/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// Copyright (c) 2010, Paul Furgale, Chi Hay Tong
//
// The original code was written by Paul Furgale and Chi Hay Tong
// and later optimized and prepared for integration into OpenCV by Itseez.
//
//M*/

#if !defined CUDA_DISABLER

#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/utility.hpp"
#include "opencv2/gpu/device/functional.hpp"
#include "opencv2/gpu/device/limits.hpp"
#include "opencv2/gpu/device/vec_math.hpp"

namespace cv { namespace gpu { namespace device
{
    namespace pyrlk
    {
        __constant__ int c_winSize_x;
        __constant__ int c_winSize_y;

        __constant__ int c_halfWin_x;
        __constant__ int c_halfWin_y;

        __constant__ int c_iters;

        void loadConstants(int2 winSize, int iters)
        {
            cudaSafeCall( cudaMemcpyToSymbol(c_winSize_x, &winSize.x, sizeof(int)) );
            cudaSafeCall( cudaMemcpyToSymbol(c_winSize_y, &winSize.y, sizeof(int)) );

            int2 halfWin = make_int2((winSize.x - 1) / 2, (winSize.y - 1) / 2);
            cudaSafeCall( cudaMemcpyToSymbol(c_halfWin_x, &halfWin.x, sizeof(int)) );
            cudaSafeCall( cudaMemcpyToSymbol(c_halfWin_y, &halfWin.y, sizeof(int)) );

            cudaSafeCall( cudaMemcpyToSymbol(c_iters, &iters, sizeof(int)) );
        }

        __device__ void reduce(float& val1, float& val2, float& val3, float* smem1, float* smem2, float* smem3, int tid)
        {
            smem1[tid] = val1;
            smem2[tid] = val2;
            smem3[tid] = val3;
            __syncthreads();

#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ > 110)
            if (tid < 128)
            {
                smem1[tid] = val1 += smem1[tid + 128];
                smem2[tid] = val2 += smem2[tid + 128];
                smem3[tid] = val3 += smem3[tid + 128];
            }
            __syncthreads();
#endif

            if (tid < 64)
            {
                smem1[tid] = val1 += smem1[tid + 64];
                smem2[tid] = val2 += smem2[tid + 64];
                smem3[tid] = val3 += smem3[tid + 64];
            }
            __syncthreads();

            if (tid < 32)
            {
                volatile float* vmem1 = smem1;
                volatile float* vmem2 = smem2;
                volatile float* vmem3 = smem3;

                vmem1[tid] = val1 += vmem1[tid + 32];
                vmem2[tid] = val2 += vmem2[tid + 32];
                vmem3[tid] = val3 += vmem3[tid + 32];

                vmem1[tid] = val1 += vmem1[tid + 16];
                vmem2[tid] = val2 += vmem2[tid + 16];
                vmem3[tid] = val3 += vmem3[tid + 16];

                vmem1[tid] = val1 += vmem1[tid + 8];
                vmem2[tid] = val2 += vmem2[tid + 8];
                vmem3[tid] = val3 += vmem3[tid + 8];

                vmem1[tid] = val1 += vmem1[tid + 4];
                vmem2[tid] = val2 += vmem2[tid + 4];
                vmem3[tid] = val3 += vmem3[tid + 4];

                vmem1[tid] = val1 += vmem1[tid + 2];
                vmem2[tid] = val2 += vmem2[tid + 2];
                vmem3[tid] = val3 += vmem3[tid + 2];

                vmem1[tid] = val1 += vmem1[tid + 1];
                vmem2[tid] = val2 += vmem2[tid + 1];
                vmem3[tid] = val3 += vmem3[tid + 1];
            }
        }

        __device__ void reduce(float& val1, float& val2, float* smem1, float* smem2, int tid)
        {
            smem1[tid] = val1;
            smem2[tid] = val2;
            __syncthreads();

#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ > 110)
            if (tid < 128)
            {
                smem1[tid] = val1 += smem1[tid + 128];
                smem2[tid] = val2 += smem2[tid + 128];
            }
            __syncthreads();
#endif

            if (tid < 64)
            {
                smem1[tid] = val1 += smem1[tid + 64];
                smem2[tid] = val2 += smem2[tid + 64];
            }
            __syncthreads();

            if (tid < 32)
            {
                volatile float* vmem1 = smem1;
                volatile float* vmem2 = smem2;

                vmem1[tid] = val1 += vmem1[tid + 32];
                vmem2[tid] = val2 += vmem2[tid + 32];

                vmem1[tid] = val1 += vmem1[tid + 16];
                vmem2[tid] = val2 += vmem2[tid + 16];

                vmem1[tid] = val1 += vmem1[tid + 8];
                vmem2[tid] = val2 += vmem2[tid + 8];

                vmem1[tid] = val1 += vmem1[tid + 4];
                vmem2[tid] = val2 += vmem2[tid + 4];

                vmem1[tid] = val1 += vmem1[tid + 2];
                vmem2[tid] = val2 += vmem2[tid + 2];

                vmem1[tid] = val1 += vmem1[tid + 1];
                vmem2[tid] = val2 += vmem2[tid + 1];
            }
        }

        __device__ void reduce(float& val1, float* smem1, int tid)
        {
            smem1[tid] = val1;
            __syncthreads();

#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ > 110)
            if (tid < 128)
            {
                smem1[tid] = val1 += smem1[tid + 128];
            }
            __syncthreads();
#endif

            if (tid < 64)
            {
                smem1[tid] = val1 += smem1[tid + 64];
            }
            __syncthreads();

            if (tid < 32)
            {
                volatile float* vmem1 = smem1;

                vmem1[tid] = val1 += vmem1[tid + 32];
                vmem1[tid] = val1 += vmem1[tid + 16];
                vmem1[tid] = val1 += vmem1[tid + 8];
                vmem1[tid] = val1 += vmem1[tid + 4];
                vmem1[tid] = val1 += vmem1[tid + 2];
                vmem1[tid] = val1 += vmem1[tid + 1];
            }
        }

        texture<float, cudaTextureType2D, cudaReadModeElementType> tex_If(false, cudaFilterModeLinear, cudaAddressModeClamp);
        texture<float4, cudaTextureType2D, cudaReadModeElementType> tex_If4(false, cudaFilterModeLinear, cudaAddressModeClamp);
        texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_Ib(false, cudaFilterModePoint, cudaAddressModeClamp);

        texture<float, cudaTextureType2D, cudaReadModeElementType> tex_Jf(false, cudaFilterModeLinear, cudaAddressModeClamp);
        texture<float4, cudaTextureType2D, cudaReadModeElementType> tex_Jf4(false, cudaFilterModeLinear, cudaAddressModeClamp);

        template <int cn> struct Tex_I;
        template <> struct Tex_I<1>
        {
            static __device__ __forceinline__ float read(float x, float y)
            {
                return tex2D(tex_If, x, y);
            }
        };
        template <> struct Tex_I<4>
        {
            static __device__ __forceinline__ float4 read(float x, float y)
            {
                return tex2D(tex_If4, x, y);
            }
        };

        template <int cn> struct Tex_J;
        template <> struct Tex_J<1>
        {
            static __device__ __forceinline__ float read(float x, float y)
            {
                return tex2D(tex_Jf, x, y);
            }
        };
        template <> struct Tex_J<4>
        {
            static __device__ __forceinline__ float4 read(float x, float y)
            {
                return tex2D(tex_Jf4, x, y);
            }
        };

        __device__ __forceinline__ void accum(float& dst, float val)
        {
            dst += val;
        }
        __device__ __forceinline__ void accum(float& dst, const float4& val)
        {
            dst += val.x + val.y + val.z;
        }

        __device__ __forceinline__ float abs_(float a)
        {
            return ::fabs(a);
        }
        __device__ __forceinline__ float4 abs_(const float4& a)
        {
            return fabs(a);
        }

        template <int cn, int PATCH_X, int PATCH_Y, bool calcErr>
        __global__ void lkSparse(const float2* prevPts, float2* nextPts, uchar* status, float* err, const int level, const int rows, const int cols)
        {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ <= 110)
            __shared__ float smem1[128];
            __shared__ float smem2[128];
            __shared__ float smem3[128];
#else
            __shared__ float smem1[256];
            __shared__ float smem2[256];
            __shared__ float smem3[256];
#endif

            const int tid = threadIdx.y * blockDim.x + threadIdx.x;

            float2 prevPt = prevPts[blockIdx.x];
            prevPt.x *= (1.0f / (1 << level));
            prevPt.y *= (1.0f / (1 << level));

            if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
            {
                if (tid == 0 && level == 0)
                    status[blockIdx.x] = 0;

                return;
            }

            prevPt.x -= c_halfWin_x;
            prevPt.y -= c_halfWin_y;

            // extract the patch from the first image, compute covariation matrix of derivatives

            float A11 = 0;
            float A12 = 0;
            float A22 = 0;

            typedef typename TypeVec<float, cn>::vec_type work_type;

            work_type I_patch   [PATCH_Y][PATCH_X];
            work_type dIdx_patch[PATCH_Y][PATCH_X];
            work_type dIdy_patch[PATCH_Y][PATCH_X];

            for (int yBase = threadIdx.y, i = 0; yBase < c_winSize_y; yBase += blockDim.y, ++i)
            {
                for (int xBase = threadIdx.x, j = 0; xBase < c_winSize_x; xBase += blockDim.x, ++j)
                {
                    float x = prevPt.x + xBase + 0.5f;
                    float y = prevPt.y + yBase + 0.5f;

                    I_patch[i][j] = Tex_I<cn>::read(x, y);

                    // Sharr Deriv

                    work_type dIdx = 3.0f * Tex_I<cn>::read(x+1, y-1) + 10.0f * Tex_I<cn>::read(x+1, y) + 3.0f * Tex_I<cn>::read(x+1, y+1) -
                                     (3.0f * Tex_I<cn>::read(x-1, y-1) + 10.0f * Tex_I<cn>::read(x-1, y) + 3.0f * Tex_I<cn>::read(x-1, y+1));

                    work_type dIdy = 3.0f * Tex_I<cn>::read(x-1, y+1) + 10.0f * Tex_I<cn>::read(x, y+1) + 3.0f * Tex_I<cn>::read(x+1, y+1) -
                                    (3.0f * Tex_I<cn>::read(x-1, y-1) + 10.0f * Tex_I<cn>::read(x, y-1) + 3.0f * Tex_I<cn>::read(x+1, y-1));

                    dIdx_patch[i][j] = dIdx;
                    dIdy_patch[i][j] = dIdy;

                    accum(A11, dIdx * dIdx);
                    accum(A12, dIdx * dIdy);
                    accum(A22, dIdy * dIdy);
                }
            }

            reduce(A11, A12, A22, smem1, smem2, smem3, tid);
            __syncthreads();

            A11 = smem1[0];
            A12 = smem2[0];
            A22 = smem3[0];

            float D = A11 * A22 - A12 * A12;

            if (D < numeric_limits<float>::epsilon())
            {
                if (tid == 0 && level == 0)
                    status[blockIdx.x] = 0;

                return;
            }

            D = 1.f / D;

            A11 *= D;
            A12 *= D;
            A22 *= D;

            float2 nextPt = nextPts[blockIdx.x];
            nextPt.x *= 2.f;
            nextPt.y *= 2.f;

            nextPt.x -= c_halfWin_x;
            nextPt.y -= c_halfWin_y;

            for (int k = 0; k < c_iters; ++k)
            {
                if (nextPt.x < -c_halfWin_x || nextPt.x >= cols || nextPt.y < -c_halfWin_y || nextPt.y >= rows)
                {
                    if (tid == 0 && level == 0)
                        status[blockIdx.x] = 0;

                    return;
                }

                float b1 = 0;
                float b2 = 0;

                for (int y = threadIdx.y, i = 0; y < c_winSize_y; y += blockDim.y, ++i)
                {
                    for (int x = threadIdx.x, j = 0; x < c_winSize_x; x += blockDim.x, ++j)
                    {
                        work_type I_val = I_patch[i][j];
                        work_type J_val = Tex_J<cn>::read(nextPt.x + x + 0.5f, nextPt.y + y + 0.5f);

                        work_type diff = (J_val - I_val) * 32.0f;

                        accum(b1, diff * dIdx_patch[i][j]);
                        accum(b2, diff * dIdy_patch[i][j]);
                    }
                }

                reduce(b1, b2, smem1, smem2, tid);
                __syncthreads();

                b1 = smem1[0];
                b2 = smem2[0];

                float2 delta;
                delta.x = A12 * b2 - A22 * b1;
                delta.y = A12 * b1 - A11 * b2;

                nextPt.x += delta.x;
                nextPt.y += delta.y;

                if (::fabs(delta.x) < 0.01f && ::fabs(delta.y) < 0.01f)
                    break;
            }

            float errval = 0;
            if (calcErr)
            {
                for (int y = threadIdx.y, i = 0; y < c_winSize_y; y += blockDim.y, ++i)
                {
                    for (int x = threadIdx.x, j = 0; x < c_winSize_x; x += blockDim.x, ++j)
                    {
                        work_type I_val = I_patch[i][j];
                        work_type J_val = Tex_J<cn>::read(nextPt.x + x + 0.5f, nextPt.y + y + 0.5f);

                        work_type diff = J_val - I_val;

                        accum(errval, abs_(diff));
                    }
                }

                reduce(errval, smem1, tid);
            }

            if (tid == 0)
            {
                nextPt.x += c_halfWin_x;
                nextPt.y += c_halfWin_y;

                nextPts[blockIdx.x] = nextPt;

                if (calcErr)
                    err[blockIdx.x] = static_cast<float>(errval) / (cn * c_winSize_x * c_winSize_y);
            }
        }

        template <int cn, int PATCH_X, int PATCH_Y>
        void lkSparse_caller(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
            int level, dim3 block, cudaStream_t stream)
        {
            dim3 grid(ptcount);

            if (level == 0 && err)
                lkSparse<cn, PATCH_X, PATCH_Y, true><<<grid, block>>>(prevPts, nextPts, status, err, level, rows, cols);
            else
                lkSparse<cn, PATCH_X, PATCH_Y, false><<<grid, block>>>(prevPts, nextPts, status, err, level, rows, cols);

            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        void lkSparse1_gpu(PtrStepSzf I, PtrStepSzf J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
            int level, dim3 block, dim3 patch, cudaStream_t stream)
        {
            typedef void (*func_t)(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
                int level, dim3 block, cudaStream_t stream);

            static const func_t funcs[5][5] =
            {
                {lkSparse_caller<1, 1, 1>, lkSparse_caller<1, 2, 1>, lkSparse_caller<1, 3, 1>, lkSparse_caller<1, 4, 1>, lkSparse_caller<1, 5, 1>},
                {lkSparse_caller<1, 1, 2>, lkSparse_caller<1, 2, 2>, lkSparse_caller<1, 3, 2>, lkSparse_caller<1, 4, 2>, lkSparse_caller<1, 5, 2>},
                {lkSparse_caller<1, 1, 3>, lkSparse_caller<1, 2, 3>, lkSparse_caller<1, 3, 3>, lkSparse_caller<1, 4, 3>, lkSparse_caller<1, 5, 3>},
                {lkSparse_caller<1, 1, 4>, lkSparse_caller<1, 2, 4>, lkSparse_caller<1, 3, 4>, lkSparse_caller<1, 4, 4>, lkSparse_caller<1, 5, 4>},
                {lkSparse_caller<1, 1, 5>, lkSparse_caller<1, 2, 5>, lkSparse_caller<1, 3, 5>, lkSparse_caller<1, 4, 5>, lkSparse_caller<1, 5, 5>}
            };

            bindTexture(&tex_If, I);
            bindTexture(&tex_Jf, J);

            funcs[patch.y - 1][patch.x - 1](I.rows, I.cols, prevPts, nextPts, status, err, ptcount,
                level, block, stream);
        }

        void lkSparse4_gpu(PtrStepSz<float4> I, PtrStepSz<float4> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
            int level, dim3 block, dim3 patch, cudaStream_t stream)
        {
            typedef void (*func_t)(int rows, int cols, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
                int level, dim3 block, cudaStream_t stream);

            static const func_t funcs[5][5] =
            {
                {lkSparse_caller<4, 1, 1>, lkSparse_caller<4, 2, 1>, lkSparse_caller<4, 3, 1>, lkSparse_caller<4, 4, 1>, lkSparse_caller<4, 5, 1>},
                {lkSparse_caller<4, 1, 2>, lkSparse_caller<4, 2, 2>, lkSparse_caller<4, 3, 2>, lkSparse_caller<4, 4, 2>, lkSparse_caller<4, 5, 2>},
                {lkSparse_caller<4, 1, 3>, lkSparse_caller<4, 2, 3>, lkSparse_caller<4, 3, 3>, lkSparse_caller<4, 4, 3>, lkSparse_caller<4, 5, 3>},
                {lkSparse_caller<4, 1, 4>, lkSparse_caller<4, 2, 4>, lkSparse_caller<4, 3, 4>, lkSparse_caller<4, 4, 4>, lkSparse_caller<4, 5, 4>},
                {lkSparse_caller<4, 1, 5>, lkSparse_caller<4, 2, 5>, lkSparse_caller<4, 3, 5>, lkSparse_caller<4, 4, 5>, lkSparse_caller<4, 5, 5>}
            };

            bindTexture(&tex_If4, I);
            bindTexture(&tex_Jf4, J);

            funcs[patch.y - 1][patch.x - 1](I.rows, I.cols, prevPts, nextPts, status, err, ptcount,
                level, block, stream);
        }

        template <bool calcErr>
        __global__ void lkDense(PtrStepf u, PtrStepf v, const PtrStepf prevU, const PtrStepf prevV, PtrStepf err, const int rows, const int cols)
        {
            extern __shared__ int smem[];

            const int patchWidth  = blockDim.x + 2 * c_halfWin_x;
            const int patchHeight = blockDim.y + 2 * c_halfWin_y;

            int* I_patch = smem;
            int* dIdx_patch = I_patch + patchWidth * patchHeight;
            int* dIdy_patch = dIdx_patch + patchWidth * patchHeight;

            const int xBase = blockIdx.x * blockDim.x;
            const int yBase = blockIdx.y * blockDim.y;

            for (int i = threadIdx.y; i < patchHeight; i += blockDim.y)
            {
                for (int j = threadIdx.x; j < patchWidth; j += blockDim.x)
                {
                    float x = xBase - c_halfWin_x + j + 0.5f;
                    float y = yBase - c_halfWin_y + i + 0.5f;

                    I_patch[i * patchWidth + j] = tex2D(tex_Ib, x, y);

                    // Sharr Deriv

                    dIdx_patch[i * patchWidth + j] = 3 * tex2D(tex_Ib, x+1, y-1) + 10 * tex2D(tex_Ib, x+1, y) + 3 * tex2D(tex_Ib, x+1, y+1) -
                                                    (3 * tex2D(tex_Ib, x-1, y-1) + 10 * tex2D(tex_Ib, x-1, y) + 3 * tex2D(tex_Ib, x-1, y+1));

                    dIdy_patch[i * patchWidth + j] = 3 * tex2D(tex_Ib, x-1, y+1) + 10 * tex2D(tex_Ib, x, y+1) + 3 * tex2D(tex_Ib, x+1, y+1) -
                                                    (3 * tex2D(tex_Ib, x-1, y-1) + 10 * tex2D(tex_Ib, x, y-1) + 3 * tex2D(tex_Ib, x+1, y-1));
                }
            }

            __syncthreads();

            const int x = xBase + threadIdx.x;
            const int y = yBase + threadIdx.y;

            if (x >= cols || y >= rows)
                return;

            int A11i = 0;
            int A12i = 0;
            int A22i = 0;

            for (int i = 0; i < c_winSize_y; ++i)
            {
                for (int j = 0; j < c_winSize_x; ++j)
                {
                    int dIdx = dIdx_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];
                    int dIdy = dIdy_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];

                    A11i += dIdx * dIdx;
                    A12i += dIdx * dIdy;
                    A22i += dIdy * dIdy;
                }
            }

            float A11 = A11i;
            float A12 = A12i;
            float A22 = A22i;

            float D = A11 * A22 - A12 * A12;

            if (D < numeric_limits<float>::epsilon())
            {
                if (calcErr)
                    err(y, x) = numeric_limits<float>::max();

                return;
            }

            D = 1.f / D;

            A11 *= D;
            A12 *= D;
            A22 *= D;

            float2 nextPt;
            nextPt.x = x + prevU(y/2, x/2) * 2.0f;
            nextPt.y = y + prevV(y/2, x/2) * 2.0f;

            for (int k = 0; k < c_iters; ++k)
            {
                if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows)
                {
                    if (calcErr)
                        err(y, x) = numeric_limits<float>::max();

                    return;
                }

                int b1 = 0;
                int b2 = 0;

                for (int i = 0; i < c_winSize_y; ++i)
                {
                    for (int j = 0; j < c_winSize_x; ++j)
                    {
                        int I = I_patch[(threadIdx.y + i) * patchWidth + threadIdx.x + j];
                        int J = tex2D(tex_Jf, nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f);

                        int diff = (J - I) * 32;

                        int dIdx = dIdx_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];
                        int dIdy = dIdy_patch[(threadIdx.y + i) * patchWidth + (threadIdx.x + j)];

                        b1 += diff * dIdx;
                        b2 += diff * dIdy;
                    }
                }

                float2 delta;
                delta.x = A12 * b2 - A22 * b1;
                delta.y = A12 * b1 - A11 * b2;

                nextPt.x += delta.x;
                nextPt.y += delta.y;

                if (::fabs(delta.x) < 0.01f && ::fabs(delta.y) < 0.01f)
                    break;
            }

            u(y, x) = nextPt.x - x;
            v(y, x) = nextPt.y - y;

            if (calcErr)
            {
                int errval = 0;

                for (int i = 0; i < c_winSize_y; ++i)
                {
                    for (int j = 0; j < c_winSize_x; ++j)
                    {
                        int I = I_patch[(threadIdx.y + i) * patchWidth + threadIdx.x + j];
                        int J = tex2D(tex_Jf, nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f);

                        errval += ::abs(J - I);
                    }
                }

                err(y, x) = static_cast<float>(errval) / (c_winSize_x * c_winSize_y);
            }
        }

        void lkDense_gpu(PtrStepSzb I, PtrStepSzf J, PtrStepSzf u, PtrStepSzf v, PtrStepSzf prevU, PtrStepSzf prevV,
                         PtrStepSzf err, int2 winSize, cudaStream_t stream)
        {
            dim3 block(16, 16);
            dim3 grid(divUp(I.cols, block.x), divUp(I.rows, block.y));

            bindTexture(&tex_Ib, I);
            bindTexture(&tex_Jf, J);

            int2 halfWin = make_int2((winSize.x - 1) / 2, (winSize.y - 1) / 2);
            const int patchWidth  = block.x + 2 * halfWin.x;
            const int patchHeight = block.y + 2 * halfWin.y;
            size_t smem_size = 3 * patchWidth * patchHeight * sizeof(int);

            if (err.data)
            {
                lkDense<true><<<grid, block, smem_size, stream>>>(u, v, prevU, prevV, err, I.rows, I.cols);
                cudaSafeCall( cudaGetLastError() );
            }
            else
            {
                lkDense<false><<<grid, block, smem_size, stream>>>(u, v, prevU, prevV, PtrStepf(), I.rows, I.cols);
                cudaSafeCall( cudaGetLastError() );
            }

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    }
}}}

#endif /* CUDA_DISABLER */