/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ ////////////////////////////////////////////////////////////////////////////////////////// /////////////////// tests for matrix operations and math functions /////////////////////// ////////////////////////////////////////////////////////////////////////////////////////// #include "cxcoretest.h" #include <float.h> #include <math.h> /// !!! NOTE !!! These tests happily avoid overflow cases & out-of-range arguments /// so that output arrays contain neigher Inf's nor Nan's. /// Handling such cases would require special modification of check function /// (validate_test_results) => TBD. /// Also, need some logarithmic-scale generation of input data. Right now it is done (in some tests) /// by generating min/max boundaries for random data in logarimithic scale, but /// within the same test case all the input array elements are of the same order. static const CvSize math_sizes[] = {{10,1}, {100,1}, {10000,1}, {-1,-1}}; static const int math_depths[] = { CV_32F, CV_64F, -1 }; static const char* math_param_names[] = { "size", "depth", 0 }; static const CvSize matrix_sizes[] = {{3,3}, {4,4}, {10,10}, {30,30}, {100,100}, {500,500}, {-1,-1}}; class CxCore_MathTestImpl : public CvArrTest { public: CxCore_MathTestImpl( const char* test_name, const char* test_funcs ); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); double get_success_error_level( int /*test_case_idx*/, int i, int j ); bool test_nd; }; CxCore_MathTestImpl::CxCore_MathTestImpl( const char* test_name, const char* test_funcs ) : CvArrTest( test_name, test_funcs, "" ) { optional_mask = false; test_array[INPUT].push(NULL); test_array[OUTPUT].push(NULL); test_array[REF_OUTPUT].push(NULL); default_timing_param_names = math_param_names; size_list = math_sizes; whole_size_list = 0; depth_list = math_depths; cn_list = 0; test_nd = false; } double CxCore_MathTestImpl::get_success_error_level( int /*test_case_idx*/, int i, int j ) { return CV_MAT_DEPTH(test_mat[i][j].type) == CV_32F ? FLT_EPSILON*128 : DBL_EPSILON*1024; } void CxCore_MathTestImpl::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); int depth = cvTsRandInt(rng)%2 + CV_32F; int cn = cvTsRandInt(rng) % 4 + 1, type = CV_MAKETYPE(depth, cn); int i, j; CvArrTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); for( i = 0; i < max_arr; i++ ) { int count = test_array[i].size(); for( j = 0; j < count; j++ ) types[i][j] = type; } test_nd = cvTsRandInt(rng)%3 == 0; } CxCore_MathTestImpl math_test( "math", "" ); class CxCore_MathTest : public CxCore_MathTestImpl { public: CxCore_MathTest( const char* test_name, const char* test_funcs ); }; CxCore_MathTest::CxCore_MathTest( const char* test_name, const char* test_funcs ) : CxCore_MathTestImpl( test_name, test_funcs ) { size_list = 0; depth_list = 0; } ////////// exp ///////////// class CxCore_ExpTest : public CxCore_MathTest { public: CxCore_ExpTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); void get_minmax_bounds( int i, int j, int type, CvScalar* low, CvScalar* high ); double get_success_error_level( int /*test_case_idx*/, int i, int j ); int prepare_test_case( int test_case ); void run_func(); void prepare_to_validation( int test_case_idx ); int out_type; }; CxCore_ExpTest::CxCore_ExpTest() : CxCore_MathTest( "math-exp", "cvExp" ) { out_type = 0; } double CxCore_ExpTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { int in_depth = CV_MAT_DEPTH(test_mat[INPUT][0].type); int out_depth = CV_MAT_DEPTH(test_mat[OUTPUT][0].type); int min_depth = MIN(in_depth, out_depth); return min_depth == CV_32F ? 1e-5 : 1e-8; } void CxCore_ExpTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CxCore_MathTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); out_type = types[OUTPUT][0]; /*if( CV_MAT_DEPTH(types[INPUT][0]) == CV_32F && (cvRandInt(ts->get_rng()) & 3) == 0 ) types[OUTPUT][0] = types[REF_OUTPUT][0] = out_type = (types[INPUT][0] & ~CV_MAT_DEPTH_MASK)|CV_64F;*/ } void CxCore_ExpTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ) { double l = cvTsRandReal(ts->get_rng())*10+1; double u = cvTsRandReal(ts->get_rng())*10+1; l *= -l; u *= u; *low = cvScalarAll(l); *high = cvScalarAll(CV_MAT_DEPTH(out_type)==CV_64F? u : u*0.5); } int CxCore_ExpTest::prepare_test_case( int test_case ) { int code = CxCore_MathTest::prepare_test_case(test_case); if( code < 0 ) return code; CvRNG* rng = ts->get_rng(); int i, j, k, count = cvTsRandInt(rng) % 10; CvMat* src = &test_mat[INPUT][0]; int depth = CV_MAT_DEPTH(src->type); // add some extremal values for( k = 0; k < count; k++ ) { i = cvTsRandInt(rng) % src->rows; j = cvTsRandInt(rng) % (src->cols*CV_MAT_CN(src->type)); int sign = cvTsRandInt(rng) % 2 ? 1 : -1; if( depth == CV_32F ) ((float*)(src->data.ptr + src->step*i))[j] = FLT_MAX*sign; else ((double*)(src->data.ptr + src->step*i))[j] = DBL_MAX*sign; } return code; } void CxCore_ExpTest::run_func() { if(!test_nd) cvExp( test_array[INPUT][0], test_array[OUTPUT][0] ); else { cv::MatND a = cv::cvarrToMatND(test_array[INPUT][0]); cv::MatND b = cv::cvarrToMatND(test_array[OUTPUT][0]); cv::exp(a, b); } } void CxCore_ExpTest::prepare_to_validation( int /*test_case_idx*/ ) { CvMat* a = &test_mat[INPUT][0]; CvMat* b = &test_mat[REF_OUTPUT][0]; int a_depth = CV_MAT_DEPTH(a->type); int b_depth = CV_MAT_DEPTH(b->type); int ncols = test_mat[INPUT][0].cols*CV_MAT_CN(a->type); int i, j; for( i = 0; i < a->rows; i++ ) { uchar* a_data = a->data.ptr + i*a->step; uchar* b_data = b->data.ptr + i*b->step; if( a_depth == CV_32F && b_depth == CV_32F ) { for( j = 0; j < ncols; j++ ) ((float*)b_data)[j] = (float)exp((double)((float*)a_data)[j]); } else if( a_depth == CV_32F && b_depth == CV_64F ) { for( j = 0; j < ncols; j++ ) ((double*)b_data)[j] = exp((double)((float*)a_data)[j]); } else { assert( a_depth == CV_64F && b_depth == CV_64F ); for( j = 0; j < ncols; j++ ) ((double*)b_data)[j] = exp(((double*)a_data)[j]); } } } CxCore_ExpTest exp_test; ////////// log ///////////// class CxCore_LogTest : public CxCore_MathTest { public: CxCore_LogTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); void get_minmax_bounds( int i, int j, int type, CvScalar* low, CvScalar* high ); void run_func(); void prepare_to_validation( int test_case_idx ); }; CxCore_LogTest::CxCore_LogTest() : CxCore_MathTest( "math-log", "cvLog" ) { } void CxCore_LogTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CxCore_MathTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); /*if( CV_MAT_DEPTH(types[INPUT][0]) == CV_32F && (cvRandInt(ts->get_rng()) & 3) == 0 ) types[INPUT][0] = (types[INPUT][0] & ~CV_MAT_DEPTH_MASK)|CV_64F;*/ } void CxCore_LogTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ) { double l = cvTsRandReal(ts->get_rng())*15-5; double u = cvTsRandReal(ts->get_rng())*15-5; double t; l = exp(l); u = exp(u); if( l > u ) CV_SWAP( l, u, t ); *low = cvScalarAll(l); *high = cvScalarAll(u); } void CxCore_LogTest::run_func() { if(!test_nd) cvLog( test_array[INPUT][0], test_array[OUTPUT][0] ); else { cv::MatND a = cv::cvarrToMatND(test_array[INPUT][0]); cv::MatND b = cv::cvarrToMatND(test_array[OUTPUT][0]); cv::log(a, b); } } void CxCore_LogTest::prepare_to_validation( int /*test_case_idx*/ ) { CvMat* a = &test_mat[INPUT][0]; CvMat* b = &test_mat[REF_OUTPUT][0]; int a_depth = CV_MAT_DEPTH(a->type); int b_depth = CV_MAT_DEPTH(b->type); int ncols = test_mat[INPUT][0].cols*CV_MAT_CN(a->type); int i, j; for( i = 0; i < a->rows; i++ ) { uchar* a_data = a->data.ptr + i*a->step; uchar* b_data = b->data.ptr + i*b->step; if( a_depth == CV_32F && b_depth == CV_32F ) { for( j = 0; j < ncols; j++ ) ((float*)b_data)[j] = (float)log((double)((float*)a_data)[j]); } else if( a_depth == CV_64F && b_depth == CV_32F ) { for( j = 0; j < ncols; j++ ) ((float*)b_data)[j] = (float)log(((double*)a_data)[j]); } else { assert( a_depth == CV_64F && b_depth == CV_64F ); for( j = 0; j < ncols; j++ ) ((double*)b_data)[j] = log(((double*)a_data)[j]); } } } CxCore_LogTest log_test; ////////// pow ///////////// static const double math_pow_values[] = { 2., 5., 0.5, -0.5, 1./3, -1./3, CV_PI }; static const char* math_pow_param_names[] = { "size", "power", "depth", 0 }; static const int math_pow_depths[] = { CV_8U, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F, -1 }; class CxCore_PowTest : public CxCore_MathTest { public: CxCore_PowTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); void get_minmax_bounds( int i, int j, int type, CvScalar* low, CvScalar* high ); void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ); int write_default_params( CvFileStorage* fs ); void print_timing_params( int test_case_idx, char* ptr, int params_left ); void run_func(); int prepare_test_case( int test_case_idx ); void prepare_to_validation( int test_case_idx ); double get_success_error_level( int test_case_idx, int i, int j ); double power; }; CxCore_PowTest::CxCore_PowTest() : CxCore_MathTest( "math-pow", "cvPow" ) { power = 0; default_timing_param_names = math_pow_param_names; depth_list = math_pow_depths; } void CxCore_PowTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); int depth = cvTsRandInt(rng) % (CV_64F+1); int cn = cvTsRandInt(rng) % 4 + 1; int i, j; CvArrTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); depth += depth == CV_8S; if( depth < CV_32F || cvTsRandInt(rng)%8 == 0 ) // integer power power = (int)(cvTsRandInt(rng)%21 - 10); else { i = cvTsRandInt(rng)%17; power = i == 16 ? 1./3 : i == 15 ? 0.5 : i == 14 ? -0.5 : cvTsRandReal(rng)*10 - 5; } for( i = 0; i < max_arr; i++ ) { int count = test_array[i].size(); int type = CV_MAKETYPE(depth, cn); for( j = 0; j < count; j++ ) types[i][j] = type; } test_nd = cvTsRandInt(rng)%3 == 0; } void CxCore_PowTest::get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ) { CxCore_MathTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types, whole_sizes, are_images ); power = cvReadReal( find_timing_param( "power" ), 0.2 ); } int CxCore_PowTest::write_default_params( CvFileStorage* fs ) { int i, code = CxCore_MathTest::write_default_params(fs); if( code < 0 || ts->get_testing_mode() != CvTS::TIMING_MODE ) return code; start_write_param( fs ); cvStartWriteStruct( fs, "power", CV_NODE_SEQ + CV_NODE_FLOW ); for( i = 0; i < CV_DIM(math_pow_values); i++ ) cvWriteReal( fs, 0, math_pow_values[i] ); cvEndWriteStruct(fs); return code; } int CxCore_PowTest::prepare_test_case( int test_case_idx ) { int code = CxCore_MathTest::prepare_test_case( test_case_idx ); if( code > 0 && ts->get_testing_mode() == CvTS::TIMING_MODE ) { if( cvRound(power) != power && CV_MAT_DEPTH(test_mat[INPUT][0].type) < CV_32F ) return 0; } return code; } void CxCore_PowTest::print_timing_params( int test_case_idx, char* ptr, int params_left ) { sprintf( ptr, "%g,", power ); ptr += strlen(ptr); params_left--; CxCore_MathTest::print_timing_params( test_case_idx, ptr, params_left ); } double CxCore_PowTest::get_success_error_level( int test_case_idx, int i, int j ) { int type = cvGetElemType( test_array[i][j] ); if( CV_MAT_DEPTH(type) < CV_32F ) return power == cvRound(power) && power >= 0 ? 0 : 1; else return CxCore_MathTest::get_success_error_level( test_case_idx, i, j ); } void CxCore_PowTest::get_minmax_bounds( int /*i*/, int /*j*/, int type, CvScalar* low, CvScalar* high ) { double l, u = cvTsRandInt(ts->get_rng())%1000 + 1; if( power > 0 ) { double mval = cvTsMaxVal(type); double u1 = pow(mval,1./power)*2; u = MIN(u,u1); } l = power == cvRound(power) ? -u : FLT_EPSILON; *low = cvScalarAll(l); *high = cvScalarAll(u); } void CxCore_PowTest::run_func() { if(!test_nd) { if( fabs(power-1./3) <= DBL_EPSILON && CV_MAT_DEPTH(test_mat[INPUT][0].type) == CV_32F ) { cv::Mat a(&test_mat[INPUT][0]), b(&test_mat[OUTPUT][0]); a = a.reshape(1); b = b.reshape(1); for( int i = 0; i < a.rows; i++ ) { b.at<float>(i,0) = (float)fabs(cvCbrt(a.at<float>(i,0))); for( int j = 1; j < a.cols; j++ ) b.at<float>(i,j) = (float)fabs(cv::cubeRoot(a.at<float>(i,j))); } } else cvPow( test_array[INPUT][0], test_array[OUTPUT][0], power ); } else { cv::MatND a = cv::cvarrToMatND(test_array[INPUT][0]); cv::MatND b = cv::cvarrToMatND(test_array[OUTPUT][0]); if(power == 0.5) cv::sqrt(a, b); else cv::pow(a, power, b); } } inline static int ipow( int a, int power ) { int b = 1; while( power > 0 ) { if( power&1 ) b *= a, power--; else a *= a, power >>= 1; } return b; } inline static double ipow( double a, int power ) { double b = 1.; while( power > 0 ) { if( power&1 ) b *= a, power--; else a *= a, power >>= 1; } return b; } void CxCore_PowTest::prepare_to_validation( int /*test_case_idx*/ ) { CvMat* a = &test_mat[INPUT][0]; CvMat* b = &test_mat[REF_OUTPUT][0]; int depth = CV_MAT_DEPTH(a->type); int ncols = test_mat[INPUT][0].cols*CV_MAT_CN(a->type); int ipower = cvRound(power), apower = abs(ipower); int i, j; for( i = 0; i < a->rows; i++ ) { uchar* a_data = a->data.ptr + i*a->step; uchar* b_data = b->data.ptr + i*b->step; switch( depth ) { case CV_8U: if( ipower < 0 ) for( j = 0; j < ncols; j++ ) { int val = ((uchar*)a_data)[j]; ((uchar*)b_data)[j] = (uchar)(val <= 1 ? val : val == 2 && ipower == -1 ? 1 : 0); } else for( j = 0; j < ncols; j++ ) { int val = ((uchar*)a_data)[j]; val = ipow( val, ipower ); ((uchar*)b_data)[j] = CV_CAST_8U(val); } break; case CV_8S: if( ipower < 0 ) for( j = 0; j < ncols; j++ ) { int val = ((char*)a_data)[j]; ((char*)b_data)[j] = (char)((val&~1)==0 ? val : val ==-1 ? 1-2*(ipower&1) : val == 2 && ipower == -1 ? 1 : 0); } else for( j = 0; j < ncols; j++ ) { int val = ((char*)a_data)[j]; val = ipow( val, ipower ); ((char*)b_data)[j] = CV_CAST_8S(val); } break; case CV_16U: if( ipower < 0 ) for( j = 0; j < ncols; j++ ) { int val = ((ushort*)a_data)[j]; ((ushort*)b_data)[j] = (ushort)((val&~1)==0 ? val : val ==-1 ? 1-2*(ipower&1) : val == 2 && ipower == -1 ? 1 : 0); } else for( j = 0; j < ncols; j++ ) { int val = ((ushort*)a_data)[j]; val = ipow( val, ipower ); ((ushort*)b_data)[j] = CV_CAST_16U(val); } break; case CV_16S: if( ipower < 0 ) for( j = 0; j < ncols; j++ ) { int val = ((short*)a_data)[j]; ((short*)b_data)[j] = (short)((val&~1)==0 ? val : val ==-1 ? 1-2*(ipower&1) : val == 2 && ipower == -1 ? 1 : 0); } else for( j = 0; j < ncols; j++ ) { int val = ((short*)a_data)[j]; val = ipow( val, ipower ); ((short*)b_data)[j] = CV_CAST_16S(val); } break; case CV_32S: if( ipower < 0 ) for( j = 0; j < ncols; j++ ) { int val = ((int*)a_data)[j]; ((int*)b_data)[j] = (val&~1)==0 ? val : val ==-1 ? 1-2*(ipower&1) : val == 2 && ipower == -1 ? 1 : 0; } else for( j = 0; j < ncols; j++ ) { int val = ((int*)a_data)[j]; val = ipow( val, ipower ); ((int*)b_data)[j] = val; } break; case CV_32F: if( power != ipower ) for( j = 0; j < ncols; j++ ) { double val = ((float*)a_data)[j]; val = pow( fabs(val), power ); ((float*)b_data)[j] = CV_CAST_32F(val); } else for( j = 0; j < ncols; j++ ) { double val = ((float*)a_data)[j]; if( ipower < 0 ) val = 1./val; val = ipow( val, apower ); ((float*)b_data)[j] = (float)val; } break; case CV_64F: if( power != ipower ) for( j = 0; j < ncols; j++ ) { double val = ((double*)a_data)[j]; val = pow( fabs(val), power ); ((double*)b_data)[j] = CV_CAST_64F(val); } else for( j = 0; j < ncols; j++ ) { double val = ((double*)a_data)[j]; if( ipower < 0 ) val = 1./val; val = ipow( val, apower ); ((double*)b_data)[j] = (double)val; } break; } } } CxCore_PowTest pow_test; ////////// cart2polar ///////////// class CxCore_CartToPolarTest : public CxCore_MathTest { public: CxCore_CartToPolarTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); double get_success_error_level( int test_case_idx, int i, int j ); void run_func(); void prepare_to_validation( int test_case_idx ); int use_degrees; }; CxCore_CartToPolarTest::CxCore_CartToPolarTest() : CxCore_MathTest( "math-cart2polar", "cvCartToPolar" ) { use_degrees = 0; test_array[INPUT].push(NULL); test_array[OUTPUT].push(NULL); test_array[REF_OUTPUT].push(NULL); } void CxCore_CartToPolarTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); CxCore_MathTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); use_degrees = cvTsRandInt(rng) & 1; if( cvTsRandInt(rng) % 4 == 0 ) // check missing magnitude/angle cases { int idx = cvTsRandInt(rng) & 1; sizes[OUTPUT][idx] = sizes[REF_OUTPUT][idx] = cvSize(0,0); } } void CxCore_CartToPolarTest::run_func() { if(!test_nd) { cvCartToPolar( test_array[INPUT][0], test_array[INPUT][1], test_array[OUTPUT][0], test_array[OUTPUT][1], use_degrees ); } else { cv::Mat X = cv::cvarrToMat(test_array[INPUT][0]); cv::Mat Y = cv::cvarrToMat(test_array[INPUT][1]); cv::Mat mag = test_array[OUTPUT][0] ? cv::cvarrToMat(test_array[OUTPUT][0]) : cv::Mat(); cv::Mat ph = test_array[OUTPUT][1] ? cv::cvarrToMat(test_array[OUTPUT][1]) : cv::Mat(); if(!mag.data) cv::phase(X, Y, ph, use_degrees != 0); else if(!ph.data) cv::magnitude(X, Y, mag); else cv::cartToPolar(X, Y, mag, ph, use_degrees != 0); } } double CxCore_CartToPolarTest::get_success_error_level( int test_case_idx, int i, int j ) { return j == 1 ? 0.5*(use_degrees ? 1 : CV_PI/180.) : CxCore_MathTest::get_success_error_level( test_case_idx, i, j ); } void CxCore_CartToPolarTest::prepare_to_validation( int /*test_case_idx*/ ) { CvMat* x = &test_mat[INPUT][0]; CvMat* y = &test_mat[INPUT][1]; CvMat* mag = test_array[REF_OUTPUT][0] ? &test_mat[REF_OUTPUT][0] : 0; CvMat* angle = test_array[REF_OUTPUT][1] ? &test_mat[REF_OUTPUT][1] : 0; double C = use_degrees ? 180./CV_PI : 1.; int depth = CV_MAT_DEPTH(x->type); int ncols = x->cols*CV_MAT_CN(x->type); int i, j; for( i = 0; i < x->rows; i++ ) { uchar* x_data = x->data.ptr + i*x->step; uchar* y_data = y->data.ptr + i*y->step; uchar* mag_data = mag ? mag->data.ptr + i*mag->step : 0; uchar* angle_data = angle ? angle->data.ptr + i*angle->step : 0; if( depth == CV_32F ) { for( j = 0; j < ncols; j++ ) { double xval = ((float*)x_data)[j]; double yval = ((float*)y_data)[j]; if( mag_data ) ((float*)mag_data)[j] = (float)sqrt(xval*xval + yval*yval); if( angle_data ) { double a = atan2( yval, xval ); if( a < 0 ) a += CV_PI*2; a *= C; ((float*)angle_data)[j] = (float)a; } } } else { assert( depth == CV_64F ); for( j = 0; j < ncols; j++ ) { double xval = ((double*)x_data)[j]; double yval = ((double*)y_data)[j]; if( mag_data ) ((double*)mag_data)[j] = sqrt(xval*xval + yval*yval); if( angle_data ) { double a = atan2( yval, xval ); if( a < 0 ) a += CV_PI*2; a *= C; ((double*)angle_data)[j] = a; } } } } if( angle ) { // hack: increase angle value by 1 (so that alpha becomes 1+alpha) // to hide large relative errors in case of very small angles cvTsAdd( &test_mat[OUTPUT][1], cvScalarAll(1.), 0, cvScalarAll(0.), cvScalarAll(1.), &test_mat[OUTPUT][1], 0 ); cvTsAdd( &test_mat[REF_OUTPUT][1], cvScalarAll(1.), 0, cvScalarAll(0.), cvScalarAll(1.), &test_mat[REF_OUTPUT][1], 0 ); } } CxCore_CartToPolarTest cart2polar_test; ////////// polar2cart ///////////// class CxCore_PolarToCartTest : public CxCore_MathTest { public: CxCore_PolarToCartTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); double get_success_error_level( int test_case_idx, int i, int j ); void run_func(); void prepare_to_validation( int test_case_idx ); int use_degrees; }; CxCore_PolarToCartTest::CxCore_PolarToCartTest() : CxCore_MathTest( "math-polar2cart", "cvPolarToCart" ) { use_degrees = 0; test_array[INPUT].push(NULL); test_array[OUTPUT].push(NULL); test_array[REF_OUTPUT].push(NULL); } void CxCore_PolarToCartTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); CxCore_MathTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); use_degrees = cvTsRandInt(rng) & 1; if( cvTsRandInt(rng) % 4 == 0 ) // check missing magnitude case sizes[INPUT][1] = cvSize(0,0); if( cvTsRandInt(rng) % 4 == 0 ) // check missing x/y cases { int idx = cvTsRandInt(rng) & 1; sizes[OUTPUT][idx] = sizes[REF_OUTPUT][idx] = cvSize(0,0); } } void CxCore_PolarToCartTest::run_func() { if(!test_nd) { cvPolarToCart( test_array[INPUT][1], test_array[INPUT][0], test_array[OUTPUT][0], test_array[OUTPUT][1], use_degrees ); } else { cv::Mat X = test_array[OUTPUT][0] ? cv::cvarrToMat(test_array[OUTPUT][0]) : cv::Mat(); cv::Mat Y = test_array[OUTPUT][1] ? cv::cvarrToMat(test_array[OUTPUT][1]) : cv::Mat(); cv::Mat mag = test_array[INPUT][1] ? cv::cvarrToMat(test_array[INPUT][1]) : cv::Mat(); cv::Mat ph = test_array[INPUT][0] ? cv::cvarrToMat(test_array[INPUT][0]) : cv::Mat(); cv::polarToCart(mag, ph, X, Y, use_degrees != 0); } } double CxCore_PolarToCartTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { return FLT_EPSILON*100; } void CxCore_PolarToCartTest::prepare_to_validation( int /*test_case_idx*/ ) { CvMat* x = test_array[REF_OUTPUT][0] ? &test_mat[REF_OUTPUT][0] : 0; CvMat* y = test_array[REF_OUTPUT][1] ? &test_mat[REF_OUTPUT][1] : 0; CvMat* angle = &test_mat[INPUT][0]; CvMat* mag = test_array[INPUT][1] ? &test_mat[INPUT][1] : 0; double C = use_degrees ? CV_PI/180. : 1.; int depth = CV_MAT_DEPTH(angle->type); int ncols = angle->cols*CV_MAT_CN(angle->type); int i, j; for( i = 0; i < angle->rows; i++ ) { uchar* x_data = x ? x->data.ptr + i*x->step : 0; uchar* y_data = y ? y->data.ptr + i*y->step : 0; uchar* mag_data = mag ? mag->data.ptr + i*mag->step : 0; uchar* angle_data = angle->data.ptr + i*angle->step; if( depth == CV_32F ) { for( j = 0; j < ncols; j++ ) { double a = ((float*)angle_data)[j]*C; double m = mag_data ? ((float*)mag_data)[j] : 1.; if( x_data ) ((float*)x_data)[j] = (float)(m*cos(a)); if( y_data ) ((float*)y_data)[j] = (float)(m*sin(a)); } } else { assert( depth == CV_64F ); for( j = 0; j < ncols; j++ ) { double a = ((double*)angle_data)[j]*C; double m = mag_data ? ((double*)mag_data)[j] : 1.; if( x_data ) ((double*)x_data)[j] = m*cos(a); if( y_data ) ((double*)y_data)[j] = m*sin(a); } } } } CxCore_PolarToCartTest polar2cart_test; ///////////////////////////////////////// matrix tests //////////////////////////////////////////// static const int matrix_all_depths[] = { CV_8U, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F, -1 }; class CxCore_MatrixTestImpl : public CvArrTest { public: CxCore_MatrixTestImpl( const char* test_name, const char* test_funcs, int in_count, int out_count, bool allow_int, bool scalar_output, int max_cn ); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ); double get_success_error_level( int test_case_idx, int i, int j ); bool allow_int; bool scalar_output; int max_cn; }; CxCore_MatrixTestImpl::CxCore_MatrixTestImpl( const char* test_name, const char* test_funcs, int in_count, int out_count, bool _allow_int, bool _scalar_output, int _max_cn ) : CvArrTest( test_name, test_funcs, "" ), allow_int(_allow_int), scalar_output(_scalar_output), max_cn(_max_cn) { int i; for( i = 0; i < in_count; i++ ) test_array[INPUT].push(NULL); for( i = 0; i < out_count; i++ ) { test_array[OUTPUT].push(NULL); test_array[REF_OUTPUT].push(NULL); } element_wise_relative_error = false; default_timing_param_names = math_param_names; size_list = (CvSize*)matrix_sizes; whole_size_list = 0; depth_list = (int*)math_depths; cn_list = 0; } void CxCore_MatrixTestImpl::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); int depth = cvTsRandInt(rng) % (allow_int ? CV_64F+1 : 2); int cn = cvTsRandInt(rng) % max_cn + 1; int i, j; if( allow_int ) depth += depth == CV_8S; else depth += CV_32F; CvArrTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); for( i = 0; i < max_arr; i++ ) { int count = test_array[i].size(); int flag = (i == OUTPUT || i == REF_OUTPUT) && scalar_output; int type = !flag ? CV_MAKETYPE(depth, cn) : CV_64FC1; for( j = 0; j < count; j++ ) { types[i][j] = type; if( flag ) sizes[i][j] = cvSize( 4, 1 ); } } } void CxCore_MatrixTestImpl::get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ) { CvArrTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types, whole_sizes, are_images ); if( scalar_output ) { types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1; sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize( 4, 1 ); whole_sizes[OUTPUT][0] = whole_sizes[REF_OUTPUT][0] = cvSize( 4, 1 ); } } double CxCore_MatrixTestImpl::get_success_error_level( int test_case_idx, int i, int j ) { int input_depth = CV_MAT_DEPTH(cvGetElemType( test_array[INPUT][0] )); double input_precision = input_depth < CV_32F ? 0 : input_depth == CV_32F ? 5e-5 : 5e-10; double output_precision = CvArrTest::get_success_error_level( test_case_idx, i, j ); return MAX(input_precision, output_precision); } CxCore_MatrixTestImpl matrix_test( "matrix", "", 0, 0, false, false, 0 ); class CxCore_MatrixTest : public CxCore_MatrixTestImpl { public: CxCore_MatrixTest( const char* test_name, const char* test_funcs, int in_count, int out_count, bool allow_int, bool scalar_output, int max_cn ); }; CxCore_MatrixTest::CxCore_MatrixTest( const char* test_name, const char* test_funcs, int in_count, int out_count, bool _allow_int, bool _scalar_output, int _max_cn ) : CxCore_MatrixTestImpl( test_name, test_funcs, in_count, out_count, _allow_int, _scalar_output, _max_cn ) { size_list = 0; depth_list = 0; } ///////////////// Trace ///////////////////// class CxCore_TraceTest : public CxCore_MatrixTest { public: CxCore_TraceTest(); protected: void run_func(); void prepare_to_validation( int test_case_idx ); }; CxCore_TraceTest::CxCore_TraceTest() : CxCore_MatrixTest( "matrix-trace", "cvTrace", 1, 1, true, true, 4 ) { } void CxCore_TraceTest::run_func() { *((CvScalar*)(test_mat[OUTPUT][0].data.db)) = cvTrace(test_array[INPUT][0]); } void CxCore_TraceTest::prepare_to_validation( int ) { CvMat* mat = &test_mat[INPUT][0]; int i, j, count = MIN( mat->rows, mat->cols ); CvScalar trace = {{0,0,0,0}}; for( i = 0; i < count; i++ ) { CvScalar el = cvGet2D( mat, i, i ); for( j = 0; j < 4; j++ ) trace.val[j] += el.val[j]; } *((CvScalar*)(test_mat[REF_OUTPUT][0].data.db)) = trace; } CxCore_TraceTest trace_test; ///////// dotproduct ////////// class CxCore_DotProductTest : public CxCore_MatrixTest { public: CxCore_DotProductTest(); protected: void run_func(); void prepare_to_validation( int test_case_idx ); }; CxCore_DotProductTest::CxCore_DotProductTest() : CxCore_MatrixTest( "matrix-dotproduct", "cvDotProduct", 2, 1, true, true, 4 ) { depth_list = matrix_all_depths; } void CxCore_DotProductTest::run_func() { *((CvScalar*)(test_mat[OUTPUT][0].data.ptr)) = cvRealScalar(cvDotProduct( test_array[INPUT][0], test_array[INPUT][1] )); } void CxCore_DotProductTest::prepare_to_validation( int ) { *((CvScalar*)(test_mat[REF_OUTPUT][0].data.ptr)) = cvRealScalar(cvTsCrossCorr( &test_mat[INPUT][0], &test_mat[INPUT][1] )); } CxCore_DotProductTest dotproduct_test; ///////// crossproduct ////////// static const CvSize cross_product_sizes[] = {{3,1}, {-1,-1}}; class CxCore_CrossProductTest : public CxCore_MatrixTest { public: CxCore_CrossProductTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); void run_func(); void prepare_to_validation( int test_case_idx ); }; CxCore_CrossProductTest::CxCore_CrossProductTest() : CxCore_MatrixTest( "matrix-crossproduct", "cvCrossProduct", 2, 1, false, false, 1 ) { size_list = cross_product_sizes; } void CxCore_CrossProductTest::get_test_array_types_and_sizes( int /*test_case_idx*/, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); int depth = cvTsRandInt(rng) % 2 + CV_32F; int cn = cvTsRandInt(rng) & 1 ? 3 : 1, type = CV_MAKETYPE(depth, cn); CvSize sz; types[INPUT][0] = types[INPUT][1] = types[OUTPUT][0] = types[REF_OUTPUT][0] = type; if( cn == 3 ) sz = cvSize(1,1); else if( cvTsRandInt(rng) & 1 ) sz = cvSize(3,1); else sz = cvSize(1,3); sizes[INPUT][0] = sizes[INPUT][1] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = sz; } void CxCore_CrossProductTest::run_func() { cvCrossProduct( test_array[INPUT][0], test_array[INPUT][1], test_array[OUTPUT][0] ); } void CxCore_CrossProductTest::prepare_to_validation( int ) { CvScalar a = {{0,0,0,0}}, b = {{0,0,0,0}}, c = {{0,0,0,0}}; if( test_mat[INPUT][0].rows > 1 ) { a.val[0] = cvGetReal2D( &test_mat[INPUT][0], 0, 0 ); a.val[1] = cvGetReal2D( &test_mat[INPUT][0], 1, 0 ); a.val[2] = cvGetReal2D( &test_mat[INPUT][0], 2, 0 ); b.val[0] = cvGetReal2D( &test_mat[INPUT][1], 0, 0 ); b.val[1] = cvGetReal2D( &test_mat[INPUT][1], 1, 0 ); b.val[2] = cvGetReal2D( &test_mat[INPUT][1], 2, 0 ); } else if( test_mat[INPUT][0].cols > 1 ) { a.val[0] = cvGetReal1D( &test_mat[INPUT][0], 0 ); a.val[1] = cvGetReal1D( &test_mat[INPUT][0], 1 ); a.val[2] = cvGetReal1D( &test_mat[INPUT][0], 2 ); b.val[0] = cvGetReal1D( &test_mat[INPUT][1], 0 ); b.val[1] = cvGetReal1D( &test_mat[INPUT][1], 1 ); b.val[2] = cvGetReal1D( &test_mat[INPUT][1], 2 ); } else { a = cvGet1D( &test_mat[INPUT][0], 0 ); b = cvGet1D( &test_mat[INPUT][1], 0 ); } c.val[2] = a.val[0]*b.val[1] - a.val[1]*b.val[0]; c.val[1] = -a.val[0]*b.val[2] + a.val[2]*b.val[0]; c.val[0] = a.val[1]*b.val[2] - a.val[2]*b.val[1]; if( test_mat[REF_OUTPUT][0].rows > 1 ) { cvSetReal2D( &test_mat[REF_OUTPUT][0], 0, 0, c.val[0] ); cvSetReal2D( &test_mat[REF_OUTPUT][0], 1, 0, c.val[1] ); cvSetReal2D( &test_mat[REF_OUTPUT][0], 2, 0, c.val[2] ); } else if( test_mat[REF_OUTPUT][0].cols > 1 ) { cvSetReal1D( &test_mat[REF_OUTPUT][0], 0, c.val[0] ); cvSetReal1D( &test_mat[REF_OUTPUT][0], 1, c.val[1] ); cvSetReal1D( &test_mat[REF_OUTPUT][0], 2, c.val[2] ); } else { cvSet1D( &test_mat[REF_OUTPUT][0], 0, c ); } } CxCore_CrossProductTest crossproduct_test; ///////////////// scaleadd ///////////////////// class CxCore_ScaleAddTest : public CxCore_MatrixTest { public: CxCore_ScaleAddTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ); int prepare_test_case( int test_case_idx ); void run_func(); void prepare_to_validation( int test_case_idx ); CvScalar alpha; bool test_nd; }; CxCore_ScaleAddTest::CxCore_ScaleAddTest() : CxCore_MatrixTest( "matrix-scaleadd", "cvScaleAdd", 3, 1, false, false, 4 ) { alpha = cvScalarAll(0); test_nd = false; } void CxCore_ScaleAddTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CxCore_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); sizes[INPUT][2] = cvSize(1,1); types[INPUT][2] &= CV_MAT_DEPTH_MASK; test_nd = cvTsRandInt(ts->get_rng()) % 2 != 0; } void CxCore_ScaleAddTest::get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ) { CxCore_MatrixTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types, whole_sizes, are_images ); sizes[INPUT][2] = cvSize(1,1); types[INPUT][2] &= CV_MAT_DEPTH_MASK; } int CxCore_ScaleAddTest::prepare_test_case( int test_case_idx ) { int code = CxCore_MatrixTest::prepare_test_case( test_case_idx ); if( code > 0 ) alpha = cvGet1D( &test_mat[INPUT][2], 0 ); if( test_nd ) alpha.val[1] = 0; return code; } void CxCore_ScaleAddTest::run_func() { if(!test_nd) cvScaleAdd( test_array[INPUT][0], alpha, test_array[INPUT][1], test_array[OUTPUT][0] ); else { cv::MatND c = cv::cvarrToMatND(test_array[OUTPUT][0]); cv::scaleAdd( cv::cvarrToMatND(test_array[INPUT][0]), alpha.val[0], cv::cvarrToMatND(test_array[INPUT][1]), c); } } void CxCore_ScaleAddTest::prepare_to_validation( int ) { cvTsAdd( &test_mat[INPUT][0], cvScalarAll(alpha.val[0]), &test_mat[INPUT][1], cvScalarAll(1.), cvScalarAll(0.), &test_mat[REF_OUTPUT][0], 0 ); } CxCore_ScaleAddTest scaleadd_test; ///////////////// gemm ///////////////////// static const char* matrix_gemm_param_names[] = { "size", "add_c", "mul_type", "depth", 0 }; static const char* matrix_gemm_mul_types[] = { "AB", "AtB", "ABt", "AtBt", 0 }; static const int matrix_gemm_add_c_flags[] = { 0, 1 }; class CxCore_GEMMTest : public CxCore_MatrixTest { public: CxCore_GEMMTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ); void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ); int write_default_params( CvFileStorage* fs ); void print_timing_params( int test_case_idx, char* ptr, int params_left ); int prepare_test_case( int test_case_idx ); void run_func(); void prepare_to_validation( int test_case_idx ); int tabc_flag; double alpha, beta; }; CxCore_GEMMTest::CxCore_GEMMTest() : CxCore_MatrixTest( "matrix-gemm", "cvGEMM", 5, 1, false, false, 2 ) { test_case_count = 100; max_log_array_size = 10; default_timing_param_names = matrix_gemm_param_names; alpha = beta = 0; } void CxCore_GEMMTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); CvSize sizeA; CxCore_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); sizeA = sizes[INPUT][0]; CxCore_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); sizes[INPUT][0] = sizeA; sizes[INPUT][2] = sizes[INPUT][3] = cvSize(1,1); types[INPUT][2] = types[INPUT][3] &= ~CV_MAT_CN_MASK; tabc_flag = cvTsRandInt(rng) & 7; switch( tabc_flag & (CV_GEMM_A_T|CV_GEMM_B_T) ) { case 0: sizes[INPUT][1].height = sizes[INPUT][0].width; sizes[OUTPUT][0].height = sizes[INPUT][0].height; sizes[OUTPUT][0].width = sizes[INPUT][1].width; break; case CV_GEMM_B_T: sizes[INPUT][1].width = sizes[INPUT][0].width; sizes[OUTPUT][0].height = sizes[INPUT][0].height; sizes[OUTPUT][0].width = sizes[INPUT][1].height; break; case CV_GEMM_A_T: sizes[INPUT][1].height = sizes[INPUT][0].height; sizes[OUTPUT][0].height = sizes[INPUT][0].width; sizes[OUTPUT][0].width = sizes[INPUT][1].width; break; case CV_GEMM_A_T | CV_GEMM_B_T: sizes[INPUT][1].width = sizes[INPUT][0].height; sizes[OUTPUT][0].height = sizes[INPUT][0].width; sizes[OUTPUT][0].width = sizes[INPUT][1].height; break; } sizes[REF_OUTPUT][0] = sizes[OUTPUT][0]; if( cvTsRandInt(rng) & 1 ) sizes[INPUT][4] = cvSize(0,0); else if( !(tabc_flag & CV_GEMM_C_T) ) sizes[INPUT][4] = sizes[OUTPUT][0]; else { sizes[INPUT][4].width = sizes[OUTPUT][0].height; sizes[INPUT][4].height = sizes[OUTPUT][0].width; } } void CxCore_GEMMTest::get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ) { CxCore_MatrixTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types, whole_sizes, are_images ); const char* mul_type = cvReadString( find_timing_param("mul_type"), "AB" ); if( strcmp( mul_type, "AtB" ) == 0 ) tabc_flag = CV_GEMM_A_T; else if( strcmp( mul_type, "ABt" ) == 0 ) tabc_flag = CV_GEMM_B_T; else if( strcmp( mul_type, "AtBt" ) == 0 ) tabc_flag = CV_GEMM_A_T + CV_GEMM_B_T; else tabc_flag = 0; if( cvReadInt( find_timing_param( "add_c" ), 0 ) == 0 ) sizes[INPUT][4] = cvSize(0,0); } int CxCore_GEMMTest::write_default_params( CvFileStorage* fs ) { int code = CxCore_MatrixTest::write_default_params(fs); if( code < 0 || ts->get_testing_mode() != CvTS::TIMING_MODE ) return code; write_string_list( fs, "mul_type", matrix_gemm_mul_types ); write_int_list( fs, "add_c", matrix_gemm_add_c_flags, CV_DIM(matrix_gemm_add_c_flags) ); return code; } void CxCore_GEMMTest::print_timing_params( int test_case_idx, char* ptr, int params_left ) { sprintf( ptr, "%s%s,%s,", tabc_flag & CV_GEMM_A_T ? "At" : "A", tabc_flag & CV_GEMM_B_T ? "Bt" : "B", test_array[INPUT][4] ? "plusC" : "" ); ptr += strlen(ptr); params_left -= 2; CxCore_MatrixTest::print_timing_params( test_case_idx, ptr, params_left ); } int CxCore_GEMMTest::prepare_test_case( int test_case_idx ) { int code = CxCore_MatrixTest::prepare_test_case( test_case_idx ); if( code > 0 ) { alpha = cvmGet( &test_mat[INPUT][2], 0, 0 ); beta = cvmGet( &test_mat[INPUT][3], 0, 0 ); } return code; } void CxCore_GEMMTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ) { *low = cvScalarAll(-10.); *high = cvScalarAll(10.); } void CxCore_GEMMTest::run_func() { cvGEMM( test_array[INPUT][0], test_array[INPUT][1], alpha, test_array[INPUT][4], beta, test_array[OUTPUT][0], tabc_flag ); } void CxCore_GEMMTest::prepare_to_validation( int ) { cvTsGEMM( &test_mat[INPUT][0], &test_mat[INPUT][1], alpha, test_array[INPUT][4] ? &test_mat[INPUT][4] : 0, beta, &test_mat[REF_OUTPUT][0], tabc_flag ); } CxCore_GEMMTest gemm_test; ///////////////// multransposed ///////////////////// static const char* matrix_multrans_param_names[] = { "size", "use_delta", "mul_type", "depth", 0 }; static const int matrix_multrans_use_delta_flags[] = { 0, 1 }; static const char* matrix_multrans_mul_types[] = { "AAt", "AtA", 0 }; class CxCore_MulTransposedTest : public CxCore_MatrixTest { public: CxCore_MulTransposedTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ); int write_default_params( CvFileStorage* fs ); void print_timing_params( int test_case_idx, char* ptr, int params_left ); void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ); void run_func(); void prepare_to_validation( int test_case_idx ); int order; }; CxCore_MulTransposedTest::CxCore_MulTransposedTest() : CxCore_MatrixTest( "matrix-multransposed", "cvMulTransposed, cvRepeat", 2, 1, false, false, 1 ) { test_case_count = 100; order = 0; test_array[TEMP].push(NULL); default_timing_param_names = matrix_multrans_param_names; } void CxCore_MulTransposedTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); int bits = cvTsRandInt(rng); int src_type = cvTsRandInt(rng) % 5; int dst_type = cvTsRandInt(rng) % 2; src_type = src_type == 0 ? CV_8U : src_type == 1 ? CV_16U : src_type == 2 ? CV_16S : src_type == 3 ? CV_32F : CV_64F; dst_type = dst_type == 0 ? CV_32F : CV_64F; dst_type = MAX( dst_type, src_type ); CxCore_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); if( bits & 1 ) sizes[INPUT][1] = cvSize(0,0); else { sizes[INPUT][1] = sizes[INPUT][0]; if( bits & 2 ) sizes[INPUT][1].height = 1; if( bits & 4 ) sizes[INPUT][1].width = 1; } sizes[TEMP][0] = sizes[INPUT][0]; types[INPUT][0] = src_type; types[OUTPUT][0] = types[REF_OUTPUT][0] = types[INPUT][1] = types[TEMP][0] = dst_type; order = (bits & 8) != 0; sizes[OUTPUT][0].width = sizes[OUTPUT][0].height = order == 0 ? sizes[INPUT][0].height : sizes[INPUT][0].width; sizes[REF_OUTPUT][0] = sizes[OUTPUT][0]; } void CxCore_MulTransposedTest::get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ) { CxCore_MatrixTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types, whole_sizes, are_images ); const char* mul_type = cvReadString( find_timing_param("mul_type"), "AAt" ); order = strcmp( mul_type, "AtA" ) == 0; if( cvReadInt( find_timing_param( "use_delta" ), 0 ) == 0 ) sizes[INPUT][1] = cvSize(0,0); } int CxCore_MulTransposedTest::write_default_params( CvFileStorage* fs ) { int code = CxCore_MatrixTest::write_default_params(fs); if( code < 0 || ts->get_testing_mode() != CvTS::TIMING_MODE ) return code; write_string_list( fs, "mul_type", matrix_multrans_mul_types ); write_int_list( fs, "use_delta", matrix_multrans_use_delta_flags, CV_DIM(matrix_multrans_use_delta_flags) ); return code; } void CxCore_MulTransposedTest::print_timing_params( int test_case_idx, char* ptr, int params_left ) { sprintf( ptr, "%s,%s,", order == 0 ? "AAt" : "AtA", test_array[INPUT][1] ? "delta" : "" ); ptr += strlen(ptr); params_left -= 2; CxCore_MatrixTest::print_timing_params( test_case_idx, ptr, params_left ); } void CxCore_MulTransposedTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ) { *low = cvScalarAll(-10.); *high = cvScalarAll(10.); } void CxCore_MulTransposedTest::run_func() { cvMulTransposed( test_array[INPUT][0], test_array[OUTPUT][0], order, test_array[INPUT][1] ); } void CxCore_MulTransposedTest::prepare_to_validation( int ) { CvMat* delta = test_array[INPUT][1] ? &test_mat[INPUT][1] : 0; if( delta ) { if( test_mat[INPUT][1].rows < test_mat[INPUT][0].rows || test_mat[INPUT][1].cols < test_mat[INPUT][0].cols ) { cvRepeat( delta, &test_mat[TEMP][0] ); delta = &test_mat[TEMP][0]; } cvTsAdd( &test_mat[INPUT][0], cvScalarAll(1.), delta, cvScalarAll(-1.), cvScalarAll(0.), &test_mat[TEMP][0], 0 ); } else cvTsConvert( &test_mat[INPUT][0], &test_mat[TEMP][0] ); delta = &test_mat[TEMP][0]; cvTsGEMM( delta, delta, 1., 0, 0, &test_mat[REF_OUTPUT][0], order == 0 ? CV_GEMM_B_T : CV_GEMM_A_T ); } CxCore_MulTransposedTest multransposed_test; ///////////////// Transform ///////////////////// static const CvSize matrix_transform_sizes[] = {{10,10}, {100,100}, {720,480}, {-1,-1}}; static const CvSize matrix_transform_whole_sizes[] = {{10,10}, {720,480}, {720,480}, {-1,-1}}; static const int matrix_transform_channels[] = { 2, 3, 4, -1 }; static const char* matrix_transform_param_names[] = { "size", "channels", "depth", 0 }; class CxCore_TransformTest : public CxCore_MatrixTest { public: CxCore_TransformTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); double get_success_error_level( int test_case_idx, int i, int j ); void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ); int prepare_test_case( int test_case_idx ); void print_timing_params( int test_case_idx, char* ptr, int params_left ); void run_func(); void prepare_to_validation( int test_case_idx ); double scale; bool diagMtx; }; CxCore_TransformTest::CxCore_TransformTest() : CxCore_MatrixTest( "matrix-transform", "cvTransform", 3, 1, true, false, 4 ) { default_timing_param_names = matrix_transform_param_names; cn_list = matrix_transform_channels; depth_list = matrix_all_depths; size_list = matrix_transform_sizes; whole_size_list = matrix_transform_whole_sizes; } void CxCore_TransformTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); int bits = cvTsRandInt(rng); int depth, dst_cn, mat_cols, mattype; CxCore_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); mat_cols = CV_MAT_CN(types[INPUT][0]); depth = CV_MAT_DEPTH(types[INPUT][0]); dst_cn = cvTsRandInt(rng) % 4 + 1; types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth, dst_cn); mattype = depth < CV_32S ? CV_32F : depth == CV_64F ? CV_64F : bits & 1 ? CV_32F : CV_64F; types[INPUT][1] = mattype; types[INPUT][2] = CV_MAKETYPE(mattype, dst_cn); scale = 1./((cvTsRandInt(rng)%4)*50+1); if( bits & 2 ) { sizes[INPUT][2] = cvSize(0,0); mat_cols += (bits & 4) != 0; } else if( bits & 4 ) sizes[INPUT][2] = cvSize(1,1); else { if( bits & 8 ) sizes[INPUT][2] = cvSize(dst_cn,1); else sizes[INPUT][2] = cvSize(1,dst_cn); types[INPUT][2] &= ~CV_MAT_CN_MASK; } diagMtx = (bits & 16) != 0; sizes[INPUT][1] = cvSize(mat_cols,dst_cn); } void CxCore_TransformTest::get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ) { CxCore_MatrixTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types, whole_sizes, are_images ); int cn = CV_MAT_CN(types[INPUT][0]); sizes[INPUT][1] = cvSize(cn + (cn < 4), cn); sizes[INPUT][2] = cvSize(0,0); types[INPUT][1] = types[INPUT][2] = CV_64FC1; scale = 1./1000; } int CxCore_TransformTest::prepare_test_case( int test_case_idx ) { int code = CxCore_MatrixTest::prepare_test_case( test_case_idx ); if( code > 0 ) { cvTsAdd(&test_mat[INPUT][1], cvScalarAll(scale), &test_mat[INPUT][1], cvScalarAll(0), cvScalarAll(0), &test_mat[INPUT][1], 0 ); if(diagMtx) { CvMat* w = cvCloneMat(&test_mat[INPUT][1]); cvSetIdentity(w, cvScalarAll(1)); cvMul(w, &test_mat[INPUT][1], &test_mat[INPUT][1]); cvReleaseMat(&w); } } return code; } void CxCore_TransformTest::print_timing_params( int test_case_idx, char* ptr, int params_left ) { CvSize size = cvGetMatSize(&test_mat[INPUT][1]); sprintf( ptr, "matrix=%dx%d,", size.height, size.width ); ptr += strlen(ptr); params_left--; CxCore_MatrixTest::print_timing_params( test_case_idx, ptr, params_left ); } double CxCore_TransformTest::get_success_error_level( int test_case_idx, int i, int j ) { int depth = CV_MAT_DEPTH(test_mat[INPUT][0].type); return depth <= CV_8S ? 1 : depth <= CV_32S ? 9 : CxCore_MatrixTest::get_success_error_level( test_case_idx, i, j ); } void CxCore_TransformTest::run_func() { cvTransform( test_array[INPUT][0], test_array[OUTPUT][0], &test_mat[INPUT][1], test_array[INPUT][2] ? &test_mat[INPUT][2] : 0); } void CxCore_TransformTest::prepare_to_validation( int ) { CvMat* transmat = &test_mat[INPUT][1]; CvMat* shift = test_array[INPUT][2] ? &test_mat[INPUT][2] : 0; cvTsTransform( &test_mat[INPUT][0], &test_mat[REF_OUTPUT][0], transmat, shift ); } CxCore_TransformTest transform_test; ///////////////// PerspectiveTransform ///////////////////// static const int matrix_perspective_transform_channels[] = { 2, 3, -1 }; class CxCore_PerspectiveTransformTest : public CxCore_MatrixTest { public: CxCore_PerspectiveTransformTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); double get_success_error_level( int test_case_idx, int i, int j ); void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ); void run_func(); void prepare_to_validation( int test_case_idx ); }; CxCore_PerspectiveTransformTest::CxCore_PerspectiveTransformTest() : CxCore_MatrixTest( "matrix-perspective", "cvPerspectiveTransform", 2, 1, false, false, 2 ) { default_timing_param_names = matrix_transform_param_names; cn_list = matrix_perspective_transform_channels; size_list = matrix_transform_sizes; whole_size_list = matrix_transform_whole_sizes; } void CxCore_PerspectiveTransformTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); int bits = cvTsRandInt(rng); int depth, cn, mattype; CxCore_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); cn = CV_MAT_CN(types[INPUT][0]) + 1; depth = CV_MAT_DEPTH(types[INPUT][0]); types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth, cn); mattype = depth == CV_64F ? CV_64F : bits & 1 ? CV_32F : CV_64F; types[INPUT][1] = mattype; sizes[INPUT][1] = cvSize(cn + 1, cn + 1); } double CxCore_PerspectiveTransformTest::get_success_error_level( int test_case_idx, int i, int j ) { int depth = CV_MAT_DEPTH(test_mat[INPUT][0].type); return depth == CV_32F ? 1e-4 : depth == CV_64F ? 1e-8 : CxCore_MatrixTest::get_success_error_level(test_case_idx, i, j); } void CxCore_PerspectiveTransformTest::get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ) { CxCore_MatrixTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types, whole_sizes, are_images ); int cn = CV_MAT_CN(types[INPUT][0]); sizes[INPUT][1] = cvSize(cn + 1, cn + 1); types[INPUT][1] = CV_64FC1; } void CxCore_PerspectiveTransformTest::run_func() { cvPerspectiveTransform( test_array[INPUT][0], test_array[OUTPUT][0], &test_mat[INPUT][1] ); } static void cvTsPerspectiveTransform( const CvArr* _src, CvArr* _dst, const CvMat* transmat ) { int i, j, cols; int cn, depth, mat_depth; CvMat astub, bstub, *a, *b; double mat[16], *buf; a = cvGetMat( _src, &astub, 0, 0 ); b = cvGetMat( _dst, &bstub, 0, 0 ); cn = CV_MAT_CN(a->type); depth = CV_MAT_DEPTH(a->type); mat_depth = CV_MAT_DEPTH(transmat->type); cols = transmat->cols; // prepare cn x (cn + 1) transform matrix if( mat_depth == CV_32F ) { for( i = 0; i < transmat->rows; i++ ) for( j = 0; j < cols; j++ ) mat[i*cols + j] = ((float*)(transmat->data.ptr + transmat->step*i))[j]; } else { assert( mat_depth == CV_64F ); for( i = 0; i < transmat->rows; i++ ) for( j = 0; j < cols; j++ ) mat[i*cols + j] = ((double*)(transmat->data.ptr + transmat->step*i))[j]; } // transform data cols = a->cols * cn; buf = (double*)cvStackAlloc( cols * sizeof(double) ); for( i = 0; i < a->rows; i++ ) { uchar* src = a->data.ptr + i*a->step; uchar* dst = b->data.ptr + i*b->step; switch( depth ) { case CV_32F: for( j = 0; j < cols; j++ ) buf[j] = ((float*)src)[j]; break; case CV_64F: for( j = 0; j < cols; j++ ) buf[j] = ((double*)src)[j]; break; default: assert(0); } switch( cn ) { case 2: for( j = 0; j < cols; j += 2 ) { double t0 = buf[j]*mat[0] + buf[j+1]*mat[1] + mat[2]; double t1 = buf[j]*mat[3] + buf[j+1]*mat[4] + mat[5]; double w = buf[j]*mat[6] + buf[j+1]*mat[7] + mat[8]; w = w ? 1./w : 0; buf[j] = t0*w; buf[j+1] = t1*w; } break; case 3: for( j = 0; j < cols; j += 3 ) { double t0 = buf[j]*mat[0] + buf[j+1]*mat[1] + buf[j+2]*mat[2] + mat[3]; double t1 = buf[j]*mat[4] + buf[j+1]*mat[5] + buf[j+2]*mat[6] + mat[7]; double t2 = buf[j]*mat[8] + buf[j+1]*mat[9] + buf[j+2]*mat[10] + mat[11]; double w = buf[j]*mat[12] + buf[j+1]*mat[13] + buf[j+2]*mat[14] + mat[15]; w = w ? 1./w : 0; buf[j] = t0*w; buf[j+1] = t1*w; buf[j+2] = t2*w; } break; default: assert(0); } switch( depth ) { case CV_32F: for( j = 0; j < cols; j++ ) ((float*)dst)[j] = (float)buf[j]; break; case CV_64F: for( j = 0; j < cols; j++ ) ((double*)dst)[j] = buf[j]; break; default: assert(0); } } } void CxCore_PerspectiveTransformTest::prepare_to_validation( int ) { CvMat* transmat = &test_mat[INPUT][1]; cvTsPerspectiveTransform( test_array[INPUT][0], test_array[REF_OUTPUT][0], transmat ); } CxCore_PerspectiveTransformTest perspective_test; ///////////////// Mahalanobis ///////////////////// class CxCore_MahalanobisTest : public CxCore_MatrixTest { public: CxCore_MahalanobisTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ); int prepare_test_case( int test_case_idx ); void run_func(); void prepare_to_validation( int test_case_idx ); }; CxCore_MahalanobisTest::CxCore_MahalanobisTest() : CxCore_MatrixTest( "matrix-mahalanobis", "cvMahalanobis", 3, 1, false, true, 1 ) { test_case_count = 100; test_array[TEMP].push(NULL); test_array[TEMP].push(NULL); test_array[TEMP].push(NULL); } void CxCore_MahalanobisTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); CxCore_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); if( cvTsRandInt(rng) & 1 ) sizes[INPUT][0].width = sizes[INPUT][1].width = 1; else sizes[INPUT][0].height = sizes[INPUT][1].height = 1; sizes[TEMP][0] = sizes[TEMP][1] = sizes[INPUT][0]; sizes[INPUT][2].width = sizes[INPUT][2].height = sizes[INPUT][0].width + sizes[INPUT][0].height - 1; sizes[TEMP][2] = sizes[INPUT][2]; types[TEMP][0] = types[TEMP][1] = types[TEMP][2] = types[INPUT][0]; } void CxCore_MahalanobisTest::get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ) { CxCore_MatrixTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types, whole_sizes, are_images ); sizes[INPUT][0].height = sizes[INPUT][1].height = 1; } int CxCore_MahalanobisTest::prepare_test_case( int test_case_idx ) { int code = CxCore_MatrixTest::prepare_test_case( test_case_idx ); if( code > 0 && ts->get_testing_mode() == CvTS::CORRECTNESS_CHECK_MODE ) { // make sure that the inverted "covariation" matrix is symmetrix and positively defined. cvTsGEMM( &test_mat[INPUT][2], &test_mat[INPUT][2], 1., 0, 0., &test_mat[TEMP][2], CV_GEMM_B_T ); cvTsCopy( &test_mat[TEMP][2], &test_mat[INPUT][2] ); } return code; } void CxCore_MahalanobisTest::run_func() { *((CvScalar*)(test_mat[OUTPUT][0].data.db)) = cvRealScalar(cvMahalanobis(test_array[INPUT][0], test_array[INPUT][1], test_array[INPUT][2])); } void CxCore_MahalanobisTest::prepare_to_validation( int ) { cvTsAdd( &test_mat[INPUT][0], cvScalarAll(1.), &test_mat[INPUT][1], cvScalarAll(-1.), cvScalarAll(0.), &test_mat[TEMP][0], 0 ); if( test_mat[INPUT][0].rows == 1 ) cvTsGEMM( &test_mat[TEMP][0], &test_mat[INPUT][2], 1., 0, 0., &test_mat[TEMP][1], 0 ); else cvTsGEMM( &test_mat[INPUT][2], &test_mat[TEMP][0], 1., 0, 0., &test_mat[TEMP][1], 0 ); *((CvScalar*)(test_mat[REF_OUTPUT][0].data.db)) = cvRealScalar(sqrt(cvTsCrossCorr(&test_mat[TEMP][0], &test_mat[TEMP][1]))); } CxCore_MahalanobisTest mahalanobis_test; ///////////////// covarmatrix ///////////////////// class CxCore_CovarMatrixTest : public CxCore_MatrixTest { public: CxCore_CovarMatrixTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); int prepare_test_case( int test_case_idx ); void run_func(); void prepare_to_validation( int test_case_idx ); CvTestPtrVec temp_hdrs; uchar* hdr_data; int flags, t_flag, len, count; bool are_images; }; CxCore_CovarMatrixTest::CxCore_CovarMatrixTest() : CxCore_MatrixTest( "matrix-covar", "cvCalcCovarMatrix", 1, 1, true, false, 1 ), flags(0), t_flag(0), are_images(false) { test_case_count = 100; test_array[INPUT_OUTPUT].push(NULL); test_array[REF_INPUT_OUTPUT].push(NULL); test_array[TEMP].push(NULL); test_array[TEMP].push(NULL); support_testing_modes = CvTS::CORRECTNESS_CHECK_MODE; } void CxCore_CovarMatrixTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); int bits = cvTsRandInt(rng); int i, single_matrix; CxCore_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); flags = bits & (CV_COVAR_NORMAL | CV_COVAR_USE_AVG | CV_COVAR_SCALE | CV_COVAR_ROWS ); single_matrix = flags & CV_COVAR_ROWS; t_flag = (bits & 256) != 0; const int min_count = 2; if( !t_flag ) { len = sizes[INPUT][0].width; count = sizes[INPUT][0].height; count = MAX(count, min_count); sizes[INPUT][0] = cvSize(len, count); } else { len = sizes[INPUT][0].height; count = sizes[INPUT][0].width; count = MAX(count, min_count); sizes[INPUT][0] = cvSize(count, len); } if( single_matrix && t_flag ) flags = (flags & ~CV_COVAR_ROWS) | CV_COVAR_COLS; if( CV_MAT_DEPTH(types[INPUT][0]) == CV_32S ) types[INPUT][0] = (types[INPUT][0] & ~CV_MAT_DEPTH_MASK) | CV_32F; sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = flags & CV_COVAR_NORMAL ? cvSize(len,len) : cvSize(count,count); sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = !t_flag ? cvSize(len,1) : cvSize(1,len); sizes[TEMP][0] = sizes[INPUT][0]; types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = types[TEMP][0] = CV_MAT_DEPTH(types[INPUT][0]) == CV_64F || (bits & 512) ? CV_64F : CV_32F; are_images = (bits & 1024) != 0; for( i = 0; i < (single_matrix ? 1 : count); i++ ) temp_hdrs.push(NULL); } int CxCore_CovarMatrixTest::prepare_test_case( int test_case_idx ) { int code = CxCore_MatrixTest::prepare_test_case( test_case_idx ); if( code > 0 ) { int i; int single_matrix = flags & (CV_COVAR_ROWS|CV_COVAR_COLS); int hdr_size = are_images ? sizeof(IplImage) : sizeof(CvMat); hdr_data = (uchar*)cvAlloc( count*hdr_size ); if( single_matrix ) { if( !are_images ) *((CvMat*)hdr_data) = test_mat[INPUT][0]; else cvGetImage( &test_mat[INPUT][0], (IplImage*)hdr_data ); temp_hdrs[0] = hdr_data; } else for( i = 0; i < count; i++ ) { CvMat part; void* ptr = hdr_data + i*hdr_size; if( !t_flag ) cvGetRow( &test_mat[INPUT][0], &part, i ); else cvGetCol( &test_mat[INPUT][0], &part, i ); if( !are_images ) *((CvMat*)ptr) = part; else cvGetImage( &part, (IplImage*)ptr ); temp_hdrs[i] = ptr; } } return code; } void CxCore_CovarMatrixTest::run_func() { cvCalcCovarMatrix( (const void**)&temp_hdrs[0], count, test_array[OUTPUT][0], test_array[INPUT_OUTPUT][0], flags ); } void CxCore_CovarMatrixTest::prepare_to_validation( int ) { CvMat* avg = &test_mat[REF_INPUT_OUTPUT][0]; double scale = 1.; if( !(flags & CV_COVAR_USE_AVG) ) { int i; cvTsZero( avg ); for( i = 0; i < count; i++ ) { CvMat stub, *vec = 0; if( flags & CV_COVAR_ROWS ) vec = cvGetRow( temp_hdrs[0], &stub, i ); else if( flags & CV_COVAR_COLS ) vec = cvGetCol( temp_hdrs[0], &stub, i ); else vec = cvGetMat( temp_hdrs[i], &stub ); cvTsAdd( avg, cvScalarAll(1.), vec, cvScalarAll(1.), cvScalarAll(0.), avg, 0 ); } cvTsAdd( avg, cvScalarAll(1./count), 0, cvScalarAll(0.), cvScalarAll(0.), avg, 0 ); } if( flags & CV_COVAR_SCALE ) { scale = 1./count; } cvRepeat( avg, &test_mat[TEMP][0] ); cvTsAdd( &test_mat[INPUT][0], cvScalarAll(1.), &test_mat[TEMP][0], cvScalarAll(-1.), cvScalarAll(0.), &test_mat[TEMP][0], 0 ); cvTsGEMM( &test_mat[TEMP][0], &test_mat[TEMP][0], scale, 0, 0., &test_mat[REF_OUTPUT][0], t_flag ^ ((flags & CV_COVAR_NORMAL) != 0) ? CV_GEMM_A_T : CV_GEMM_B_T ); cvFree( &hdr_data ); temp_hdrs.clear(); } CxCore_CovarMatrixTest covarmatrix_test; static void cvTsFloodWithZeros( CvMat* mat, CvRNG* rng ) { int k, total = mat->rows*mat->cols; int zero_total = cvTsRandInt(rng) % total; assert( CV_MAT_TYPE(mat->type) == CV_32FC1 || CV_MAT_TYPE(mat->type) == CV_64FC1 ); for( k = 0; k < zero_total; k++ ) { int i = cvTsRandInt(rng) % mat->rows; int j = cvTsRandInt(rng) % mat->cols; uchar* row = mat->data.ptr + mat->step*i; if( CV_MAT_DEPTH(mat->type) == CV_32FC1 ) ((float*)row)[j] = 0.f; else ((double*)row)[j] = 0.; } } ///////////////// determinant ///////////////////// class CxCore_DetTest : public CxCore_MatrixTest { public: CxCore_DetTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); double get_success_error_level( int test_case_idx, int i, int j ); void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ); int prepare_test_case( int test_case_idx ); void run_func(); void prepare_to_validation( int test_case_idx ); }; CxCore_DetTest::CxCore_DetTest() : CxCore_MatrixTest( "matrix-det", "cvDet", 1, 1, false, true, 1 ) { test_case_count = 100; max_log_array_size = 7; test_array[TEMP].push(NULL); } void CxCore_DetTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CxCore_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); sizes[INPUT][0].width = sizes[INPUT][0].height = sizes[INPUT][0].height; sizes[TEMP][0] = sizes[INPUT][0]; types[TEMP][0] = CV_64FC1; } void CxCore_DetTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ) { *low = cvScalarAll(-2.); *high = cvScalarAll(2.); } double CxCore_DetTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { return CV_MAT_DEPTH(cvGetElemType(test_array[INPUT][0])) == CV_32F ? 1e-2 : 1e-5; } int CxCore_DetTest::prepare_test_case( int test_case_idx ) { int code = CxCore_MatrixTest::prepare_test_case( test_case_idx ); if( code > 0 ) cvTsFloodWithZeros( &test_mat[INPUT][0], ts->get_rng() ); return code; } void CxCore_DetTest::run_func() { *((CvScalar*)(test_mat[OUTPUT][0].data.db)) = cvRealScalar(cvDet(test_array[INPUT][0])); } // LU method that chooses the optimal in a column pivot element static double cvTsLU( CvMat* a, CvMat* b=NULL, CvMat* x=NULL, int* rank=0 ) { int i, j, k, N = a->rows, N1 = a->cols, Nm = MIN(N, N1), step = a->step/sizeof(double); int M = b ? b->cols : 0, b_step = b ? b->step/sizeof(double) : 0; int x_step = x ? x->step/sizeof(double) : 0; double *a0 = a->data.db, *b0 = b ? b->data.db : 0; double *x0 = x ? x->data.db : 0; double t, det = 1.; assert( CV_MAT_TYPE(a->type) == CV_64FC1 && (!b || CV_ARE_TYPES_EQ(a,b)) && (!x || CV_ARE_TYPES_EQ(a,x))); for( i = 0; i < Nm; i++ ) { double max_val = fabs(a0[i*step + i]); double *a1, *a2, *b1 = 0, *b2 = 0; k = i; for( j = i+1; j < N; j++ ) { t = fabs(a0[j*step + i]); if( max_val < t ) { max_val = t; k = j; } } if( k != i ) { for( j = i; j < N1; j++ ) CV_SWAP( a0[i*step + j], a0[k*step + j], t ); for( j = 0; j < M; j++ ) CV_SWAP( b0[i*b_step + j], b0[k*b_step + j], t ); det = -det; } if( max_val == 0 ) { if( rank ) *rank = i; return 0.; } a1 = a0 + i*step; a2 = a1 + step; b1 = b0 + i*b_step; b2 = b1 + b_step; for( j = i+1; j < N; j++, a2 += step, b2 += b_step ) { t = a2[i]/a1[i]; for( k = i+1; k < N1; k++ ) a2[k] -= t*a1[k]; for( k = 0; k < M; k++ ) b2[k] -= t*b1[k]; } det *= a1[i]; } if( x ) { assert( b ); for( i = N-1; i >= 0; i-- ) { double* a1 = a0 + i*step; double* b1 = b0 + i*b_step; for( j = 0; j < M; j++ ) { t = b1[j]; for( k = i+1; k < N1; k++ ) t -= a1[k]*x0[k*x_step + j]; x0[i*x_step + j] = t/a1[i]; } } } if( rank ) *rank = i; return det; } void CxCore_DetTest::prepare_to_validation( int ) { if( !CV_ARE_TYPES_EQ( &test_mat[INPUT][0], &test_mat[TEMP][0] )) cvTsConvert( &test_mat[INPUT][0], &test_mat[TEMP][0] ); else cvTsCopy( &test_mat[INPUT][0], &test_mat[TEMP][0], 0 ); *((CvScalar*)(test_mat[REF_OUTPUT][0].data.db)) = cvRealScalar(cvTsLU(&test_mat[TEMP][0], 0, 0)); } CxCore_DetTest det_test; ///////////////// invert ///////////////////// static const char* matrix_solve_invert_param_names[] = { "size", "method", "depth", 0 }; static const char* matrix_solve_invert_methods[] = { "LU", "SVD", 0 }; class CxCore_InvertTest : public CxCore_MatrixTest { public: CxCore_InvertTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ); int write_default_params( CvFileStorage* fs ); void print_timing_params( int test_case_idx, char* ptr, int params_left ); void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ); double get_success_error_level( int test_case_idx, int i, int j ); int prepare_test_case( int test_case_idx ); void run_func(); void prepare_to_validation( int test_case_idx ); int method, rank; double result; }; CxCore_InvertTest::CxCore_InvertTest() : CxCore_MatrixTest( "matrix-invert", "cvInvert, cvSVD, cvSVBkSb", 1, 1, false, false, 1 ), method(0), rank(0), result(0.) { test_case_count = 100; max_log_array_size = 7; test_array[TEMP].push(NULL); test_array[TEMP].push(NULL); default_timing_param_names = matrix_solve_invert_param_names; } void CxCore_InvertTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); int bits = cvTsRandInt(rng); CxCore_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); int min_size = MIN( sizes[INPUT][0].width, sizes[INPUT][0].height ); if( (bits & 3) == 0 ) { method = CV_SVD; if( bits & 4 ) { sizes[INPUT][0] = cvSize(min_size, min_size); if( bits & 16 ) method = CV_CHOLESKY; } } else { method = CV_LU; sizes[INPUT][0] = cvSize(min_size, min_size); } sizes[TEMP][0].width = sizes[INPUT][0].height; sizes[TEMP][0].height = sizes[INPUT][0].width; sizes[TEMP][1] = sizes[INPUT][0]; types[TEMP][0] = types[INPUT][0]; types[TEMP][1] = CV_64FC1; sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(min_size, min_size); } void CxCore_InvertTest::get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ) { CxCore_MatrixTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types, whole_sizes, are_images ); const char* method_str = cvReadString( find_timing_param("method"), "LU" ); method = strcmp( method_str, "LU" ) == 0 ? CV_LU : CV_SVD; } int CxCore_InvertTest::write_default_params( CvFileStorage* fs ) { int code = CxCore_MatrixTest::write_default_params(fs); if( code < 0 || ts->get_testing_mode() != CvTS::TIMING_MODE ) return code; write_string_list( fs, "method", matrix_solve_invert_methods ); return code; } void CxCore_InvertTest::print_timing_params( int test_case_idx, char* ptr, int params_left ) { sprintf( ptr, "%s,", method == CV_LU ? "LU" : "SVD" ); ptr += strlen(ptr); params_left--; CxCore_MatrixTest::print_timing_params( test_case_idx, ptr, params_left ); } double CxCore_InvertTest::get_success_error_level( int /*test_case_idx*/, int, int ) { return CV_MAT_DEPTH(cvGetElemType(test_array[OUTPUT][0])) == CV_32F ? 1e-2 : 1e-6; } int CxCore_InvertTest::prepare_test_case( int test_case_idx ) { int code = CxCore_MatrixTest::prepare_test_case( test_case_idx ); if( code > 0 ) { cvTsFloodWithZeros( &test_mat[INPUT][0], ts->get_rng() ); if( method == CV_CHOLESKY ) { cvTsGEMM( &test_mat[INPUT][0], &test_mat[INPUT][0], 1., 0, 0., &test_mat[TEMP][0], CV_GEMM_B_T ); cvTsCopy( &test_mat[TEMP][0], &test_mat[INPUT][0] ); } } return code; } void CxCore_InvertTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ) { *low = cvScalarAll(-1.); *high = cvScalarAll(1.); } void CxCore_InvertTest::run_func() { result = cvInvert(test_array[INPUT][0], test_array[TEMP][0], method); } static double cvTsSVDet( CvMat* mat, double* ratio ) { int type = CV_MAT_TYPE(mat->type); int i, nm = MIN( mat->rows, mat->cols ); CvMat* w = cvCreateMat( nm, 1, type ); double det = 1.; cvSVD( mat, w, 0, 0, 0 ); if( type == CV_32FC1 ) { for( i = 0; i < nm; i++ ) det *= w->data.fl[i]; *ratio = w->data.fl[nm-1] < FLT_EPSILON ? FLT_MAX : w->data.fl[nm-1]/w->data.fl[0]; } else { for( i = 0; i < nm; i++ ) det *= w->data.db[i]; *ratio = w->data.db[nm-1] < FLT_EPSILON ? DBL_MAX : w->data.db[nm-1]/w->data.db[0]; } cvReleaseMat( &w ); return det; } void CxCore_InvertTest::prepare_to_validation( int ) { CvMat* input = &test_mat[INPUT][0]; double ratio = 0, det = cvTsSVDet( input, &ratio ); double threshold = (CV_MAT_DEPTH(input->type) == CV_32F ? FLT_EPSILON : DBL_EPSILON)*1000; if( CV_MAT_TYPE(input->type) == CV_32FC1 ) cvTsConvert( input, &test_mat[TEMP][1] ); else cvTsCopy( input, &test_mat[TEMP][1], 0 ); if( det < threshold || ((method == CV_LU || method == CV_CHOLESKY) && (result == 0 || ratio < threshold)) || ((method == CV_SVD || method == CV_SVD_SYM) && result < threshold) ) { cvTsZero( &test_mat[OUTPUT][0] ); cvTsZero( &test_mat[REF_OUTPUT][0] ); //cvTsAdd( 0, cvScalarAll(0.), 0, cvScalarAll(0.), cvScalarAll(fabs(det)>1e-3), // &test_mat[REF_OUTPUT][0], 0 ); return; } if( input->rows >= input->cols ) cvTsGEMM( &test_mat[TEMP][0], input, 1., 0, 0., &test_mat[OUTPUT][0], 0 ); else cvTsGEMM( input, &test_mat[TEMP][0], 1., 0, 0., &test_mat[OUTPUT][0], 0 ); cvTsSetIdentity( &test_mat[REF_OUTPUT][0], cvScalarAll(1.) ); } CxCore_InvertTest invert_test; ///////////////// solve ///////////////////// class CxCore_SolveTest : public CxCore_MatrixTest { public: CxCore_SolveTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ); int write_default_params( CvFileStorage* fs ); void print_timing_params( int test_case_idx, char* ptr, int params_left ); void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ); double get_success_error_level( int test_case_idx, int i, int j ); int prepare_test_case( int test_case_idx ); void run_func(); void prepare_to_validation( int test_case_idx ); int method, rank; double result; }; CxCore_SolveTest::CxCore_SolveTest() : CxCore_MatrixTest( "matrix-solve", "cvSolve, cvSVD, cvSVBkSb", 2, 1, false, false, 1 ), method(0), rank(0), result(0.) { test_case_count = 100; max_log_array_size = 7; test_array[TEMP].push(NULL); test_array[TEMP].push(NULL); default_timing_param_names = matrix_solve_invert_param_names; } void CxCore_SolveTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); int bits = cvTsRandInt(rng); CxCore_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); CvSize in_sz = sizes[INPUT][0]; CxCore_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); sizes[INPUT][0] = in_sz; int min_size = MIN( sizes[INPUT][0].width, sizes[INPUT][0].height ); if( (bits & 3) == 0 ) { method = CV_SVD; if( bits & 4 ) { sizes[INPUT][0] = cvSize(min_size, min_size); /*if( bits & 8 ) method = CV_SVD_SYM;*/ } } else { method = CV_LU; sizes[INPUT][0] = cvSize(min_size, min_size); } sizes[INPUT][1].height = sizes[INPUT][0].height; sizes[TEMP][0].width = sizes[INPUT][1].width; sizes[TEMP][0].height = sizes[INPUT][0].width; sizes[TEMP][1] = sizes[INPUT][0]; types[TEMP][0] = types[INPUT][0]; types[TEMP][1] = CV_64FC1; sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(sizes[INPUT][1].width, min_size); } void CxCore_SolveTest::get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ) { CxCore_MatrixTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types, whole_sizes, are_images ); const char* method_str = cvReadString( find_timing_param("method"), "LU" ); sizes[INPUT][1].width = sizes[TEMP][0].width = sizes[OUTPUT][0].width = sizes[REF_OUTPUT][0].width = 1; method = strcmp( method_str, "LU" ) == 0 ? CV_LU : CV_SVD; } int CxCore_SolveTest::write_default_params( CvFileStorage* fs ) { int code = CxCore_MatrixTest::write_default_params(fs); if( code < 0 || ts->get_testing_mode() != CvTS::TIMING_MODE ) return code; write_string_list( fs, "method", matrix_solve_invert_methods ); return code; } void CxCore_SolveTest::print_timing_params( int test_case_idx, char* ptr, int params_left ) { sprintf( ptr, "%s,", method == CV_LU ? "LU" : "SVD" ); ptr += strlen(ptr); params_left--; CxCore_MatrixTest::print_timing_params( test_case_idx, ptr, params_left ); } int CxCore_SolveTest::prepare_test_case( int test_case_idx ) { int code = CxCore_MatrixTest::prepare_test_case( test_case_idx ); /*if( method == CV_SVD_SYM ) { cvTsGEMM( test_array[INPUT][0], test_array[INPUT][0], 1., 0, 0., test_array[TEMP][0], CV_GEMM_B_T ); cvTsCopy( test_array[TEMP][0], test_array[INPUT][0] ); }*/ return code; } void CxCore_SolveTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ) { *low = cvScalarAll(-1.); *high = cvScalarAll(1.); } double CxCore_SolveTest::get_success_error_level( int /*test_case_idx*/, int, int ) { return CV_MAT_DEPTH(cvGetElemType(test_array[OUTPUT][0])) == CV_32F ? 5e-2 : 1e-8; } void CxCore_SolveTest::run_func() { result = cvSolve(test_array[INPUT][0], test_array[INPUT][1], test_array[TEMP][0], method); } void CxCore_SolveTest::prepare_to_validation( int ) { //int rank = test_mat[REF_OUTPUT][0].rows; CvMat* dst; CvMat* input = &test_mat[INPUT][0]; if( method == CV_LU ) { if( result == 0 ) { if( CV_MAT_TYPE(input->type) == CV_32FC1 ) cvTsConvert( input, &test_mat[TEMP][1] ); else cvTsCopy( input, &test_mat[TEMP][1], 0 ); cvTsZero( &test_mat[OUTPUT][0] ); double det = cvTsLU( &test_mat[TEMP][1], 0, 0 ); cvTsAdd( 0, cvScalarAll(0.), 0, cvScalarAll(0.), cvScalarAll(det != 0), &test_mat[REF_OUTPUT][0], 0 ); return; } double threshold = (CV_MAT_DEPTH(input->type) == CV_32F ? FLT_EPSILON : DBL_EPSILON)*1000; double ratio = 0, det = cvTsSVDet( input, &ratio ); if( det < threshold || ratio < threshold ) { cvTsZero( &test_mat[OUTPUT][0] ); cvTsZero( &test_mat[REF_OUTPUT][0] ); return; } } dst = input->rows <= input->cols ? &test_mat[OUTPUT][0] : &test_mat[INPUT][1]; cvTsGEMM( input, &test_mat[TEMP][0], 1., &test_mat[INPUT][1], -1., dst, 0 ); if( dst != &test_mat[OUTPUT][0] ) cvTsGEMM( input, dst, 1., 0, 0., &test_mat[OUTPUT][0], CV_GEMM_A_T ); cvTsZero( &test_mat[REF_OUTPUT][0] ); } CxCore_SolveTest solve_test; ///////////////// SVD ///////////////////// static const char* matrix_svd_param_names[] = { "size", "output", "depth", 0 }; static const char* matrix_svd_output_modes[] = { "w", "all", 0 }; class CxCore_SVDTest : public CxCore_MatrixTest { public: CxCore_SVDTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ); double get_success_error_level( int test_case_idx, int i, int j ); int write_default_params( CvFileStorage* fs ); void print_timing_params( int test_case_idx, char* ptr, int params_left ); void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ); int prepare_test_case( int test_case_idx ); void run_func(); void prepare_to_validation( int test_case_idx ); int flags; bool have_u, have_v, symmetric, compact, vector_w; }; CxCore_SVDTest::CxCore_SVDTest() : CxCore_MatrixTest( "matrix-svd", "cvSVD", 1, 4, false, false, 1 ), flags(0), have_u(false), have_v(false), symmetric(false), compact(false), vector_w(false) { test_case_count = 100; test_array[TEMP].push(NULL); test_array[TEMP].push(NULL); test_array[TEMP].push(NULL); test_array[TEMP].push(NULL); default_timing_param_names = matrix_svd_param_names; } void CxCore_SVDTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); int bits = cvTsRandInt(rng); CxCore_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); int min_size, i, m, n; min_size = MIN( sizes[INPUT][0].width, sizes[INPUT][0].height ); flags = bits & (CV_SVD_MODIFY_A+CV_SVD_U_T+CV_SVD_V_T); have_u = (bits & 8) != 0; have_v = (bits & 16) != 0; symmetric = (bits & 32) != 0; compact = (bits & 64) != 0; vector_w = (bits & 128) != 0; if( symmetric ) sizes[INPUT][0] = cvSize(min_size, min_size); m = sizes[INPUT][0].height; n = sizes[INPUT][0].width; if( compact ) sizes[TEMP][0] = cvSize(min_size, min_size); else sizes[TEMP][0] = sizes[INPUT][0]; sizes[TEMP][3] = cvSize(0,0); if( vector_w ) { sizes[TEMP][3] = sizes[TEMP][0]; if( bits & 256 ) sizes[TEMP][0] = cvSize(1, min_size); else sizes[TEMP][0] = cvSize(min_size, 1); } if( have_u ) { sizes[TEMP][1] = compact ? cvSize(min_size, m) : cvSize(m, m); if( flags & CV_SVD_U_T ) CV_SWAP( sizes[TEMP][1].width, sizes[TEMP][1].height, i ); } else sizes[TEMP][1] = cvSize(0,0); if( have_v ) { sizes[TEMP][2] = compact ? cvSize(n, min_size) : cvSize(n, n); if( !(flags & CV_SVD_V_T) ) CV_SWAP( sizes[TEMP][2].width, sizes[TEMP][2].height, i ); } else sizes[TEMP][2] = cvSize(0,0); types[TEMP][0] = types[TEMP][1] = types[TEMP][2] = types[TEMP][3] = types[INPUT][0]; types[OUTPUT][0] = types[OUTPUT][1] = types[OUTPUT][2] = types[INPUT][0]; types[OUTPUT][3] = CV_8UC1; sizes[OUTPUT][0] = !have_u || !have_v ? cvSize(0,0) : sizes[INPUT][0]; sizes[OUTPUT][1] = !have_u ? cvSize(0,0) : compact ? cvSize(min_size,min_size) : cvSize(m,m); sizes[OUTPUT][2] = !have_v ? cvSize(0,0) : compact ? cvSize(min_size,min_size) : cvSize(n,n); sizes[OUTPUT][3] = cvSize(min_size,1); for( i = 0; i < 4; i++ ) { sizes[REF_OUTPUT][i] = sizes[OUTPUT][i]; types[REF_OUTPUT][i] = types[OUTPUT][i]; } } void CxCore_SVDTest::get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ) { CxCore_MatrixTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types, whole_sizes, are_images ); const char* output_str = cvReadString( find_timing_param("output"), "all" ); bool need_all = strcmp( output_str, "all" ) == 0; int i, count = test_array[OUTPUT].size(); vector_w = true; symmetric = false; compact = true; sizes[TEMP][0] = cvSize(1,sizes[INPUT][0].height); if( need_all ) { have_u = have_v = true; } else { have_u = have_v = false; sizes[TEMP][1] = sizes[TEMP][2] = cvSize(0,0); } flags = CV_SVD_U_T + CV_SVD_V_T; for( i = 0; i < count; i++ ) sizes[OUTPUT][i] = sizes[REF_OUTPUT][i] = cvSize(0,0); sizes[OUTPUT][0] = cvSize(1,1); } int CxCore_SVDTest::write_default_params( CvFileStorage* fs ) { int code = CxCore_MatrixTest::write_default_params(fs); if( code < 0 || ts->get_testing_mode() != CvTS::TIMING_MODE ) return code; write_string_list( fs, "output", matrix_svd_output_modes ); return code; } void CxCore_SVDTest::print_timing_params( int test_case_idx, char* ptr, int params_left ) { sprintf( ptr, "%s,", have_u ? "all" : "w" ); ptr += strlen(ptr); params_left--; CxCore_MatrixTest::print_timing_params( test_case_idx, ptr, params_left ); } int CxCore_SVDTest::prepare_test_case( int test_case_idx ) { int code = CxCore_MatrixTest::prepare_test_case( test_case_idx ); if( code > 0 ) { CvMat* input = &test_mat[INPUT][0]; cvTsFloodWithZeros( input, ts->get_rng() ); if( symmetric && (have_u || have_v) ) { CvMat* temp = &test_mat[TEMP][have_u ? 1 : 2]; cvTsGEMM( input, input, 1., 0, 0., temp, CV_GEMM_B_T ); cvTsCopy( temp, input ); } if( (flags & CV_SVD_MODIFY_A) && test_array[OUTPUT][0] ) cvTsCopy( input, &test_mat[OUTPUT][0] ); } return code; } void CxCore_SVDTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ) { *low = cvScalarAll(-2.); *high = cvScalarAll(2.); } double CxCore_SVDTest::get_success_error_level( int test_case_idx, int i, int j ) { int input_depth = CV_MAT_DEPTH(cvGetElemType( test_array[INPUT][0] )); double input_precision = input_depth < CV_32F ? 0 : input_depth == CV_32F ? 5e-5 : 5e-11; double output_precision = CvArrTest::get_success_error_level( test_case_idx, i, j ); return MAX(input_precision, output_precision); } void CxCore_SVDTest::run_func() { CvArr* src = test_array[!(flags & CV_SVD_MODIFY_A) ? INPUT : OUTPUT][0]; if( !src ) src = test_array[INPUT][0]; cvSVD( src, test_array[TEMP][0], test_array[TEMP][1], test_array[TEMP][2], flags ); } void CxCore_SVDTest::prepare_to_validation( int ) { CvMat* input = &test_mat[INPUT][0]; int m = input->rows, n = input->cols, min_size = MIN(m, n); CvMat *src, *dst, *w; double prev = 0, threshold = CV_MAT_TYPE(input->type) == CV_32FC1 ? FLT_EPSILON : DBL_EPSILON; int i, j = 0, step; if( have_u ) { src = &test_mat[TEMP][1]; dst = &test_mat[OUTPUT][1]; cvTsGEMM( src, src, 1., 0, 0., dst, src->rows == dst->rows ? CV_GEMM_B_T : CV_GEMM_A_T ); cvTsSetIdentity( &test_mat[REF_OUTPUT][1], cvScalarAll(1.) ); } if( have_v ) { src = &test_mat[TEMP][2]; dst = &test_mat[OUTPUT][2]; cvTsGEMM( src, src, 1., 0, 0., dst, src->rows == dst->rows ? CV_GEMM_B_T : CV_GEMM_A_T ); cvTsSetIdentity( &test_mat[REF_OUTPUT][2], cvScalarAll(1.) ); } w = &test_mat[TEMP][0]; step = w->rows == 1 ? 1 : w->step/CV_ELEM_SIZE(w->type); for( i = 0; i < min_size; i++ ) { double norm = 0, aii; uchar* row_ptr; if( w->rows > 1 && w->cols > 1 ) { CvMat row; cvGetRow( w, &row, i ); norm = cvNorm( &row, 0, CV_L1 ); j = i; row_ptr = row.data.ptr; } else { row_ptr = w->data.ptr; j = i*step; } aii = CV_MAT_TYPE(w->type) == CV_32FC1 ? (double)((float*)row_ptr)[j] : ((double*)row_ptr)[j]; if( w->rows == 1 || w->cols == 1 ) norm = aii; norm = fabs(norm - aii); test_mat[OUTPUT][3].data.ptr[i] = aii >= 0 && norm < threshold && (i == 0 || aii <= prev); prev = aii; } cvTsAdd( 0, cvScalarAll(0.), 0, cvScalarAll(0.), cvScalarAll(1.), &test_mat[REF_OUTPUT][3], 0 ); if( have_u && have_v ) { if( vector_w ) { cvTsZero( &test_mat[TEMP][3] ); for( i = 0; i < min_size; i++ ) { double val = cvGetReal1D( w, i ); cvSetReal2D( &test_mat[TEMP][3], i, i, val ); } w = &test_mat[TEMP][3]; } if( m >= n ) { cvTsGEMM( &test_mat[TEMP][1], w, 1., 0, 0., &test_mat[REF_OUTPUT][0], flags & CV_SVD_U_T ? CV_GEMM_A_T : 0 ); cvTsGEMM( &test_mat[REF_OUTPUT][0], &test_mat[TEMP][2], 1., 0, 0., &test_mat[OUTPUT][0], flags & CV_SVD_V_T ? 0 : CV_GEMM_B_T ); } else { cvTsGEMM( w, &test_mat[TEMP][2], 1., 0, 0., &test_mat[REF_OUTPUT][0], flags & CV_SVD_V_T ? 0 : CV_GEMM_B_T ); cvTsGEMM( &test_mat[TEMP][1], &test_mat[REF_OUTPUT][0], 1., 0, 0., &test_mat[OUTPUT][0], flags & CV_SVD_U_T ? CV_GEMM_A_T : 0 ); } cvTsCopy( &test_mat[INPUT][0], &test_mat[REF_OUTPUT][0], 0 ); } } CxCore_SVDTest svd_test; ///////////////// SVBkSb ///////////////////// class CxCore_SVBkSbTest : public CxCore_MatrixTest { public: CxCore_SVBkSbTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ); void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ); double get_success_error_level( int test_case_idx, int i, int j ); void get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ); int prepare_test_case( int test_case_idx ); void run_func(); void prepare_to_validation( int test_case_idx ); int flags; bool have_b, symmetric, compact, vector_w; }; CxCore_SVBkSbTest::CxCore_SVBkSbTest() : CxCore_MatrixTest( "matrix-svbksb", "cvSVBkSb", 2, 1, false, false, 1 ), flags(0), have_b(false), symmetric(false), compact(false), vector_w(false) { test_case_count = 100; test_array[TEMP].push(NULL); test_array[TEMP].push(NULL); test_array[TEMP].push(NULL); } void CxCore_SVBkSbTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types ) { CvRNG* rng = ts->get_rng(); int bits = cvTsRandInt(rng); CxCore_MatrixTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); int min_size, i, m, n; CvSize b_size; min_size = MIN( sizes[INPUT][0].width, sizes[INPUT][0].height ); flags = bits & (CV_SVD_MODIFY_A+CV_SVD_U_T+CV_SVD_V_T); have_b = (bits & 16) != 0; symmetric = (bits & 32) != 0; compact = (bits & 64) != 0; vector_w = (bits & 128) != 0; if( symmetric ) sizes[INPUT][0] = cvSize(min_size, min_size); m = sizes[INPUT][0].height; n = sizes[INPUT][0].width; sizes[INPUT][1] = cvSize(0,0); b_size = cvSize(m,m); if( have_b ) { sizes[INPUT][1].height = sizes[INPUT][0].height; sizes[INPUT][1].width = cvTsRandInt(rng) % 100 + 1; b_size = sizes[INPUT][1]; } if( compact ) sizes[TEMP][0] = cvSize(min_size, min_size); else sizes[TEMP][0] = sizes[INPUT][0]; if( vector_w ) { if( bits & 256 ) sizes[TEMP][0] = cvSize(1, min_size); else sizes[TEMP][0] = cvSize(min_size, 1); } sizes[TEMP][1] = compact ? cvSize(min_size, m) : cvSize(m, m); if( flags & CV_SVD_U_T ) CV_SWAP( sizes[TEMP][1].width, sizes[TEMP][1].height, i ); sizes[TEMP][2] = compact ? cvSize(n, min_size) : cvSize(n, n); if( !(flags & CV_SVD_V_T) ) CV_SWAP( sizes[TEMP][2].width, sizes[TEMP][2].height, i ); types[TEMP][0] = types[TEMP][1] = types[TEMP][2] = types[INPUT][0]; types[OUTPUT][0] = types[REF_OUTPUT][0] = types[INPUT][0]; sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize( b_size.width, n ); } void CxCore_SVBkSbTest::get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types, CvSize** whole_sizes, bool* are_images ) { CxCore_MatrixTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types, whole_sizes, are_images ); have_b = true; vector_w = true; compact = true; sizes[TEMP][0] = cvSize(1,sizes[INPUT][0].height); sizes[INPUT][1] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(1,sizes[INPUT][0].height); flags = CV_SVD_U_T + CV_SVD_V_T; } int CxCore_SVBkSbTest::prepare_test_case( int test_case_idx ) { int code = CxCore_MatrixTest::prepare_test_case( test_case_idx ); if( code > 0 ) { CvMat* input = &test_mat[INPUT][0]; cvTsFloodWithZeros( input, ts->get_rng() ); if( symmetric ) { CvMat* temp = &test_mat[TEMP][1]; cvTsGEMM( input, input, 1., 0, 0., temp, CV_GEMM_B_T ); cvTsCopy( temp, input ); } cvSVD( input, test_array[TEMP][0], test_array[TEMP][1], test_array[TEMP][2], flags ); } return code; } void CxCore_SVBkSbTest::get_minmax_bounds( int /*i*/, int /*j*/, int /*type*/, CvScalar* low, CvScalar* high ) { *low = cvScalarAll(-2.); *high = cvScalarAll(2.); } double CxCore_SVBkSbTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { return CV_MAT_DEPTH(cvGetElemType(test_array[INPUT][0])) == CV_32F ? 1e-3 : 1e-7; } void CxCore_SVBkSbTest::run_func() { cvSVBkSb( test_array[TEMP][0], test_array[TEMP][1], test_array[TEMP][2], test_array[INPUT][1], test_array[OUTPUT][0], flags ); } void CxCore_SVBkSbTest::prepare_to_validation( int ) { CvMat* input = &test_mat[INPUT][0]; int i, m = input->rows, n = input->cols, min_size = MIN(m, n), nb; bool is_float = CV_MAT_DEPTH(input->type) == CV_32F; CvSize w_size = compact ? cvSize(min_size,min_size) : cvSize(m,n); CvMat* w = &test_mat[TEMP][0]; CvMat* wdb = cvCreateMat( w_size.height, w_size.width, CV_64FC1 ); // use exactly the same threshold as in icvSVD... , // so the changes in the library and here should be synchronized. double threshold = cvSum( w ).val[0]*2*(is_float ? FLT_EPSILON : DBL_EPSILON); CvMat *u, *v, *b, *t0, *t1; cvTsZero(wdb); for( i = 0; i < min_size; i++ ) { double wii = vector_w ? cvGetReal1D(w,i) : cvGetReal2D(w,i,i); cvSetReal2D( wdb, i, i, wii > threshold ? 1./wii : 0. ); } u = &test_mat[TEMP][1]; v = &test_mat[TEMP][2]; b = 0; nb = m; if( test_array[INPUT][1] ) { b = &test_mat[INPUT][1]; nb = b->cols; } if( is_float ) { u = cvCreateMat( u->rows, u->cols, CV_64F ); cvTsConvert( &test_mat[TEMP][1], u ); if( b ) { b = cvCreateMat( b->rows, b->cols, CV_64F ); cvTsConvert( &test_mat[INPUT][1], b ); } } t0 = cvCreateMat( wdb->cols, nb, CV_64F ); if( b ) cvTsGEMM( u, b, 1., 0, 0., t0, !(flags & CV_SVD_U_T) ? CV_GEMM_A_T : 0 ); else if( flags & CV_SVD_U_T ) cvTsCopy( u, t0 ); else cvTsTranspose( u, t0 ); if( is_float ) { cvReleaseMat( &b ); if( !symmetric ) { cvReleaseMat( &u ); v = cvCreateMat( v->rows, v->cols, CV_64F ); } else { v = u; u = 0; } cvTsConvert( &test_mat[TEMP][2], v ); } t1 = cvCreateMat( wdb->rows, nb, CV_64F ); cvTsGEMM( wdb, t0, 1, 0, 0, t1, 0 ); if( !is_float || !symmetric ) { cvReleaseMat( &t0 ); t0 = !is_float ? &test_mat[REF_OUTPUT][0] : cvCreateMat( test_mat[REF_OUTPUT][0].rows, nb, CV_64F ); } cvTsGEMM( v, t1, 1, 0, 0, t0, flags & CV_SVD_V_T ? CV_GEMM_A_T : 0 ); cvReleaseMat( &t1 ); if( t0 != &test_mat[REF_OUTPUT][0] ) { cvTsConvert( t0, &test_mat[REF_OUTPUT][0] ); cvReleaseMat( &t0 ); } if( v != &test_mat[TEMP][2] ) cvReleaseMat( &v ); cvReleaseMat( &wdb ); } CxCore_SVBkSbTest svbksb_test; // TODO: eigenvv, invsqrt, cbrt, fastarctan, (round, floor, ceil(?)), /* End of file. */