from __future__ import print_function import cv2 as cv import numpy as np import argparse import random as rng rng.seed(12345) def thresh_callback(val): threshold = val # Detect edges using Canny canny_output = cv.Canny(src_gray, threshold, threshold * 2) # Find contours _, contours, _ = cv.findContours(canny_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) # Find the convex hull object for each contour hull_list = [] for i in range(len(contours)): hull = cv.convexHull(contours[i]) hull_list.append(hull) # Draw contours + hull results drawing = np.zeros((canny_output.shape[0], canny_output.shape[1], 3), dtype=np.uint8) for i in range(len(contours)): color = (rng.randint(0,256), rng.randint(0,256), rng.randint(0,256)) cv.drawContours(drawing, contours, i, color) cv.drawContours(drawing, hull_list, i, color) # Show in a window cv.imshow('Contours', drawing) # Load source image parser = argparse.ArgumentParser(description='Code for Convex Hull tutorial.') parser.add_argument('--input', help='Path to input image.', default='stuff.jpg') args = parser.parse_args() src = cv.imread(cv.samples.findFile(args.input)) if src is None: print('Could not open or find the image:', args.input) exit(0) # Convert image to gray and blur it src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY) src_gray = cv.blur(src_gray, (3,3)) # Create Window source_window = 'Source' cv.namedWindow(source_window) cv.imshow(source_window, src) max_thresh = 255 thresh = 100 # initial threshold cv.createTrackbar('Canny thresh:', source_window, thresh, max_thresh, thresh_callback) thresh_callback(thresh) cv.waitKey()