 0; k < cn; k++ ) { mv[k].create(src.dims, src.size, depth); } CV_IPP_RUN_FAST(ipp_split(src, mv, cn)); SplitFunc func = getSplitFunc(depth); CV_Assert( func != 0 ); size_t esz = src.elemSize(), esz1 = src.elemSize1(); size_t blocksize0 = (BLOCK_SIZE + esz-1)/esz; AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16); const Mat** arrays = (const Mat**)(uchar*)_buf; uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16); arrays[0] = &src; for( k = 0; k < cn; k++ ) { arrays[k+1] = &mv[k]; } NAryMatIterator it(arrays, ptrs, cn+1); size_t total = it.size; size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0)); for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( size_t j = 0; j < total; j += blocksize ) { size_t bsz = std::min(total - j, blocksize); func( ptrs[0], &ptrs[1], (int)bsz, cn ); if( j + blocksize < total ) { ptrs[0] += bsz*esz; for( k = 0; k < cn; k++ ) ptrs[k+1] += bsz*esz1; } } } } #ifdef HAVE_OPENCL namespace cv { static bool ocl_split( InputArray _m, OutputArrayOfArrays _mv ) { int type = _m.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; String dstargs, processelem, indexdecl; for (int i = 0; i < cn; ++i) { dstargs += format("DECLARE_DST_PARAM(%d)", i); indexdecl += format("DECLARE_INDEX(%d)", i); processelem += format("PROCESS_ELEM(%d)", i); } ocl::Kernel k("split", ocl::core::split_merge_oclsrc, format("-D T=%s -D OP_SPLIT -D cn=%d -D DECLARE_DST_PARAMS=%s" " -D PROCESS_ELEMS_N=%s -D DECLARE_INDEX_N=%s", ocl::memopTypeToStr(depth), cn, dstargs.c_str(), processelem.c_str(), indexdecl.c_str())); if (k.empty()) return false; Size size = _m.size(); _mv.create(cn, 1, depth); for (int i = 0; i < cn; ++i) _mv.create(size, depth, i); std::vector<UMat> dst; _mv.getUMatVector(dst); int argidx = k.set(0, ocl::KernelArg::ReadOnly(_m.getUMat())); for (int i = 0; i < cn; ++i) argidx = k.set(argidx, ocl::KernelArg::WriteOnlyNoSize(dst[i])); k.set(argidx, rowsPerWI); size_t globalsize[2] = { (size_t)size.width, ((size_t)size.height + rowsPerWI - 1) / rowsPerWI }; return k.run(2, globalsize, NULL, false); } } #endif void cv::split(InputArray _m, OutputArrayOfArrays _mv) { CV_INSTRUMENT_REGION() CV_OCL_RUN(_m.dims() <= 2 && _mv.isUMatVector(), ocl_split(_m, _mv)) Mat m = _m.getMat(); if( m.empty() ) { _mv.release(); return; } CV_Assert( !_mv.fixedType() || _mv.empty() || _mv.type() == m.depth() ); int depth = m.depth(), cn = m.channels(); _mv.create(cn, 1, depth); for (int i = 0; i < cn; ++i) _mv.create(m.dims, m.size.p, depth, i); std::vector<Mat> dst; _mv.getMatVector(dst); split(m, &dst[0]); }