/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"

// The function calculates center of gravity and the central second order moments
static void icvCompleteMomentState( CvMoments* moments )
{
    double cx = 0, cy = 0;
    double mu20, mu11, mu02;

    assert( moments != 0 );
    moments->inv_sqrt_m00 = 0;

    if( fabs(moments->m00) > DBL_EPSILON )
    {
        double inv_m00 = 1. / moments->m00;
        cx = moments->m10 * inv_m00;
        cy = moments->m01 * inv_m00;
        moments->inv_sqrt_m00 = std::sqrt( fabs(inv_m00) );
    }

    // mu20 = m20 - m10*cx
    mu20 = moments->m20 - moments->m10 * cx;
    // mu11 = m11 - m10*cy
    mu11 = moments->m11 - moments->m10 * cy;
    // mu02 = m02 - m01*cy
    mu02 = moments->m02 - moments->m01 * cy;

    moments->mu20 = mu20;
    moments->mu11 = mu11;
    moments->mu02 = mu02;

    // mu30 = m30 - cx*(3*mu20 + cx*m10)
    moments->mu30 = moments->m30 - cx * (3 * mu20 + cx * moments->m10);
    mu11 += mu11;
    // mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20
    moments->mu21 = moments->m21 - cx * (mu11 + cx * moments->m01) - cy * mu20;
    // mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02
    moments->mu12 = moments->m12 - cy * (mu11 + cy * moments->m10) - cx * mu02;
    // mu03 = m03 - cy*(3*mu02 + cy*m01)
    moments->mu03 = moments->m03 - cy * (3 * mu02 + cy * moments->m01);
}


static void icvContourMoments( CvSeq* contour, CvMoments* moments )
{
    int is_float = CV_SEQ_ELTYPE(contour) == CV_32FC2;

    if( contour->total )
    {
        CvSeqReader reader;
        double a00, a10, a01, a20, a11, a02, a30, a21, a12, a03;
        double xi, yi, xi2, yi2, xi_1, yi_1, xi_12, yi_12, dxy, xii_1, yii_1;
        int lpt = contour->total;

        a00 = a10 = a01 = a20 = a11 = a02 = a30 = a21 = a12 = a03 = 0;

        cvStartReadSeq( contour, &reader, 0 );

        if( !is_float )
        {
            xi_1 = ((CvPoint*)(reader.ptr))->x;
            yi_1 = ((CvPoint*)(reader.ptr))->y;
        }
        else
        {
            xi_1 = ((CvPoint2D32f*)(reader.ptr))->x;
            yi_1 = ((CvPoint2D32f*)(reader.ptr))->y;
        }
        CV_NEXT_SEQ_ELEM( contour->elem_size, reader );

        xi_12 = xi_1 * xi_1;
        yi_12 = yi_1 * yi_1;

        while( lpt-- > 0 )
        {
            if( !is_float )
            {
                xi = ((CvPoint*)(reader.ptr))->x;
                yi = ((CvPoint*)(reader.ptr))->y;
            }
            else
            {
                xi = ((CvPoint2D32f*)(reader.ptr))->x;
                yi = ((CvPoint2D32f*)(reader.ptr))->y;
            }
            CV_NEXT_SEQ_ELEM( contour->elem_size, reader );

            xi2 = xi * xi;
            yi2 = yi * yi;
            dxy = xi_1 * yi - xi * yi_1;
            xii_1 = xi_1 + xi;
            yii_1 = yi_1 + yi;

            a00 += dxy;
            a10 += dxy * xii_1;
            a01 += dxy * yii_1;
            a20 += dxy * (xi_1 * xii_1 + xi2);
            a11 += dxy * (xi_1 * (yii_1 + yi_1) + xi * (yii_1 + yi));
            a02 += dxy * (yi_1 * yii_1 + yi2);
            a30 += dxy * xii_1 * (xi_12 + xi2);
            a03 += dxy * yii_1 * (yi_12 + yi2);
            a21 +=
                dxy * (xi_12 * (3 * yi_1 + yi) + 2 * xi * xi_1 * yii_1 +
                       xi2 * (yi_1 + 3 * yi));
            a12 +=
                dxy * (yi_12 * (3 * xi_1 + xi) + 2 * yi * yi_1 * xii_1 +
                       yi2 * (xi_1 + 3 * xi));

            xi_1 = xi;
            yi_1 = yi;
            xi_12 = xi2;
            yi_12 = yi2;
        }

        double db1_2, db1_6, db1_12, db1_24, db1_20, db1_60;

        if( fabs(a00) > FLT_EPSILON )
        {
            if( a00 > 0 )
            {
                db1_2 = 0.5;
                db1_6 = 0.16666666666666666666666666666667;
                db1_12 = 0.083333333333333333333333333333333;
                db1_24 = 0.041666666666666666666666666666667;
                db1_20 = 0.05;
                db1_60 = 0.016666666666666666666666666666667;
            }
            else
            {
                db1_2 = -0.5;
                db1_6 = -0.16666666666666666666666666666667;
                db1_12 = -0.083333333333333333333333333333333;
                db1_24 = -0.041666666666666666666666666666667;
                db1_20 = -0.05;
                db1_60 = -0.016666666666666666666666666666667;
            }

            // spatial moments
            moments->m00 = a00 * db1_2;
            moments->m10 = a10 * db1_6;
            moments->m01 = a01 * db1_6;
            moments->m20 = a20 * db1_12;
            moments->m11 = a11 * db1_24;
            moments->m02 = a02 * db1_12;
            moments->m30 = a30 * db1_20;
            moments->m21 = a21 * db1_60;
            moments->m12 = a12 * db1_60;
            moments->m03 = a03 * db1_20;

            icvCompleteMomentState( moments );
        }
    }
}


/****************************************************************************************\
*                                Spatial Raster Moments                                  *
\****************************************************************************************/

template<typename T, typename WT, typename MT>
static void momentsInTile( const cv::Mat& img, double* moments )
{
    cv::Size size = img.size();
    int x, y;
    MT mom[10] = {0,0,0,0,0,0,0,0,0,0};

    for( y = 0; y < size.height; y++ )
    {
        const T* ptr = (const T*)(img.data + y*img.step);
        WT x0 = 0, x1 = 0, x2 = 0;
        MT x3 = 0;

        for( x = 0; x < size.width; x++ )
        {
            WT p = ptr[x];
            WT xp = x * p, xxp;

            x0 += p;
            x1 += xp;
            xxp = xp * x;
            x2 += xxp;
            x3 += xxp * x;
        }

        WT py = y * x0, sy = y*y;

        mom[9] += ((MT)py) * sy;  // m03
        mom[8] += ((MT)x1) * sy;  // m12
        mom[7] += ((MT)x2) * y;  // m21
        mom[6] += x3;             // m30
        mom[5] += x0 * sy;        // m02
        mom[4] += x1 * y;         // m11
        mom[3] += x2;             // m20
        mom[2] += py;             // m01
        mom[1] += x1;             // m10
        mom[0] += x0;             // m00
    }

    for( x = 0; x < 10; x++ )
        moments[x] = (double)mom[x];
}


#if CV_SSE2

template<> void momentsInTile<uchar, int, int>( const cv::Mat& img, double* moments )
{
    typedef uchar T;
    typedef int WT;
    typedef int MT;
    cv::Size size = img.size();
    int y;
    MT mom[10] = {0,0,0,0,0,0,0,0,0,0};
    bool useSIMD = cv::checkHardwareSupport(CV_CPU_SSE2);

    for( y = 0; y < size.height; y++ )
    {
        const T* ptr = img.ptr<T>(y);
        int x0 = 0, x1 = 0, x2 = 0, x3 = 0, x = 0;

        if( useSIMD )
        {
            __m128i qx_init = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7);
            __m128i dx = _mm_set1_epi16(8);
            __m128i z = _mm_setzero_si128(), qx0 = z, qx1 = z, qx2 = z, qx3 = z, qx = qx_init;

            for( ; x <= size.width - 8; x += 8 )
            {
                __m128i p = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr + x)), z);
                qx0 = _mm_add_epi32(qx0, _mm_sad_epu8(p, z));
                __m128i px = _mm_mullo_epi16(p, qx);
                __m128i sx = _mm_mullo_epi16(qx, qx);
                qx1 = _mm_add_epi32(qx1, _mm_madd_epi16(p, qx));
                qx2 = _mm_add_epi32(qx2, _mm_madd_epi16(p, sx));
                qx3 = _mm_add_epi32(qx3, _mm_madd_epi16(px, sx));

                qx = _mm_add_epi16(qx, dx);
            }
            int CV_DECL_ALIGNED(16) buf[4];
            _mm_store_si128((__m128i*)buf, qx0);
            x0 = buf[0] + buf[1] + buf[2] + buf[3];
            _mm_store_si128((__m128i*)buf, qx1);
            x1 = buf[0] + buf[1] + buf[2] + buf[3];
            _mm_store_si128((__m128i*)buf, qx2);
            x2 = buf[0] + buf[1] + buf[2] + buf[3];
            _mm_store_si128((__m128i*)buf, qx3);
            x3 = buf[0] + buf[1] + buf[2] + buf[3];
        }

        for( ; x < size.width; x++ )
        {
            WT p = ptr[x];
            WT xp = x * p, xxp;

            x0 += p;
            x1 += xp;
            xxp = xp * x;
            x2 += xxp;
            x3 += xxp * x;
        }

        WT py = y * x0, sy = y*y;

        mom[9] += ((MT)py) * sy;  // m03
        mom[8] += ((MT)x1) * sy;  // m12
        mom[7] += ((MT)x2) * y;  // m21
        mom[6] += x3;             // m30
        mom[5] += x0 * sy;        // m02
        mom[4] += x1 * y;         // m11
        mom[3] += x2;             // m20
        mom[2] += py;             // m01
        mom[1] += x1;             // m10
        mom[0] += x0;             // m00
    }

    for(int x = 0; x < 10; x++ )
        moments[x] = (double)mom[x];
}

#endif

typedef void (*CvMomentsInTileFunc)(const cv::Mat& img, double* moments);

CV_IMPL void cvMoments( const void* array, CvMoments* moments, int binary )
{
    const int TILE_SIZE = 32;
    int type, depth, cn, coi = 0;
    CvMat stub, *mat = (CvMat*)array;
    CvMomentsInTileFunc func = 0;
    CvContour contourHeader;
    CvSeq* contour = 0;
    CvSeqBlock block;
    double buf[TILE_SIZE*TILE_SIZE];
    uchar nzbuf[TILE_SIZE*TILE_SIZE];

    if( CV_IS_SEQ( array ))
    {
        contour = (CvSeq*)array;
        if( !CV_IS_SEQ_POINT_SET( contour ))
            CV_Error( CV_StsBadArg, "The passed sequence is not a valid contour" );
    }

    if( !moments )
        CV_Error( CV_StsNullPtr, "" );

    memset( moments, 0, sizeof(*moments));

    if( !contour )
    {
        mat = cvGetMat( mat, &stub, &coi );
        type = CV_MAT_TYPE( mat->type );

        if( type == CV_32SC2 || type == CV_32FC2 )
        {
            contour = cvPointSeqFromMat(
                CV_SEQ_KIND_CURVE | CV_SEQ_FLAG_CLOSED,
                mat, &contourHeader, &block );
        }
    }

    if( contour )
    {
        icvContourMoments( contour, moments );
        return;
    }

    type = CV_MAT_TYPE( mat->type );
    depth = CV_MAT_DEPTH( type );
    cn = CV_MAT_CN( type );

    cv::Size size = cvGetMatSize( mat );

    if( cn > 1 && coi == 0 )
        CV_Error( CV_StsBadArg, "Invalid image type" );

    if( size.width <= 0 || size.height <= 0 )
        return;

    if( binary || depth == CV_8U )
        func = momentsInTile<uchar, int, int>;
    else if( depth == CV_16U )
        func = momentsInTile<ushort, int, int64>;
    else if( depth == CV_16S )
        func = momentsInTile<short, int, int64>;
    else if( depth == CV_32F )
        func = momentsInTile<float, double, double>;
    else if( depth == CV_64F )
        func = momentsInTile<double, double, double>;
    else
        CV_Error( CV_StsUnsupportedFormat, "" );

    cv::Mat src0(mat);

    for( int y = 0; y < size.height; y += TILE_SIZE )
    {
        cv::Size tileSize;
        tileSize.height = std::min(TILE_SIZE, size.height - y);

        for( int x = 0; x < size.width; x += TILE_SIZE )
        {
            tileSize.width = std::min(TILE_SIZE, size.width - x);
            cv::Mat src(src0, cv::Rect(x, y, tileSize.width, tileSize.height));

            if( coi > 0 )
            {
                cv::Mat tmp(tileSize, depth, buf);
                int pairs[] = {coi-1, 0};
                cv::mixChannels(&src, 1, &tmp, 1, pairs, 1);
                src = tmp;
            }
            if( binary )
            {
                cv::Mat tmp(tileSize, CV_8U, nzbuf);
                cv::compare( src, 0, tmp, CV_CMP_NE );
                src = tmp;
            }

            double mom[10];
            func( src, mom );

            if(binary)
            {
                double s = 1./255;
                for( int k = 0; k < 10; k++ )
                    mom[k] *= s;
            }

            double xm = x * mom[0], ym = y * mom[0];

            // accumulate moments computed in each tile

            // + m00 ( = m00' )
            moments->m00 += mom[0];

            // + m10 ( = m10' + x*m00' )
            moments->m10 += mom[1] + xm;

            // + m01 ( = m01' + y*m00' )
            moments->m01 += mom[2] + ym;

            // + m20 ( = m20' + 2*x*m10' + x*x*m00' )
            moments->m20 += mom[3] + x * (mom[1] * 2 + xm);

            // + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' )
            moments->m11 += mom[4] + x * (mom[2] + ym) + y * mom[1];

            // + m02 ( = m02' + 2*y*m01' + y*y*m00' )
            moments->m02 += mom[5] + y * (mom[2] * 2 + ym);

            // + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' )
            moments->m30 += mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm));

            // + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20')
            moments->m21 += mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3];

            // + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02')
            moments->m12 += mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5];

            // + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' )
            moments->m03 += mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
        }
    }

    icvCompleteMomentState( moments );
}


CV_IMPL void cvGetHuMoments( CvMoments * mState, CvHuMoments * HuState )
{
    if( !mState || !HuState )
        CV_Error( CV_StsNullPtr, "" );

    double m00s = mState->inv_sqrt_m00, m00 = m00s * m00s, s2 = m00 * m00, s3 = s2 * m00s;

    double nu20 = mState->mu20 * s2,
        nu11 = mState->mu11 * s2,
        nu02 = mState->mu02 * s2,
        nu30 = mState->mu30 * s3,
        nu21 = mState->mu21 * s3, nu12 = mState->mu12 * s3, nu03 = mState->mu03 * s3;

    double t0 = nu30 + nu12;
    double t1 = nu21 + nu03;

    double q0 = t0 * t0, q1 = t1 * t1;

    double n4 = 4 * nu11;
    double s = nu20 + nu02;
    double d = nu20 - nu02;

    HuState->hu1 = s;
    HuState->hu2 = d * d + n4 * nu11;
    HuState->hu4 = q0 + q1;
    HuState->hu6 = d * (q0 - q1) + n4 * t0 * t1;

    t0 *= q0 - 3 * q1;
    t1 *= 3 * q0 - q1;

    q0 = nu30 - 3 * nu12;
    q1 = 3 * nu21 - nu03;

    HuState->hu3 = q0 * q0 + q1 * q1;
    HuState->hu5 = q0 * t0 + q1 * t1;
    HuState->hu7 = q1 * t0 - q0 * t1;
}


CV_IMPL double cvGetSpatialMoment( CvMoments * moments, int x_order, int y_order )
{
    int order = x_order + y_order;

    if( !moments )
        CV_Error( CV_StsNullPtr, "" );
    if( (x_order | y_order) < 0 || order > 3 )
        CV_Error( CV_StsOutOfRange, "" );

    return (&(moments->m00))[order + (order >> 1) + (order > 2) * 2 + y_order];
}


CV_IMPL double cvGetCentralMoment( CvMoments * moments, int x_order, int y_order )
{
    int order = x_order + y_order;

    if( !moments )
        CV_Error( CV_StsNullPtr, "" );
    if( (x_order | y_order) < 0 || order > 3 )
        CV_Error( CV_StsOutOfRange, "" );

    return order >= 2 ? (&(moments->m00))[4 + order * 3 + y_order] :
           order == 0 ? moments->m00 : 0;
}


CV_IMPL double cvGetNormalizedCentralMoment( CvMoments * moments, int x_order, int y_order )
{
    int order = x_order + y_order;

    double mu = cvGetCentralMoment( moments, x_order, y_order );
    double m00s = moments->inv_sqrt_m00;

    while( --order >= 0 )
        mu *= m00s;
    return mu * m00s * m00s;
}


namespace cv
{

Moments::Moments()
{
    m00 = m10 = m01 = m20 = m11 = m02 = m30 = m21 = m12 = m03 =
    mu20 = mu11 = mu02 = mu30 = mu21 = mu12 = mu03 =
    nu20 = nu11 = nu02 = nu30 = nu21 = nu12 = nu03 = 0.;
}

Moments::Moments( double _m00, double _m10, double _m01, double _m20, double _m11,
                  double _m02, double _m30, double _m21, double _m12, double _m03 )
{
    m00 = _m00; m10 = _m10; m01 = _m01;
    m20 = _m20; m11 = _m11; m02 = _m02;
    m30 = _m30; m21 = _m21; m12 = _m12; m03 = _m03;

    double cx = 0, cy = 0, inv_m00 = 0;
    if( std::abs(m00) > DBL_EPSILON )
    {
        inv_m00 = 1./m00;
        cx = m10*inv_m00; cy = m01*inv_m00;
    }

    mu20 = m20 - m10*cx;
    mu11 = m11 - m10*cy;
    mu02 = m02 - m01*cy;

    mu30 = m30 - cx*(3*mu20 + cx*m10);
    mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20;
    mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02;
    mu03 = m03 - cy*(3*mu02 + cy*m01);

    double inv_sqrt_m00 = std::sqrt(std::abs(inv_m00));
    double s2 = inv_m00*inv_m00, s3 = s2*inv_sqrt_m00;

    nu20 = mu20*s2; nu11 = mu11*s2; nu02 = mu02*s2;
    nu30 = mu30*s3; nu21 = mu21*s3; nu12 = mu12*s3; nu03 = mu03*s3;
}

Moments::Moments( const CvMoments& m )
{
    *this = Moments(m.m00, m.m10, m.m01, m.m20, m.m11, m.m02, m.m30, m.m21, m.m12, m.m03);
}

Moments::operator CvMoments() const
{
    CvMoments m;
    m.m00 = m00; m.m10 = m10; m.m01 = m01;
    m.m20 = m20; m.m11 = m11; m.m02 = m02;
    m.m30 = m30; m.m21 = m21; m.m12 = m12; m.m03 = m03;
    m.mu20 = mu20; m.mu11 = mu11; m.mu02 = mu02;
    m.mu30 = mu30; m.mu21 = mu21; m.mu12 = mu12; m.mu03 = mu03;
    double am00 = std::abs(m00);
    m.inv_sqrt_m00 = am00 > DBL_EPSILON ? 1./std::sqrt(am00) : 0;

    return m;
}

}

cv::Moments cv::moments( InputArray _array, bool binaryImage )
{
    CvMoments om;
    Mat arr = _array.getMat();
    CvMat c_array = arr;
    cvMoments(&c_array, &om, binaryImage);
    return om;
}

void cv::HuMoments( const Moments& m, double hu[7] )
{
    double t0 = m.nu30 + m.nu12;
    double t1 = m.nu21 + m.nu03;

    double q0 = t0 * t0, q1 = t1 * t1;

    double n4 = 4 * m.nu11;
    double s = m.nu20 + m.nu02;
    double d = m.nu20 - m.nu02;

    hu[0] = s;
    hu[1] = d * d + n4 * m.nu11;
    hu[3] = q0 + q1;
    hu[5] = d * (q0 - q1) + n4 * t0 * t1;

    t0 *= q0 - 3 * q1;
    t1 *= 3 * q0 - q1;

    q0 = m.nu30 - 3 * m.nu12;
    q1 = 3 * m.nu21 - m.nu03;

    hu[2] = q0 * q0 + q1 * q1;
    hu[4] = q0 * t0 + q1 * t1;
    hu[6] = q1 * t0 - q0 * t1;
}

void cv::HuMoments( const Moments& m, OutputArray _hu )
{
    _hu.create(7, 1, CV_64F);
    Mat hu = _hu.getMat();
    CV_Assert( hu.isContinuous() );
    HuMoments(m, (double*)hu.data);
}

/* End of file. */