/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::ocl; #if !defined (HAVE_OPENCL) void cv::ocl::HoughCircles(const oclMat&, oclMat&, int, float, float, int, int, int, int, int) { throw_nogpu(); } void cv::ocl::HoughCircles(const oclMat&, oclMat&, HoughCirclesBuf&, int, float, float, int, int, int, int, int) { throw_nogpu(); } void cv::ocl::HoughCirclesDownload(const oclMat&, OutputArray) { throw_nogpu(); } #else /* !defined (HAVE_OPENCL) */ #define MUL_UP(a, b) ((a)/(b)+1)*(b) namespace cv { namespace ocl { ///////////////////////////OpenCL kernel strings/////////////////////////// extern const char *imgproc_hough; }} ////////////////////////////////////////////////////////// // common functions namespace { int buildPointList_gpu(const oclMat& src, oclMat& list) { const int PIXELS_PER_THREAD = 16; int totalCount = 0; int err = CL_SUCCESS; cl_mem counter = clCreateBuffer(src.clCxt->impl->clContext, CL_MEM_COPY_HOST_PTR, sizeof(int), &totalCount, &err); openCLSafeCall(err); const size_t blkSizeX = 32; const size_t blkSizeY = 4; size_t localThreads[3] = { blkSizeX, blkSizeY, 1 }; const int PIXELS_PER_BLOCK = blkSizeX * PIXELS_PER_THREAD; const size_t glbSizeX = src.cols % (PIXELS_PER_BLOCK) == 0 ? src.cols : MUL_UP(src.cols, PIXELS_PER_BLOCK); const size_t glbSizeY = src.rows % blkSizeY == 0 ? src.rows : MUL_UP(src.rows, blkSizeY); size_t globalThreads[3] = { glbSizeX, glbSizeY, 1 }; std::vector<std::pair<size_t , const void *> > args; args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.rows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.step )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&list.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&counter )); openCLExecuteKernel(src.clCxt, &imgproc_hough, "buildPointList", globalThreads, localThreads, args, -1, -1); openCLSafeCall(clEnqueueReadBuffer(src.clCxt->impl->clCmdQueue, counter, CL_TRUE, 0, sizeof(int), &totalCount, 0, NULL, NULL)); openCLSafeCall(clReleaseMemObject(counter)); return totalCount; } } ////////////////////////////////////////////////////////// // HoughCircles namespace { void circlesAccumCenters_gpu(const oclMat& list, int count, const oclMat& dx, const oclMat& dy, oclMat& accum, int minRadius, int maxRadius, float idp) { const size_t blkSizeX = 256; size_t localThreads[3] = { 256, 1, 1 }; const size_t glbSizeX = count % blkSizeX == 0 ? count : MUL_UP(count, blkSizeX); size_t globalThreads[3] = { glbSizeX, 1, 1 }; const int width = accum.cols - 2; const int height = accum.rows - 2; std::vector<std::pair<size_t , const void *> > args; args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&list.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&count )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dx.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dx.step )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dy.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dy.step )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&accum.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&accum.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&width )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&height )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&minRadius)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&maxRadius)); args.push_back( std::make_pair( sizeof(cl_float), (void *)&idp)); openCLExecuteKernel(accum.clCxt, &imgproc_hough, "circlesAccumCenters", globalThreads, localThreads, args, -1, -1); } int buildCentersList_gpu(const oclMat& accum, oclMat& centers, int threshold) { int totalCount = 0; int err = CL_SUCCESS; cl_mem counter = clCreateBuffer(accum.clCxt->impl->clContext, CL_MEM_COPY_HOST_PTR, sizeof(int), &totalCount, &err); openCLSafeCall(err); const size_t blkSizeX = 32; const size_t blkSizeY = 8; size_t localThreads[3] = { blkSizeX, blkSizeY, 1 }; const size_t glbSizeX = (accum.cols - 2) % blkSizeX == 0 ? accum.cols - 2 : MUL_UP(accum.cols - 2, blkSizeX); const size_t glbSizeY = (accum.rows - 2) % blkSizeY == 0 ? accum.rows - 2 : MUL_UP(accum.rows - 2, blkSizeY); size_t globalThreads[3] = { glbSizeX, glbSizeY, 1 }; std::vector<std::pair<size_t , const void *> > args; args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&accum.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&accum.cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&accum.rows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&accum.step )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)¢ers.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&threshold )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&counter )); openCLExecuteKernel(accum.clCxt, &imgproc_hough, "buildCentersList", globalThreads, localThreads, args, -1, -1); openCLSafeCall(clEnqueueReadBuffer(accum.clCxt->impl->clCmdQueue, counter, CL_TRUE, 0, sizeof(int), &totalCount, 0, NULL, NULL)); openCLSafeCall(clReleaseMemObject(counter)); return totalCount; } int circlesAccumRadius_gpu(const oclMat& centers, int centersCount, const oclMat& list, int count, oclMat& circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold) { int totalCount = 0; int err = CL_SUCCESS; cl_mem counter = clCreateBuffer(circles.clCxt->impl->clContext, CL_MEM_COPY_HOST_PTR, sizeof(int), &totalCount, &err); openCLSafeCall(err); const size_t blkSizeX = circles.clCxt->impl->maxWorkGroupSize; size_t localThreads[3] = { blkSizeX, 1, 1 }; const size_t glbSizeX = centersCount * blkSizeX; size_t globalThreads[3] = { glbSizeX, 1, 1 }; const int histSize = maxRadius - minRadius + 1; size_t smemSize = (histSize + 2) * sizeof(int); std::vector<std::pair<size_t , const void *> > args; args.push_back( std::make_pair( sizeof(cl_mem) , (void *)¢ers.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&list.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&count )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&circles.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&maxCircles )); args.push_back( std::make_pair( sizeof(cl_float), (void *)&dp )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&minRadius )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&maxRadius )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&histSize )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&threshold )); args.push_back( std::make_pair( smemSize , (void *)NULL )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&counter )); CV_Assert(circles.offset == 0); openCLExecuteKernel(circles.clCxt, &imgproc_hough, "circlesAccumRadius", globalThreads, localThreads, args, -1, -1); openCLSafeCall(clEnqueueReadBuffer(circles.clCxt->impl->clCmdQueue, counter, CL_TRUE, 0, sizeof(int), &totalCount, 0, NULL, NULL)); openCLSafeCall(clReleaseMemObject(counter)); totalCount = std::min(totalCount, maxCircles); return totalCount; } } // namespace void cv::ocl::HoughCircles(const oclMat& src, oclMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles) { HoughCirclesBuf buf; HoughCircles(src, circles, buf, method, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles); } void cv::ocl::HoughCircles(const oclMat& src, oclMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles) { CV_Assert(src.type() == CV_8UC1); CV_Assert(src.cols < std::numeric_limits<unsigned short>::max()); CV_Assert(src.rows < std::numeric_limits<unsigned short>::max()); CV_Assert(method == CV_HOUGH_GRADIENT); CV_Assert(dp > 0); CV_Assert(minRadius > 0 && maxRadius > minRadius); CV_Assert(cannyThreshold > 0); CV_Assert(votesThreshold > 0); CV_Assert(maxCircles > 0); const float idp = 1.0f / dp; cv::ocl::Canny(src, buf.cannyBuf, buf.edges, std::max(cannyThreshold / 2, 1), cannyThreshold); ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.srcPoints); const int pointsCount = buildPointList_gpu(buf.edges, buf.srcPoints); if (pointsCount == 0) { circles.release(); return; } ensureSizeIsEnough(cvCeil(src.rows * idp) + 2, cvCeil(src.cols * idp) + 2, CV_32SC1, buf.accum); buf.accum.setTo(Scalar::all(0)); circlesAccumCenters_gpu(buf.srcPoints, pointsCount, buf.cannyBuf.dx, buf.cannyBuf.dy, buf.accum, minRadius, maxRadius, idp); ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.centers); int centersCount = buildCentersList_gpu(buf.accum, buf.centers, votesThreshold); if (centersCount == 0) { circles.release(); return; } if (minDist > 1) { cv::AutoBuffer<unsigned int> oldBuf_(centersCount); cv::AutoBuffer<unsigned int> newBuf_(centersCount); int newCount = 0; unsigned int* oldBuf = oldBuf_; unsigned int* newBuf = newBuf_; openCLSafeCall(clEnqueueReadBuffer(buf.centers.clCxt->impl->clCmdQueue, (cl_mem)buf.centers.data, CL_TRUE, 0, centersCount * sizeof(unsigned int), oldBuf, 0, NULL, NULL)); const int cellSize = cvRound(minDist); const int gridWidth = (src.cols + cellSize - 1) / cellSize; const int gridHeight = (src.rows + cellSize - 1) / cellSize; std::vector< std::vector<unsigned int> > grid(gridWidth * gridHeight); const float minDist2 = minDist * minDist; for (int i = 0; i < centersCount; ++i) { unsigned int p = oldBuf[i]; const int px = p & 0xFFFF; const int py = (p >> 16) & 0xFFFF; bool good = true; int xCell = static_cast<int>(px / cellSize); int yCell = static_cast<int>(py / cellSize); int x1 = xCell - 1; int y1 = yCell - 1; int x2 = xCell + 1; int y2 = yCell + 1; // boundary check x1 = std::max(0, x1); y1 = std::max(0, y1); x2 = std::min(gridWidth - 1, x2); y2 = std::min(gridHeight - 1, y2); for (int yy = y1; yy <= y2; ++yy) { for (int xx = x1; xx <= x2; ++xx) { std::vector<unsigned int>& m = grid[yy * gridWidth + xx]; for(size_t j = 0; j < m.size(); ++j) { const int val = m[j]; const int jx = val & 0xFFFF; const int jy = (val >> 16) & 0xFFFF; float dx = (float)(px - jx); float dy = (float)(py - jy); if (dx * dx + dy * dy < minDist2) { good = false; goto break_out; } } } } break_out: if(good) { grid[yCell * gridWidth + xCell].push_back(p); newBuf[newCount++] = p; } } openCLSafeCall(clEnqueueWriteBuffer(buf.centers.clCxt->impl->clCmdQueue, (cl_mem)buf.centers.data, CL_TRUE, 0, newCount * sizeof(unsigned int), newBuf, 0, 0, 0)); centersCount = newCount; } ensureSizeIsEnough(1, maxCircles, CV_32FC3, circles); const int circlesCount = circlesAccumRadius_gpu(buf.centers, centersCount, buf.srcPoints, pointsCount, circles, maxCircles, dp, minRadius, maxRadius, votesThreshold); if (circlesCount > 0) circles.cols = circlesCount; else circles.release(); } void cv::ocl::HoughCirclesDownload(const oclMat& d_circles, cv::OutputArray h_circles_) { // FIX ME: garbage values are copied! CV_Error(CV_StsNotImplemented, "HoughCirclesDownload is not implemented"); if (d_circles.empty()) { h_circles_.release(); return; } CV_Assert(d_circles.rows == 1 && d_circles.type() == CV_32FC3); h_circles_.create(1, d_circles.cols, CV_32FC3); Mat h_circles = h_circles_.getMat(); d_circles.download(h_circles); } #endif /* !defined (HAVE_OPENCL) */