/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/core/gpumat.hpp" #include <iostream> #if defined(HAVE_CUDA) # include <cuda_runtime.h> # include <npp.h> # define CUDART_MINIMUM_REQUIRED_VERSION 4020 # define NPP_MINIMUM_REQUIRED_VERSION 4200 # if (CUDART_VERSION < CUDART_MINIMUM_REQUIRED_VERSION) # error "Insufficient Cuda Runtime library version, please update it." # endif # if (NPP_VERSION_MAJOR * 1000 + NPP_VERSION_MINOR * 100 + NPP_VERSION_BUILD < NPP_MINIMUM_REQUIRED_VERSION) # error "Insufficient NPP version, please update it." # endif #endif #ifdef DYNAMIC_CUDA_SUPPORT # include <dlfcn.h> # include <sys/types.h> # include <sys/stat.h> # include <dirent.h> #endif #ifdef ANDROID # ifdef LOG_TAG # undef LOG_TAG # endif # ifdef LOGE # undef LOGE # endif # ifdef LOGD # undef LOGD # endif # ifdef LOGI # undef LOGI # endif # include <android/log.h> # define LOG_TAG "OpenCV::CUDA" # define LOGE(...) ((void)__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__)) # define LOGD(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__)) # define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)) #endif using namespace std; using namespace cv; using namespace cv::gpu; #define throw_nogpu CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support") #include "opencv2/dynamicuda/dynamicuda.hpp" #ifdef DYNAMIC_CUDA_SUPPORT typedef GpuFuncTable* (*GpuFactoryType)(); typedef DeviceInfoFuncTable* (*DeviceInfoFactoryType)(); static GpuFactoryType gpuFactory = NULL; static DeviceInfoFactoryType deviceInfoFactory = NULL; # if defined(__linux__) || defined(__APPLE__) || defined (ANDROID) const std::string DYNAMIC_CUDA_LIB_NAME = "libopencv_dynamicuda.so"; # ifdef ANDROID static const std::string getCudaSupportLibName() { Dl_info dl_info; if(0 != dladdr((void *)getCudaSupportLibName, &dl_info)) { LOGD("Library name: %s", dl_info.dli_fname); LOGD("Library base address: %p", dl_info.dli_fbase); const char* libName=dl_info.dli_fname; while( ((*libName)=='/') || ((*libName)=='.') ) libName++; char lineBuf[2048]; FILE* file = fopen("/proc/self/smaps", "rt"); if(file) { while (fgets(lineBuf, sizeof lineBuf, file) != NULL) { //verify that line ends with library name int lineLength = strlen(lineBuf); int libNameLength = strlen(libName); //trim end for(int i = lineLength - 1; i >= 0 && isspace(lineBuf[i]); --i) { lineBuf[i] = 0; --lineLength; } if (0 != strncmp(lineBuf + lineLength - libNameLength, libName, libNameLength)) { //the line does not contain the library name continue; } //extract path from smaps line char* pathBegin = strchr(lineBuf, '/'); if (0 == pathBegin) { LOGE("Strange error: could not find path beginning in lin \"%s\"", lineBuf); continue; } char* pathEnd = strrchr(pathBegin, '/'); pathEnd[1] = 0; LOGD("Libraries folder found: %s", pathBegin); fclose(file); return std::string(pathBegin) + DYNAMIC_CUDA_LIB_NAME; } fclose(file); LOGE("Could not find library path"); } else { LOGE("Could not read /proc/self/smaps"); } } else { LOGE("Could not get library name and base address"); } return string(); } # else static const std::string getCudaSupportLibName() { return DYNAMIC_CUDA_LIB_NAME; } # endif static bool loadCudaSupportLib() { void* handle; const std::string name = getCudaSupportLibName(); dlerror(); handle = dlopen(name.c_str(), RTLD_LAZY); if (!handle) { LOGE("Cannot dlopen %s: %s", name.c_str(), dlerror()); return false; } deviceInfoFactory = (DeviceInfoFactoryType)dlsym(handle, "deviceInfoFactory"); if (!deviceInfoFactory) { LOGE("Cannot dlsym deviceInfoFactory: %s", dlerror()); dlclose(handle); return false; } gpuFactory = (GpuFactoryType)dlsym(handle, "gpuFactory"); if (!gpuFactory) { LOGE("Cannot dlsym gpuFactory: %s", dlerror()); dlclose(handle); return false; } return true; } # else # error "Dynamic CUDA support is not implemented for this platform!" # endif #endif static GpuFuncTable* gpuFuncTable() { #ifdef DYNAMIC_CUDA_SUPPORT static EmptyFuncTable stub; static GpuFuncTable* libFuncTable = loadCudaSupportLib() ? gpuFactory(): (GpuFuncTable*)&stub; static GpuFuncTable *funcTable = libFuncTable ? libFuncTable : (GpuFuncTable*)&stub; #else # ifdef USE_CUDA static CudaFuncTable impl; static GpuFuncTable* funcTable = &impl; #else static EmptyFuncTable stub; static GpuFuncTable* funcTable = &stub; #endif #endif return funcTable; } static DeviceInfoFuncTable* deviceInfoFuncTable() { #ifdef DYNAMIC_CUDA_SUPPORT static EmptyDeviceInfoFuncTable stub; static DeviceInfoFuncTable* libFuncTable = loadCudaSupportLib() ? deviceInfoFactory(): (DeviceInfoFuncTable*)&stub; static DeviceInfoFuncTable* funcTable = libFuncTable ? libFuncTable : (DeviceInfoFuncTable*)&stub; #else # ifdef USE_CUDA static CudaDeviceInfoFuncTable impl; static DeviceInfoFuncTable* funcTable = &impl; #else static EmptyDeviceInfoFuncTable stub; static DeviceInfoFuncTable* funcTable = &stub; #endif #endif return funcTable; } //////////////////////////////// Initialization & Info //////////////////////// int cv::gpu::getCudaEnabledDeviceCount() { return deviceInfoFuncTable()->getCudaEnabledDeviceCount(); } void cv::gpu::setDevice(int device) { deviceInfoFuncTable()->setDevice(device); } int cv::gpu::getDevice() { return deviceInfoFuncTable()->getDevice(); } void cv::gpu::resetDevice() { deviceInfoFuncTable()->resetDevice(); } bool cv::gpu::deviceSupports(FeatureSet feature_set) { return deviceInfoFuncTable()->deviceSupports(feature_set); } bool cv::gpu::TargetArchs::builtWith(FeatureSet feature_set) { return deviceInfoFuncTable()->builtWith(feature_set); } bool cv::gpu::TargetArchs::has(int major, int minor) { return deviceInfoFuncTable()->has(major, minor); } bool cv::gpu::TargetArchs::hasPtx(int major, int minor) { return deviceInfoFuncTable()->hasPtx(major, minor); } bool cv::gpu::TargetArchs::hasBin(int major, int minor) { return deviceInfoFuncTable()->hasBin(major, minor); } bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrLessPtx(major, minor); } bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrGreater(major, minor); } bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrGreaterPtx(major, minor); } bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrGreaterBin(major, minor); } size_t cv::gpu::DeviceInfo::sharedMemPerBlock() const { return deviceInfoFuncTable()->sharedMemPerBlock(device_id_); } void cv::gpu::DeviceInfo::queryMemory(size_t& total_memory, size_t& free_memory) const { deviceInfoFuncTable()->queryMemory(device_id_, total_memory, free_memory); } size_t cv::gpu::DeviceInfo::freeMemory() const { return deviceInfoFuncTable()->freeMemory(device_id_); } size_t cv::gpu::DeviceInfo::totalMemory() const { return deviceInfoFuncTable()->totalMemory(device_id_); } bool cv::gpu::DeviceInfo::supports(FeatureSet feature_set) const { return deviceInfoFuncTable()->supports(device_id_, feature_set); } bool cv::gpu::DeviceInfo::isCompatible() const { return deviceInfoFuncTable()->isCompatible(device_id_); } void cv::gpu::DeviceInfo::query() { name_ = deviceInfoFuncTable()->name(device_id_); multi_processor_count_ = deviceInfoFuncTable()->multiProcessorCount(device_id_); majorVersion_ = deviceInfoFuncTable()->majorVersion(device_id_); minorVersion_ = deviceInfoFuncTable()->minorVersion(device_id_); } void cv::gpu::printCudaDeviceInfo(int device) { deviceInfoFuncTable()->printCudaDeviceInfo(device); } void cv::gpu::printShortCudaDeviceInfo(int device) { deviceInfoFuncTable()->printShortCudaDeviceInfo(device); } namespace cv { namespace gpu { CV_EXPORTS void copyWithMask(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, const cv::gpu::GpuMat&, cudaStream_t); CV_EXPORTS void convertTo(const cv::gpu::GpuMat&, cv::gpu::GpuMat&); CV_EXPORTS void convertTo(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, double, double, cudaStream_t = 0); CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, cudaStream_t); CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&, cudaStream_t); CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar); CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&); }} //////////////////////////////// GpuMat /////////////////////////////// cv::gpu::GpuMat::GpuMat(const GpuMat& m) : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend) { if (refcount) CV_XADD(refcount, 1); } cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) : flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(rows_), cols(cols_), step(step_), data((uchar*)data_), refcount(0), datastart((uchar*)data_), dataend((uchar*)data_) { size_t minstep = cols * elemSize(); if (step == Mat::AUTO_STEP) { step = minstep; flags |= Mat::CONTINUOUS_FLAG; } else { if (rows == 1) step = minstep; CV_DbgAssert(step >= minstep); flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0; } dataend += step * (rows - 1) + minstep; } cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) : flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(size_.height), cols(size_.width), step(step_), data((uchar*)data_), refcount(0), datastart((uchar*)data_), dataend((uchar*)data_) { size_t minstep = cols * elemSize(); if (step == Mat::AUTO_STEP) { step = minstep; flags |= Mat::CONTINUOUS_FLAG; } else { if (rows == 1) step = minstep; CV_DbgAssert(step >= minstep); flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0; } dataend += step * (rows - 1) + minstep; } cv::gpu::GpuMat::GpuMat(const GpuMat& m, Range _rowRange, Range _colRange) { flags = m.flags; step = m.step; refcount = m.refcount; data = m.data; datastart = m.datastart; dataend = m.dataend; if (_rowRange == Range::all()) rows = m.rows; else { CV_Assert(0 <= _rowRange.start && _rowRange.start <= _rowRange.end && _rowRange.end <= m.rows); rows = _rowRange.size(); data += step*_rowRange.start; } if (_colRange == Range::all()) cols = m.cols; else { CV_Assert(0 <= _colRange.start && _colRange.start <= _colRange.end && _colRange.end <= m.cols); cols = _colRange.size(); data += _colRange.start*elemSize(); flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1; } if (rows == 1) flags |= Mat::CONTINUOUS_FLAG; if (refcount) CV_XADD(refcount, 1); if (rows <= 0 || cols <= 0) rows = cols = 0; } cv::gpu::GpuMat::GpuMat(const GpuMat& m, Rect roi) : flags(m.flags), rows(roi.height), cols(roi.width), step(m.step), data(m.data + roi.y*step), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend) { flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1; data += roi.x * elemSize(); CV_Assert(0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows); if (refcount) CV_XADD(refcount, 1); if (rows <= 0 || cols <= 0) rows = cols = 0; } cv::gpu::GpuMat::GpuMat(const Mat& m) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) { upload(m); } GpuMat& cv::gpu::GpuMat::operator = (const GpuMat& m) { if (this != &m) { GpuMat temp(m); swap(temp); } return *this; } void cv::gpu::GpuMat::swap(GpuMat& b) { std::swap(flags, b.flags); std::swap(rows, b.rows); std::swap(cols, b.cols); std::swap(step, b.step); std::swap(data, b.data); std::swap(datastart, b.datastart); std::swap(dataend, b.dataend); std::swap(refcount, b.refcount); } void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const { size_t esz = elemSize(); ptrdiff_t delta1 = data - datastart; ptrdiff_t delta2 = dataend - datastart; CV_DbgAssert(step > 0); if (delta1 == 0) ofs.x = ofs.y = 0; else { ofs.y = static_cast<int>(delta1 / step); ofs.x = static_cast<int>((delta1 - step * ofs.y) / esz); CV_DbgAssert(data == datastart + ofs.y * step + ofs.x * esz); } size_t minstep = (ofs.x + cols) * esz; wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / step + 1), ofs.y + rows); wholeSize.width = std::max(static_cast<int>((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols); } GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright) { Size wholeSize; Point ofs; locateROI(wholeSize, ofs); size_t esz = elemSize(); int row1 = std::max(ofs.y - dtop, 0); int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height); int col1 = std::max(ofs.x - dleft, 0); int col2 = std::min(ofs.x + cols + dright, wholeSize.width); data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz; rows = row2 - row1; cols = col2 - col1; if (esz * cols == step || rows == 1) flags |= Mat::CONTINUOUS_FLAG; else flags &= ~Mat::CONTINUOUS_FLAG; return *this; } GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const { GpuMat hdr = *this; int cn = channels(); if (new_cn == 0) new_cn = cn; int total_width = cols * cn; if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0) new_rows = rows * total_width / new_cn; if (new_rows != 0 && new_rows != rows) { int total_size = total_width * rows; if (!isContinuous()) CV_Error(CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed"); if ((unsigned)new_rows > (unsigned)total_size) CV_Error(CV_StsOutOfRange, "Bad new number of rows"); total_width = total_size / new_rows; if (total_width * new_rows != total_size) CV_Error(CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows"); hdr.rows = new_rows; hdr.step = total_width * elemSize1(); } int new_width = total_width / new_cn; if (new_width * new_cn != total_width) CV_Error(CV_BadNumChannels, "The total width is not divisible by the new number of channels"); hdr.cols = new_width; hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT); return hdr; } cv::Mat::Mat(const GpuMat& m) : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows) { m.download(*this); } void cv::gpu::createContinuous(int rows, int cols, int type, GpuMat& m) { int area = rows * cols; if (m.empty() || m.type() != type || !m.isContinuous() || m.size().area() < area) m.create(1, area, type); m.cols = cols; m.rows = rows; m.step = m.elemSize() * cols; m.flags |= Mat::CONTINUOUS_FLAG; } void cv::gpu::ensureSizeIsEnough(int rows, int cols, int type, GpuMat& m) { if (m.empty() || m.type() != type || m.data != m.datastart) m.create(rows, cols, type); else { const size_t esz = m.elemSize(); const ptrdiff_t delta2 = m.dataend - m.datastart; const size_t minstep = m.cols * esz; Size wholeSize; wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / m.step + 1), m.rows); wholeSize.width = std::max(static_cast<int>((delta2 - m.step * (wholeSize.height - 1)) / esz), m.cols); if (wholeSize.height < rows || wholeSize.width < cols) m.create(rows, cols, type); else { m.cols = cols; m.rows = rows; } } } GpuMat cv::gpu::allocMatFromBuf(int rows, int cols, int type, GpuMat &mat) { if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols) return mat(Rect(0, 0, cols, rows)); return mat = GpuMat(rows, cols, type); } void cv::gpu::GpuMat::upload(const Mat& m) { CV_DbgAssert(!m.empty()); create(m.size(), m.type()); gpuFuncTable()->copy(m, *this); } void cv::gpu::GpuMat::download(Mat& m) const { CV_DbgAssert(!empty()); m.create(size(), type()); gpuFuncTable()->copy(*this, m); } void cv::gpu::GpuMat::copyTo(GpuMat& m) const { CV_DbgAssert(!empty()); m.create(size(), type()); gpuFuncTable()->copy(*this, m); } void cv::gpu::GpuMat::copyTo(GpuMat& mat, const GpuMat& mask) const { if (mask.empty()) { copyTo(mat); } else { uchar* data0 = mat.data; mat.create(size(), type()); // do not leave dst uninitialized if (mat.data != data0) mat.setTo(Scalar::all(0)); gpuFuncTable()->copyWithMask(*this, mat, mask); } } void cv::gpu::GpuMat::convertTo(GpuMat& dst, int rtype, double alpha, double beta) const { bool noScale = fabs(alpha - 1) < numeric_limits<double>::epsilon() && fabs(beta) < numeric_limits<double>::epsilon(); if (rtype < 0) rtype = type(); else rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels()); int sdepth = depth(); int ddepth = CV_MAT_DEPTH(rtype); if (sdepth == ddepth && noScale) { copyTo(dst); return; } GpuMat temp; const GpuMat* psrc = this; if (sdepth != ddepth && psrc == &dst) { temp = *this; psrc = &temp; } dst.create(size(), rtype); if (noScale) cv::gpu::convertTo(*psrc, dst); else cv::gpu::convertTo(*psrc, dst, alpha, beta); } GpuMat& cv::gpu::GpuMat::setTo(Scalar s, const GpuMat& mask) { CV_Assert(mask.empty() || mask.type() == CV_8UC1); CV_DbgAssert(!empty()); gpu::setTo(*this, s, mask); return *this; } void cv::gpu::GpuMat::create(int _rows, int _cols, int _type) { _type &= TYPE_MASK; if (rows == _rows && cols == _cols && type() == _type && data) return; if (data) release(); CV_DbgAssert(_rows >= 0 && _cols >= 0); if (_rows > 0 && _cols > 0) { flags = Mat::MAGIC_VAL + _type; rows = _rows; cols = _cols; size_t esz = elemSize(); void* devPtr; gpuFuncTable()->mallocPitch(&devPtr, &step, esz * cols, rows); // Single row must be continuous if (rows == 1) step = esz * cols; if (esz * cols == step) flags |= Mat::CONTINUOUS_FLAG; int64 _nettosize = static_cast<int64>(step) * rows; size_t nettosize = static_cast<size_t>(_nettosize); datastart = data = static_cast<uchar*>(devPtr); dataend = data + nettosize; refcount = static_cast<int*>(fastMalloc(sizeof(*refcount))); *refcount = 1; } } void cv::gpu::GpuMat::release() { if (refcount && CV_XADD(refcount, -1) == 1) { fastFree(refcount); gpuFuncTable()->free(datastart); } data = datastart = dataend = 0; step = rows = cols = 0; refcount = 0; } namespace cv { namespace gpu { void convertTo(const GpuMat& src, GpuMat& dst) { gpuFuncTable()->convert(src, dst); } void convertTo(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream) { gpuFuncTable()->convert(src, dst, alpha, beta, stream); } void setTo(GpuMat& src, Scalar s, cudaStream_t stream) { gpuFuncTable()->setTo(src, s, cv::gpu::GpuMat(), stream); } void setTo(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream) { gpuFuncTable()->setTo(src, s, mask, stream); } void setTo(GpuMat& src, Scalar s) { setTo(src, s, 0); } void setTo(GpuMat& src, Scalar s, const GpuMat& mask) { setTo(src, s, mask, 0); } }} //////////////////////////////////////////////////////////////////////// // Error handling void cv::gpu::error(const char *error_string, const char *file, const int line, const char *func) { int code = CV_GpuApiCallError; if (uncaught_exception()) { const char* errorStr = cvErrorStr(code); const char* function = func ? func : "unknown function"; cerr << "OpenCV Error: " << errorStr << "(" << error_string << ") in " << function << ", file " << file << ", line " << line; cerr.flush(); } else cv::error( cv::Exception(code, error_string, func, file, line) ); }