/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Niko Li, newlife20080214@gmail.com // Jia Haipeng, jiahaipeng95@gmail.com // Shengen Yan, yanshengen@gmail.com // Rock Li, Rock.Li@amd.com // Zero Lin, Zero.Lin@amd.com // Zhang Ying, zhangying913@gmail.com // Xu Pang, pangxu010@163.com // Wu Zailong, bullet@yeah.net // Wenju He, wenju@multicorewareinc.com // Peng Xiao, pengxiao@outlook.com // Sen Liu, swjtuls1987@126.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels.hpp" using namespace cv; using namespace cv::ocl; namespace cv { namespace ocl { ////////////////////////////////////OpenCL call wrappers//////////////////////////// template struct index_and_sizeof; template <> struct index_and_sizeof { enum { index = 1 }; }; template <> struct index_and_sizeof { enum { index = 2 }; }; template <> struct index_and_sizeof { enum { index = 3 }; }; template <> struct index_and_sizeof { enum { index = 4 }; }; template <> struct index_and_sizeof { enum { index = 5 }; }; template <> struct index_and_sizeof { enum { index = 6 }; }; template <> struct index_and_sizeof { enum { index = 7 }; }; ///////////////////////////////////////////////////////////////////////////////////// // threshold static std::vector scalarToVector(const cv::Scalar & sc, int depth, int ocn, int cn) { CV_Assert(ocn == cn || (ocn == 4 && cn == 3)); static const int sizeMap[] = { sizeof(uchar), sizeof(char), sizeof(ushort), sizeof(short), sizeof(int), sizeof(float), sizeof(double) }; int elemSize1 = sizeMap[depth]; int bufSize = elemSize1 * ocn; std::vector _buf(bufSize); uchar * buf = &_buf[0]; scalarToRawData(sc, buf, CV_MAKE_TYPE(depth, cn)); memset(buf + elemSize1 * cn, 0, (ocn - cn) * elemSize1); return _buf; } static void threshold_runner(const oclMat &src, oclMat &dst, double thresh, double maxVal, int thresholdType) { bool ival = src.depth() < CV_32F; int cn = src.channels(), vecSize = 4, depth = src.depth(); std::vector thresholdValue = scalarToVector(cv::Scalar::all(ival ? cvFloor(thresh) : thresh), dst.depth(), dst.oclchannels(), dst.channels()); std::vector maxValue = scalarToVector(cv::Scalar::all(maxVal), dst.depth(), dst.oclchannels(), dst.channels()); const char * const thresholdMap[] = { "THRESH_BINARY", "THRESH_BINARY_INV", "THRESH_TRUNC", "THRESH_TOZERO", "THRESH_TOZERO_INV" }; const char * const channelMap[] = { "", "", "2", "4", "4" }; const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; std::string buildOptions = format("-D T=%s%s -D %s", typeMap[depth], channelMap[cn], thresholdMap[thresholdType]); int elemSize = src.elemSize(); int src_step = src.step / elemSize, src_offset = src.offset / elemSize; int dst_step = dst.step / elemSize, dst_offset = dst.offset / elemSize; std::vector< std::pair > args; args.push_back( std::make_pair(sizeof(cl_mem), (void *)&src.data)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&src_offset)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&src_step)); args.push_back( std::make_pair(sizeof(cl_mem), (void *)&dst.data)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst_offset)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst_step)); args.push_back( std::make_pair(thresholdValue.size(), (void *)&thresholdValue[0])); args.push_back( std::make_pair(maxValue.size(), (void *)&maxValue[0])); int max_index = dst.cols, cols = dst.cols; if (cn == 1 && vecSize > 1) { CV_Assert(((vecSize - 1) & vecSize) == 0 && vecSize <= 16); cols = divUp(cols, vecSize); buildOptions += format(" -D VECTORIZED -D VT=%s%d -D VLOADN=vload%d -D VECSIZE=%d -D VSTOREN=vstore%d", typeMap[depth], vecSize, vecSize, vecSize, vecSize); int vecSizeBytes = vecSize * dst.elemSize1(); if ((dst.offset % dst.step) % vecSizeBytes == 0 && dst.step % vecSizeBytes == 0) buildOptions += " -D DST_ALIGNED"; if ((src.offset % src.step) % vecSizeBytes == 0 && src.step % vecSizeBytes == 0) buildOptions += " -D SRC_ALIGNED"; args.push_back( std::make_pair(sizeof(cl_int), (void *)&max_index)); } args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.rows)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&cols)); size_t localThreads[3] = { 16, 16, 1 }; size_t globalThreads[3] = { cols, dst.rows, 1 }; openCLExecuteKernel(src.clCxt, &imgproc_threshold, "threshold", globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); } double threshold(const oclMat &src, oclMat &dst, double thresh, double maxVal, int thresholdType) { CV_Assert(thresholdType == THRESH_BINARY || thresholdType == THRESH_BINARY_INV || thresholdType == THRESH_TRUNC || thresholdType == THRESH_TOZERO || thresholdType == THRESH_TOZERO_INV); dst.create(src.size(), src.type()); threshold_runner(src, dst, thresh, maxVal, thresholdType); return thresh; } //////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////// remap ////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////// void remap( const oclMat &src, oclMat &dst, oclMat &map1, oclMat &map2, int interpolation, int borderType, const Scalar &borderValue ) { Context *clCxt = src.clCxt; bool supportsDouble = clCxt->supportsFeature(FEATURE_CL_DOUBLE); if (!supportsDouble && src.depth() == CV_64F) { CV_Error(CV_OpenCLDoubleNotSupported, "Selected device does not support double"); return; } if (map1.empty()) map1.swap(map2); CV_Assert(interpolation == INTER_LINEAR || interpolation == INTER_NEAREST); CV_Assert((map1.type() == CV_16SC2 && (map2.empty() || (map2.type() == CV_16UC1 || map2.type() == CV_16SC1)) ) || (map1.type() == CV_32FC2 && !map2.data) || (map1.type() == CV_32FC1 && map2.type() == CV_32FC1)); CV_Assert(!map2.data || map2.size() == map1.size()); CV_Assert(borderType == BORDER_CONSTANT || borderType == BORDER_REPLICATE || borderType == BORDER_WRAP || borderType == BORDER_REFLECT_101 || borderType == BORDER_REFLECT); dst.create(map1.size(), src.type()); const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char * const channelMap[] = { "", "", "2", "4", "4" }; const char * const interMap[] = { "INTER_NEAREST", "INTER_LINEAR", "INTER_CUBIC", "INTER_LINEAR", "INTER_LANCZOS" }; const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT_101", "BORDER_TRANSPARENT" }; String kernelName = "remap"; if (map1.type() == CV_32FC2 && map2.empty()) kernelName += "_32FC2"; else if (map1.type() == CV_16SC2) { kernelName += "_16SC2"; if (!map2.empty()) kernelName += "_16UC1"; } else if (map1.type() == CV_32FC1 && map2.type() == CV_32FC1) kernelName += "_2_32FC1"; else CV_Error(Error::StsBadArg, "Unsupported map types"); int ocn = dst.oclchannels(); size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; Mat scalar(1, 1, CV_MAKE_TYPE(dst.depth(), ocn), borderValue); String buildOptions = format("-D %s -D %s -D T=%s%s", interMap[interpolation], borderMap[borderType], typeMap[src.depth()], channelMap[ocn]); if (interpolation != INTER_NEAREST) { int wdepth = std::max(CV_32F, dst.depth()); buildOptions = buildOptions + format(" -D WT=%s%s -D convertToT=convert_%s%s%s -D convertToWT=convert_%s%s" " -D convertToWT2=convert_%s2 -D WT2=%s2", typeMap[wdepth], channelMap[ocn], typeMap[src.depth()], channelMap[ocn], src.depth() < CV_32F ? "_sat_rte" : "", typeMap[wdepth], channelMap[ocn], typeMap[wdepth], typeMap[wdepth]); } int src_step = src.step / src.elemSize(), src_offset = src.offset / src.elemSize(); int map1_step = map1.step / map1.elemSize(), map1_offset = map1.offset / map1.elemSize(); int map2_step = map2.step / map2.elemSize(), map2_offset = map2.offset / map2.elemSize(); int dst_step = dst.step / dst.elemSize(), dst_offset = dst.offset / dst.elemSize(); std::vector< std::pair > args; args.push_back( std::make_pair(sizeof(cl_mem), (void *)&src.data)); args.push_back( std::make_pair(sizeof(cl_mem), (void *)&dst.data)); args.push_back( std::make_pair(sizeof(cl_mem), (void *)&map1.data)); if (!map2.empty()) args.push_back( std::make_pair(sizeof(cl_mem), (void *)&map2.data)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&src_offset)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst_offset)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&map1_offset)); if (!map2.empty()) args.push_back( std::make_pair(sizeof(cl_int), (void *)&map2_offset)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&src_step)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst_step)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&map1_step)); if (!map2.empty()) args.push_back( std::make_pair(sizeof(cl_int), (void *)&map2_step)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.cols)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.rows)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.cols)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.rows)); args.push_back( std::make_pair(scalar.elemSize(), (void *)scalar.data)); #ifdef ANDROID openCLExecuteKernel(clCxt, &imgproc_remap, kernelName, globalThreads, NULL, args, -1, -1, buildOptions.c_str()); #else size_t localThreads[3] = { 256, 1, 1 }; openCLExecuteKernel(clCxt, &imgproc_remap, kernelName, globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); #endif } //////////////////////////////////////////////////////////////////////////////////////////// // resize static void computeResizeAreaTabs(int ssize, int dsize, double scale, int * const map_tab, float * const alpha_tab, int * const ofs_tab) { int k = 0, dx = 0; for ( ; dx < dsize; dx++) { ofs_tab[dx] = k; double fsx1 = dx * scale; double fsx2 = fsx1 + scale; double cellWidth = std::min(scale, ssize - fsx1); int sx1 = cvCeil(fsx1), sx2 = cvFloor(fsx2); sx2 = std::min(sx2, ssize - 1); sx1 = std::min(sx1, sx2); if (sx1 - fsx1 > 1e-3) { map_tab[k] = sx1 - 1; alpha_tab[k++] = (float)((sx1 - fsx1) / cellWidth); } for (int sx = sx1; sx < sx2; sx++) { map_tab[k] = sx; alpha_tab[k++] = float(1.0 / cellWidth); } if (fsx2 - sx2 > 1e-3) { map_tab[k] = sx2; alpha_tab[k++] = (float)(std::min(std::min(fsx2 - sx2, 1.), cellWidth) / cellWidth); } } ofs_tab[dx] = k; } static void computeResizeAreaFastTabs(int * dmap_tab, int * smap_tab, int scale, int dcols, int scol) { for (int i = 0; i < dcols; ++i) dmap_tab[i] = scale * i; for (int i = 0, size = dcols * scale; i < size; ++i) smap_tab[i] = std::min(scol - 1, i); } static void resize_gpu( const oclMat &src, oclMat &dst, double ifx, double ify, int interpolation) { float ifxf = (float)ifx, ifyf = (float)ify; int src_step = src.step / src.elemSize(), src_offset = src.offset / src.elemSize(); int dst_step = dst.step / dst.elemSize(), dst_offset = dst.offset / dst.elemSize(); int ocn = dst.oclchannels(), depth = dst.depth(); const char * const interMap[] = { "NN", "LN", "CUBIC", "AREA", "LAN4" }; std::string kernelName = std::string("resize") + interMap[interpolation]; const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char * const channelMap[] = { "" , "", "2", "4", "4" }; std::string buildOption = format("-D %s -D T=%s%s", interMap[interpolation], typeMap[depth], channelMap[ocn]); int wdepth = std::max(src.depth(), CV_32F); // check if fx, fy is integer and then we have inter area fast mode int iscale_x = saturate_cast(ifx); int iscale_y = saturate_cast(ify); bool is_area_fast = std::abs(ifx - iscale_x) < DBL_EPSILON && std::abs(ify - iscale_y) < DBL_EPSILON; if (is_area_fast) wdepth = std::max(src.depth(), CV_32S); if (interpolation != INTER_NEAREST) { buildOption += format(" -D WT=%s -D WTV=%s%s -D convertToWTV=convert_%s%s -D convertToT=convert_%s%s%s", typeMap[wdepth], typeMap[wdepth], channelMap[ocn], typeMap[wdepth], channelMap[ocn], typeMap[src.depth()], channelMap[ocn], src.depth() <= CV_32S ? "_sat_rte" : ""); } #ifdef ANDROID size_t blkSizeX = 16, blkSizeY = 8; #else size_t blkSizeX = 16, blkSizeY = 16; #endif size_t glbSizeX; if (src.type() == CV_8UC1 && interpolation == INTER_LINEAR) { size_t cols = (dst.cols + dst.offset % 4 + 3) / 4; glbSizeX = cols % blkSizeX == 0 && cols != 0 ? cols : (cols / blkSizeX + 1) * blkSizeX; } else glbSizeX = dst.cols; oclMat alphaOcl, mapOcl, tabofsOcl; if (interpolation == INTER_AREA) { if (is_area_fast) { kernelName += "_FAST"; int wdepth2 = std::max(CV_32F, src.depth()); buildOption += format(" -D WT2V=%s%s -D convertToWT2V=convert_%s%s -D AREA_FAST -D XSCALE=%d -D YSCALE=%d -D SCALE=%f", typeMap[wdepth2], channelMap[ocn], typeMap[wdepth2], channelMap[ocn], iscale_x, iscale_y, 1.0f / (iscale_x * iscale_y)); int smap_tab_size = dst.cols * iscale_x + dst.rows * iscale_y; AutoBuffer dmap_tab(dst.cols + dst.rows), smap_tab(smap_tab_size); int * dxmap_tab = dmap_tab, * dymap_tab = dxmap_tab + dst.cols; int * sxmap_tab = smap_tab, * symap_tab = smap_tab + dst.cols * iscale_y; computeResizeAreaFastTabs(dxmap_tab, sxmap_tab, iscale_x, dst.cols, src.cols); computeResizeAreaFastTabs(dymap_tab, symap_tab, iscale_y, dst.rows, src.rows); tabofsOcl = oclMat(1, dst.cols + dst.rows, CV_32SC1, (void *)dmap_tab); mapOcl = oclMat(1, smap_tab_size, CV_32SC1, (void *)smap_tab); } else { Size ssize = src.size(), dsize = dst.size(); int xytab_size = (ssize.width + ssize.height) << 1; int tabofs_size = dsize.height + dsize.width + 2; AutoBuffer _xymap_tab(xytab_size), _xyofs_tab(tabofs_size); AutoBuffer _xyalpha_tab(xytab_size); int * xmap_tab = _xymap_tab, * ymap_tab = _xymap_tab + (ssize.width << 1); float * xalpha_tab = _xyalpha_tab, * yalpha_tab = _xyalpha_tab + (ssize.width << 1); int * xofs_tab = _xyofs_tab, * yofs_tab = _xyofs_tab + dsize.width + 1; computeResizeAreaTabs(ssize.width, dsize.width, ifx, xmap_tab, xalpha_tab, xofs_tab); computeResizeAreaTabs(ssize.height, dsize.height, ify, ymap_tab, yalpha_tab, yofs_tab); // loading precomputed arrays to GPU alphaOcl = oclMat(1, xytab_size, CV_32FC1, (void *)_xyalpha_tab); mapOcl = oclMat(1, xytab_size, CV_32SC1, (void *)_xymap_tab); tabofsOcl = oclMat(1, tabofs_size, CV_32SC1, (void *)_xyofs_tab); } } size_t globalThreads[3] = { glbSizeX, dst.rows, 1 }; size_t localThreads[3] = { blkSizeX, blkSizeY, 1 }; std::vector< std::pair > args; args.push_back( std::make_pair(sizeof(cl_mem), (void *)&dst.data)); args.push_back( std::make_pair(sizeof(cl_mem), (void *)&src.data)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst_offset)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&src_offset)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst_step)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&src_step)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.cols)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.rows)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.cols)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.rows)); if (wdepth == CV_64F) { args.push_back( std::make_pair(sizeof(cl_double), (void *)&ifx)); args.push_back( std::make_pair(sizeof(cl_double), (void *)&ify)); } else { args.push_back( std::make_pair(sizeof(cl_float), (void *)&ifxf)); args.push_back( std::make_pair(sizeof(cl_float), (void *)&ifyf)); } // precomputed tabs if (!tabofsOcl.empty()) args.push_back( std::make_pair(sizeof(cl_mem), (void *)&tabofsOcl.data)); if (!mapOcl.empty()) args.push_back( std::make_pair(sizeof(cl_mem), (void *)&mapOcl.data)); if (!alphaOcl.empty()) args.push_back( std::make_pair(sizeof(cl_mem), (void *)&alphaOcl.data)); ocn = interpolation == INTER_LINEAR ? ocn : -1; depth = interpolation == INTER_LINEAR ? depth : -1; openCLExecuteKernel(src.clCxt, &imgproc_resize, kernelName, globalThreads, localThreads, args, ocn, depth, buildOption.c_str()); } void resize(const oclMat &src, oclMat &dst, Size dsize, double fx, double fy, int interpolation) { if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(CV_OpenCLDoubleNotSupported, "Selected device does not support double"); return; } CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3 || src.type() == CV_8UC4 || src.type() == CV_32FC1 || src.type() == CV_32FC3 || src.type() == CV_32FC4); CV_Assert(dsize.area() > 0 || (fx > 0 && fy > 0)); if (dsize.area() == 0) { dsize = Size(saturate_cast(src.cols * fx), saturate_cast(src.rows * fy)); CV_Assert(dsize.area() > 0); } else { fx = (double)dsize.width / src.cols; fy = (double)dsize.height / src.rows; } double inv_fy = 1 / fy, inv_fx = 1 / fx; CV_Assert(interpolation == INTER_LINEAR || interpolation == INTER_NEAREST || (interpolation == INTER_AREA && inv_fx >= 1 && inv_fy >= 1)); dst.create(dsize, src.type()); resize_gpu( src, dst, inv_fx, inv_fy, interpolation); } //////////////////////////////////////////////////////////////////////// // medianFilter void medianFilter(const oclMat &src, oclMat &dst, int m) { CV_Assert( m % 2 == 1 && m > 1 ); CV_Assert( (src.depth() == CV_8U || src.depth() == CV_32F) && (src.channels() == 1 || src.channels() == 4)); dst.create(src.size(), src.type()); int srcStep = src.step / src.elemSize(), dstStep = dst.step / dst.elemSize(); int srcOffset = src.offset / src.elemSize(), dstOffset = dst.offset / dst.elemSize(); Context *clCxt = src.clCxt; std::vector< std::pair > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&srcOffset)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dstOffset)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.cols)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&srcStep)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dstStep)); size_t globalThreads[3] = {(src.cols + 18) / 16 * 16, (src.rows + 15) / 16 * 16, 1}; size_t localThreads[3] = {16, 16, 1}; if (m == 3) { String kernelName = "medianFilter3"; openCLExecuteKernel(clCxt, &imgproc_median, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth()); } else if (m == 5) { String kernelName = "medianFilter5"; openCLExecuteKernel(clCxt, &imgproc_median, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth()); } else CV_Error(Error::StsBadArg, "Non-supported filter length"); } //////////////////////////////////////////////////////////////////////// // copyMakeBorder void copyMakeBorder(const oclMat &src, oclMat &dst, int top, int bottom, int left, int right, int bordertype, const Scalar &scalar) { if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device does not support double"); return; } oclMat _src = src; CV_Assert(top >= 0 && bottom >= 0 && left >= 0 && right >= 0); if( (_src.wholecols != _src.cols || _src.wholerows != _src.rows) && (bordertype & BORDER_ISOLATED) == 0 ) { Size wholeSize; Point ofs; _src.locateROI(wholeSize, ofs); int dtop = std::min(ofs.y, top); int dbottom = std::min(wholeSize.height - _src.rows - ofs.y, bottom); int dleft = std::min(ofs.x, left); int dright = std::min(wholeSize.width - _src.cols - ofs.x, right); _src.adjustROI(dtop, dbottom, dleft, dright); top -= dtop; left -= dleft; bottom -= dbottom; right -= dright; } bordertype &= ~cv::BORDER_ISOLATED; dst.create(_src.rows + top + bottom, _src.cols + left + right, _src.type()); int srcStep = _src.step / _src.elemSize(), dstStep = dst.step / dst.elemSize(); int srcOffset = _src.offset / _src.elemSize(), dstOffset = dst.offset / dst.elemSize(); int depth = _src.depth(), ochannels = _src.oclchannels(); int __bordertype[] = { BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT, BORDER_WRAP, BORDER_REFLECT_101 }; const char *borderstr[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT_101" }; int bordertype_index = -1; for (int i = 0, end = sizeof(__bordertype) / sizeof(int); i < end; i++) if (__bordertype[i] == bordertype) { bordertype_index = i; break; } if (bordertype_index < 0) CV_Error(Error::StsBadArg, "Unsupported border type"); size_t localThreads[3] = { 16, 16, 1 }; size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; std::vector< std::pair > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&_src.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.cols)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.rows)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&_src.cols)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&_src.rows)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&srcStep)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&srcOffset)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dstStep)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dstOffset)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&top)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&left)); const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char * const channelMap[] = { "", "", "2", "4", "4" }; std::string buildOptions = format("-D GENTYPE=%s%s -D %s", typeMap[depth], channelMap[ochannels], borderstr[bordertype_index]); int cn = src.channels(), ocn = src.oclchannels(); int bufSize = src.elemSize1() * ocn; AutoBuffer _buf(bufSize); uchar * buf = (uchar *)_buf; scalarToRawData(scalar, buf, dst.type()); memset(buf + src.elemSize1() * cn, 0, (ocn - cn) * src.elemSize1()); args.push_back( std::make_pair( bufSize , (void *)buf )); openCLExecuteKernel(src.clCxt, &imgproc_copymakeboder, "copymakeborder", globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); } //////////////////////////////////////////////////////////////////////// // warp namespace { #define F double void convert_coeffs(F *M) { double D = M[0] * M[4] - M[1] * M[3]; D = D != 0 ? 1. / D : 0; double A11 = M[4] * D, A22 = M[0] * D; M[0] = A11; M[1] *= -D; M[3] *= -D; M[4] = A22; double b1 = -M[0] * M[2] - M[1] * M[5]; double b2 = -M[3] * M[2] - M[4] * M[5]; M[2] = b1; M[5] = b2; } double invert(double *M) { #define Sd(y,x) (Sd[y*3+x]) #define Dd(y,x) (Dd[y*3+x]) #define det3(m) (m(0,0)*(m(1,1)*m(2,2) - m(1,2)*m(2,1)) - \ m(0,1)*(m(1,0)*m(2,2) - m(1,2)*m(2,0)) + \ m(0,2)*(m(1,0)*m(2,1) - m(1,1)*m(2,0))) double *Sd = M; double *Dd = M; double d = det3(Sd); double result = 0; if ( d != 0) { double t[9]; result = d; d = 1. / d; t[0] = (Sd(1, 1) * Sd(2, 2) - Sd(1, 2) * Sd(2, 1)) * d; t[1] = (Sd(0, 2) * Sd(2, 1) - Sd(0, 1) * Sd(2, 2)) * d; t[2] = (Sd(0, 1) * Sd(1, 2) - Sd(0, 2) * Sd(1, 1)) * d; t[3] = (Sd(1, 2) * Sd(2, 0) - Sd(1, 0) * Sd(2, 2)) * d; t[4] = (Sd(0, 0) * Sd(2, 2) - Sd(0, 2) * Sd(2, 0)) * d; t[5] = (Sd(0, 2) * Sd(1, 0) - Sd(0, 0) * Sd(1, 2)) * d; t[6] = (Sd(1, 0) * Sd(2, 1) - Sd(1, 1) * Sd(2, 0)) * d; t[7] = (Sd(0, 1) * Sd(2, 0) - Sd(0, 0) * Sd(2, 1)) * d; t[8] = (Sd(0, 0) * Sd(1, 1) - Sd(0, 1) * Sd(1, 0)) * d; Dd(0, 0) = t[0]; Dd(0, 1) = t[1]; Dd(0, 2) = t[2]; Dd(1, 0) = t[3]; Dd(1, 1) = t[4]; Dd(1, 2) = t[5]; Dd(2, 0) = t[6]; Dd(2, 1) = t[7]; Dd(2, 2) = t[8]; } return result; } void warpAffine_gpu(const oclMat &src, oclMat &dst, F coeffs[2][3], int interpolation) { CV_Assert( (src.oclchannels() == dst.oclchannels()) ); int srcStep = src.step1(); int dstStep = dst.step1(); float float_coeffs[2][3]; cl_mem coeffs_cm; Context *clCxt = src.clCxt; String s[3] = {"NN", "Linear", "Cubic"}; String kernelName = "warpAffine" + s[interpolation]; if (src.clCxt->supportsFeature(FEATURE_CL_DOUBLE)) { cl_int st; coeffs_cm = clCreateBuffer(*(cl_context*)clCxt->getOpenCLContextPtr(), CL_MEM_READ_WRITE, sizeof(F) * 2 * 3, NULL, &st ); openCLVerifyCall(st); openCLSafeCall(clEnqueueWriteBuffer(*(cl_command_queue*)clCxt->getOpenCLCommandQueuePtr(), (cl_mem)coeffs_cm, 1, 0, sizeof(F) * 2 * 3, coeffs, 0, 0, 0)); } else { cl_int st; for(int m = 0; m < 2; m++) for(int n = 0; n < 3; n++) float_coeffs[m][n] = coeffs[m][n]; coeffs_cm = clCreateBuffer(*(cl_context*)clCxt->getOpenCLContextPtr(), CL_MEM_READ_WRITE, sizeof(float) * 2 * 3, NULL, &st ); openCLSafeCall(clEnqueueWriteBuffer(*(cl_command_queue*)clCxt->getOpenCLCommandQueuePtr(), (cl_mem)coeffs_cm, 1, 0, sizeof(float) * 2 * 3, float_coeffs, 0, 0, 0)); } //TODO: improve this kernel #ifdef ANDROID size_t blkSizeX = 16, blkSizeY = 4; #else size_t blkSizeX = 16, blkSizeY = 16; #endif size_t glbSizeX; size_t cols; if (src.type() == CV_8UC1 && interpolation != 2) { cols = (dst.cols + dst.offset % 4 + 3) / 4; glbSizeX = cols % blkSizeX == 0 ? cols : (cols / blkSizeX + 1) * blkSizeX; } else { cols = dst.cols; glbSizeX = dst.cols % blkSizeX == 0 ? dst.cols : (dst.cols / blkSizeX + 1) * blkSizeX; } size_t glbSizeY = dst.rows % blkSizeY == 0 ? dst.rows : (dst.rows / blkSizeY + 1) * blkSizeY; size_t globalThreads[3] = {glbSizeX, glbSizeY, 1}; size_t localThreads[3] = {blkSizeX, blkSizeY, 1}; std::vector< std::pair > args; args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.cols)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.rows)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.cols)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.rows)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&srcStep)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&dstStep)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.offset)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.offset)); args.push_back(std::make_pair(sizeof(cl_mem), (void *)&coeffs_cm)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&cols)); openCLExecuteKernel(clCxt, &imgproc_warpAffine, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth()); openCLSafeCall(clReleaseMemObject(coeffs_cm)); } void warpPerspective_gpu(const oclMat &src, oclMat &dst, double coeffs[3][3], int interpolation) { CV_Assert( (src.oclchannels() == dst.oclchannels()) ); int srcStep = src.step1(); int dstStep = dst.step1(); float float_coeffs[3][3]; cl_mem coeffs_cm; Context *clCxt = src.clCxt; String s[3] = {"NN", "Linear", "Cubic"}; String kernelName = "warpPerspective" + s[interpolation]; if (src.clCxt->supportsFeature(FEATURE_CL_DOUBLE)) { cl_int st; coeffs_cm = clCreateBuffer(*(cl_context*)clCxt->getOpenCLContextPtr(), CL_MEM_READ_WRITE, sizeof(double) * 3 * 3, NULL, &st ); openCLVerifyCall(st); openCLSafeCall(clEnqueueWriteBuffer(*(cl_command_queue*)clCxt->getOpenCLCommandQueuePtr(), (cl_mem)coeffs_cm, 1, 0, sizeof(double) * 3 * 3, coeffs, 0, 0, 0)); } else { cl_int st; for(int m = 0; m < 3; m++) for(int n = 0; n < 3; n++) float_coeffs[m][n] = coeffs[m][n]; coeffs_cm = clCreateBuffer(*(cl_context*)clCxt->getOpenCLContextPtr(), CL_MEM_READ_WRITE, sizeof(float) * 3 * 3, NULL, &st ); openCLVerifyCall(st); openCLSafeCall(clEnqueueWriteBuffer(*(cl_command_queue*)clCxt->getOpenCLCommandQueuePtr(), (cl_mem)coeffs_cm, 1, 0, sizeof(float) * 3 * 3, float_coeffs, 0, 0, 0)); } //TODO: improve this kernel #ifdef ANDROID size_t blkSizeX = 16, blkSizeY = 8; #else size_t blkSizeX = 16, blkSizeY = 16; #endif size_t glbSizeX; size_t cols; if (src.type() == CV_8UC1 && interpolation == 0) { cols = (dst.cols + dst.offset % 4 + 3) / 4; glbSizeX = cols % blkSizeX == 0 ? cols : (cols / blkSizeX + 1) * blkSizeX; } else { cols = dst.cols; glbSizeX = dst.cols % blkSizeX == 0 ? dst.cols : (dst.cols / blkSizeX + 1) * blkSizeX; } size_t glbSizeY = dst.rows % blkSizeY == 0 ? dst.rows : (dst.rows / blkSizeY + 1) * blkSizeY; size_t globalThreads[3] = {glbSizeX, glbSizeY, 1}; size_t localThreads[3] = {blkSizeX, blkSizeY, 1}; std::vector< std::pair > args; args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.cols)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.rows)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.cols)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.rows)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&srcStep)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&dstStep)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.offset)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.offset)); args.push_back(std::make_pair(sizeof(cl_mem), (void *)&coeffs_cm)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&cols)); openCLExecuteKernel(clCxt, &imgproc_warpPerspective, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth()); openCLSafeCall(clReleaseMemObject(coeffs_cm)); } } void warpAffine(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags) { int interpolation = flags & INTER_MAX; CV_Assert((src.depth() == CV_8U || src.depth() == CV_32F) && src.oclchannels() != 2 && src.oclchannels() != 3); CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC); dst.create(dsize, src.type()); CV_Assert(M.rows == 2 && M.cols == 3); int warpInd = (flags & WARP_INVERSE_MAP) >> 4; F coeffs[2][3]; double coeffsM[2*3]; Mat coeffsMat(2, 3, CV_64F, (void *)coeffsM); M.convertTo(coeffsMat, coeffsMat.type()); if (!warpInd) convert_coeffs(coeffsM); for(int i = 0; i < 2; ++i) for(int j = 0; j < 3; ++j) coeffs[i][j] = coeffsM[i*3+j]; warpAffine_gpu(src, dst, coeffs, interpolation); } void warpPerspective(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags) { int interpolation = flags & INTER_MAX; CV_Assert((src.depth() == CV_8U || src.depth() == CV_32F) && src.oclchannels() != 2 && src.oclchannels() != 3); CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC); dst.create(dsize, src.type()); CV_Assert(M.rows == 3 && M.cols == 3); int warpInd = (flags & WARP_INVERSE_MAP) >> 4; double coeffs[3][3]; double coeffsM[3*3]; Mat coeffsMat(3, 3, CV_64F, (void *)coeffsM); M.convertTo(coeffsMat, coeffsMat.type()); if (!warpInd) invert(coeffsM); for(int i = 0; i < 3; ++i) for(int j = 0; j < 3; ++j) coeffs[i][j] = coeffsM[i*3+j]; warpPerspective_gpu(src, dst, coeffs, interpolation); } //////////////////////////////////////////////////////////////////////// // integral void integral(const oclMat &src, oclMat &sum, oclMat &sqsum, int sdepth) { CV_Assert(src.type() == CV_8UC1); if (!src.clCxt->supportsFeature(ocl::FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Select device doesn't support double"); return; } if( sdepth <= 0 ) sdepth = CV_32S; sdepth = CV_MAT_DEPTH(sdepth); int type = CV_MAKE_TYPE(sdepth, 1); int vlen = 4; int offset = src.offset / vlen; int pre_invalid = src.offset % vlen; int vcols = (pre_invalid + src.cols + vlen - 1) / vlen; oclMat t_sum , t_sqsum; int w = src.cols + 1, h = src.rows + 1; char build_option[250]; if(Context::getContext()->supportsFeature(ocl::FEATURE_CL_DOUBLE)) { t_sqsum.create(src.cols, src.rows, CV_64FC1); sqsum.create(h, w, CV_64FC1); sprintf(build_option, "-D TYPE=double -D TYPE4=double4 -D convert_TYPE4=convert_double4"); } else { t_sqsum.create(src.cols, src.rows, CV_32FC1); sqsum.create(h, w, CV_32FC1); sprintf(build_option, "-D TYPE=float -D TYPE4=float4 -D convert_TYPE4=convert_float4"); } t_sum.create(src.cols, src.rows, type); sum.create(h, w, type); int sum_offset = sum.offset / sum.elemSize(); int sqsum_offset = sqsum.offset / sqsum.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&t_sum.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&t_sqsum.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&pre_invalid )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.rows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.step)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sqsum.step)); size_t gt[3] = {((vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1}; openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_cols", gt, lt, args, -1, sdepth, build_option); args.clear(); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&t_sum.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&t_sqsum.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&sum.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&sqsum.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.rows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sqsum.step)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sum.step)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sqsum.step)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sum_offset)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sqsum_offset)); size_t gt2[3] = {t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1}; openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_rows", gt2, lt2, args, -1, sdepth, build_option); } void integral(const oclMat &src, oclMat &sum, int sdepth) { CV_Assert(src.type() == CV_8UC1); int vlen = 4; int offset = src.offset / vlen; int pre_invalid = src.offset % vlen; int vcols = (pre_invalid + src.cols + vlen - 1) / vlen; if( sdepth <= 0 ) sdepth = CV_32S; sdepth = CV_MAT_DEPTH(sdepth); int type = CV_MAKE_TYPE(sdepth, 1); oclMat t_sum; int w = src.cols + 1, h = src.rows + 1; t_sum.create(src.cols, src.rows, type); sum.create(h, w, type); int sum_offset = sum.offset / vlen; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&t_sum.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&pre_invalid )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.rows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.step)); size_t gt[3] = {((vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1}; openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_sum_cols", gt, lt, args, -1, sdepth); args.clear(); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&t_sum.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&sum.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.rows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sum.step)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sum_offset)); size_t gt2[3] = {t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1}; openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_sum_rows", gt2, lt2, args, -1, sdepth); } /////////////////////// corner ////////////////////////////// static void extractCovData(const oclMat &src, oclMat &Dx, oclMat &Dy, int blockSize, int ksize, int borderType) { CV_Assert(src.type() == CV_8UC1 || src.type() == CV_32FC1); double scale = static_cast(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize; if (ksize < 0) scale *= 2.; if (src.depth() == CV_8U) { scale *= 255.; scale = 1. / scale; } else scale = 1. / scale; if (ksize > 0) { Context* clCxt = Context::getContext(); if(clCxt->supportsFeature(FEATURE_CL_INTEL_DEVICE) && src.type() == CV_8UC1 && src.cols % 8 == 0 && src.rows % 8 == 0 && ksize==3 && (borderType ==cv::BORDER_REFLECT || borderType == cv::BORDER_REPLICATE || borderType ==cv::BORDER_REFLECT101 || borderType ==cv::BORDER_WRAP)) { Dx.create(src.size(), CV_32FC1); Dy.create(src.size(), CV_32FC1); const unsigned int block_x = 8; const unsigned int block_y = 8; unsigned int src_pitch = src.step; unsigned int dst_pitch = Dx.cols; float _scale = scale; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&Dx.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&Dy.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.rows )); args.push_back( std::make_pair( sizeof(cl_uint) , (void *)&src_pitch )); args.push_back( std::make_pair( sizeof(cl_uint) , (void *)&dst_pitch )); args.push_back( std::make_pair( sizeof(cl_float) , (void *)&_scale )); size_t gt2[3] = {src.cols, src.rows, 1}, lt2[3] = {block_x, block_y, 1}; String option = "-D BLK_X=8 -D BLK_Y=8"; switch(borderType) { case cv::BORDER_REPLICATE: option += " -D BORDER_REPLICATE"; break; case cv::BORDER_REFLECT: option += " -D BORDER_REFLECT"; break; case cv::BORDER_REFLECT101: option += " -D BORDER_REFLECT101"; break; case cv::BORDER_WRAP: option += " -D BORDER_WRAP"; break; } openCLExecuteKernel(src.clCxt, &imgproc_sobel3, "sobel3", gt2, lt2, args, -1, -1, option.c_str() ); } else { Sobel(src, Dx, CV_32F, 1, 0, ksize, scale, 0, borderType); Sobel(src, Dy, CV_32F, 0, 1, ksize, scale, 0, borderType); } } else { Scharr(src, Dx, CV_32F, 1, 0, scale, 0, borderType); Scharr(src, Dy, CV_32F, 0, 1, scale, 0, borderType); } CV_Assert(Dx.offset == 0 && Dy.offset == 0); } static void corner_ocl(const cv::ocl::ProgramEntry* source, String kernelName, int block_size, float k, oclMat &Dx, oclMat &Dy, oclMat &dst, int border_type) { char borderType[30]; switch (border_type) { case cv::BORDER_CONSTANT: sprintf(borderType, "BORDER_CONSTANT"); break; case cv::BORDER_REFLECT101: sprintf(borderType, "BORDER_REFLECT101"); break; case cv::BORDER_REFLECT: sprintf(borderType, "BORDER_REFLECT"); break; case cv::BORDER_REPLICATE: sprintf(borderType, "BORDER_REPLICATE"); break; default: CV_Error(Error::StsBadFlag, "BORDER type is not supported!"); } std::string buildOptions = format("-D anX=%d -D anY=%d -D ksX=%d -D ksY=%d -D %s", block_size / 2, block_size / 2, block_size, block_size, borderType); size_t blockSizeX = 256, blockSizeY = 1; size_t gSize = blockSizeX - block_size / 2 * 2; size_t globalSizeX = (Dx.cols) % gSize == 0 ? Dx.cols / gSize * blockSizeX : (Dx.cols / gSize + 1) * blockSizeX; size_t rows_per_thread = 2; size_t globalSizeY = ((Dx.rows + rows_per_thread - 1) / rows_per_thread) % blockSizeY == 0 ? ((Dx.rows + rows_per_thread - 1) / rows_per_thread) : (((Dx.rows + rows_per_thread - 1) / rows_per_thread) / blockSizeY + 1) * blockSizeY; size_t gt[3] = { globalSizeX, globalSizeY, 1 }; size_t lt[3] = { blockSizeX, blockSizeY, 1 }; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&Dx.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&Dy.data)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst.data)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&Dx.offset )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&Dx.wholerows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&Dx.wholecols )); args.push_back( std::make_pair(sizeof(cl_int), (void *)&Dx.step)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&Dy.offset )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&Dy.wholerows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&Dy.wholecols )); args.push_back( std::make_pair(sizeof(cl_int), (void *)&Dy.step)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.offset)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.rows)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.cols)); args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.step)); args.push_back( std::make_pair( sizeof(cl_float) , (void *)&k)); openCLExecuteKernel(dst.clCxt, source, kernelName, gt, lt, args, -1, -1, buildOptions.c_str()); } void cornerHarris(const oclMat &src, oclMat &dst, int blockSize, int ksize, double k, int borderType) { oclMat dx, dy; cornerHarris_dxdy(src, dst, dx, dy, blockSize, ksize, k, borderType); } void cornerHarris_dxdy(const oclMat &src, oclMat &dst, oclMat &dx, oclMat &dy, int blockSize, int ksize, double k, int borderType) { if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } CV_Assert(borderType == cv::BORDER_CONSTANT || borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT); extractCovData(src, dx, dy, blockSize, ksize, borderType); dst.create(src.size(), CV_32FC1); corner_ocl(&imgproc_calcHarris, "calcHarris", blockSize, static_cast(k), dx, dy, dst, borderType); } void cornerMinEigenVal(const oclMat &src, oclMat &dst, int blockSize, int ksize, int borderType) { oclMat dx, dy; cornerMinEigenVal_dxdy(src, dst, dx, dy, blockSize, ksize, borderType); } void cornerMinEigenVal_dxdy(const oclMat &src, oclMat &dst, oclMat &dx, oclMat &dy, int blockSize, int ksize, int borderType) { if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } CV_Assert(borderType == cv::BORDER_CONSTANT || borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT); extractCovData(src, dx, dy, blockSize, ksize, borderType); dst.create(src.size(), CV_32F); corner_ocl(&imgproc_calcMinEigenVal, "calcMinEigenVal", blockSize, 0, dx, dy, dst, borderType); } /////////////////////////////////// MeanShiftfiltering /////////////////////////////////////////////// static void meanShiftFiltering_gpu(const oclMat &src, oclMat dst, int sp, int sr, int maxIter, float eps) { CV_Assert( (src.cols == dst.cols) && (src.rows == dst.rows) ); CV_Assert( !(dst.step & 0x3) ); //Arrange the NDRange int col = src.cols, row = src.rows; int ltx = 16, lty = 8; if (src.cols % ltx != 0) col = (col / ltx + 1) * ltx; if (src.rows % lty != 0) row = (row / lty + 1) * lty; size_t globalThreads[3] = {col, row, 1}; size_t localThreads[3] = {ltx, lty, 1}; //set args std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.offset )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.rows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sp )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sr )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&maxIter )); args.push_back( std::make_pair( sizeof(cl_float) , (void *)&eps )); openCLExecuteKernel(src.clCxt, &meanShift, "meanshift_kernel", globalThreads, localThreads, args, -1, -1); } void meanShiftFiltering(const oclMat &src, oclMat &dst, int sp, int sr, TermCriteria criteria) { if (src.empty()) CV_Error(Error::StsBadArg, "The input image is empty"); if ( src.depth() != CV_8U || src.oclchannels() != 4 ) CV_Error(Error::StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported"); dst.create( src.size(), CV_8UC4 ); if ( !(criteria.type & TermCriteria::MAX_ITER) ) criteria.maxCount = 5; int maxIter = std::min(std::max(criteria.maxCount, 1), 100); float eps; if ( !(criteria.type & TermCriteria::EPS) ) eps = 1.f; eps = (float)std::max(criteria.epsilon, 0.0); meanShiftFiltering_gpu(src, dst, sp, sr, maxIter, eps); } static void meanShiftProc_gpu(const oclMat &src, oclMat dstr, oclMat dstsp, int sp, int sr, int maxIter, float eps) { //sanity checks CV_Assert( (src.cols == dstr.cols) && (src.rows == dstr.rows) && (src.rows == dstsp.rows) && (src.cols == dstsp.cols)); CV_Assert( !(dstsp.step & 0x3) ); //Arrange the NDRange int col = src.cols, row = src.rows; int ltx = 16, lty = 8; if (src.cols % ltx != 0) col = (col / ltx + 1) * ltx; if (src.rows % lty != 0) row = (row / lty + 1) * lty; size_t globalThreads[3] = {col, row, 1}; size_t localThreads[3] = {ltx, lty, 1}; //set args std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dstr.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dstsp.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dstr.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dstsp.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.offset )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dstr.offset )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dstsp.offset )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dstr.cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dstr.rows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sp )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sr )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&maxIter )); args.push_back( std::make_pair( sizeof(cl_float) , (void *)&eps )); openCLExecuteKernel(src.clCxt, &meanShift, "meanshiftproc_kernel", globalThreads, localThreads, args, -1, -1); } void meanShiftProc(const oclMat &src, oclMat &dstr, oclMat &dstsp, int sp, int sr, TermCriteria criteria) { if (src.empty()) CV_Error(Error::StsBadArg, "The input image is empty"); if ( src.depth() != CV_8U || src.oclchannels() != 4 ) CV_Error(Error::StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported"); // if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE)) // { // CV_Error(Error::OpenCLDoubleNotSupportedNotSupported, "Selected device doesn't support double, so a deviation exists.\nIf the accuracy is acceptable, the error can be ignored.\n"); // return; // } dstr.create( src.size(), CV_8UC4 ); dstsp.create( src.size(), CV_16SC2 ); if ( !(criteria.type & TermCriteria::MAX_ITER) ) criteria.maxCount = 5; int maxIter = std::min(std::max(criteria.maxCount, 1), 100); float eps; if ( !(criteria.type & TermCriteria::EPS) ) eps = 1.f; eps = (float)std::max(criteria.epsilon, 0.0); meanShiftProc_gpu(src, dstr, dstsp, sp, sr, maxIter, eps); } /////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////hist/////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// namespace histograms { const int PARTIAL_HISTOGRAM256_COUNT = 256; const int HISTOGRAM256_BIN_COUNT = 256; } ///////////////////////////////calcHist///////////////////////////////////////////////////////////////// static void calc_sub_hist(const oclMat &mat_src, const oclMat &mat_sub_hist) { using namespace histograms; int depth = mat_src.depth(); size_t localThreads[3] = { HISTOGRAM256_BIN_COUNT, 1, 1 }; size_t globalThreads[3] = { PARTIAL_HISTOGRAM256_COUNT *localThreads[0], 1, 1}; int dataWidth = 16; int dataWidth_bits = 4; int mask = dataWidth - 1; int cols = mat_src.cols * mat_src.oclchannels(); int src_offset = mat_src.offset; int hist_step = mat_sub_hist.step >> 2; int left_col = 0, right_col = 0; if (cols >= dataWidth * 2 - 1) { left_col = dataWidth - (src_offset & mask); left_col &= mask; src_offset += left_col; cols -= left_col; right_col = cols & mask; cols -= right_col; } else { left_col = cols; right_col = 0; cols = 0; globalThreads[0] = 0; } std::vector > args; if (globalThreads[0] != 0) { int tempcols = cols >> dataWidth_bits; int inc_x = globalThreads[0] % tempcols; int inc_y = globalThreads[0] / tempcols; src_offset >>= dataWidth_bits; int src_step = mat_src.step >> dataWidth_bits; int datacount = tempcols * mat_src.rows; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mat_src.data)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_step)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_offset)); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mat_sub_hist.data)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&datacount)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&tempcols)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&inc_x)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&inc_y)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&hist_step)); openCLExecuteKernel(mat_src.clCxt, &imgproc_histogram, "calc_sub_hist", globalThreads, localThreads, args, -1, depth); } if (left_col != 0 || right_col != 0) { src_offset = mat_src.offset; localThreads[0] = 1; localThreads[1] = 256; globalThreads[0] = left_col + right_col; globalThreads[1] = mat_src.rows; args.clear(); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mat_src.data)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&mat_src.step)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_offset)); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mat_sub_hist.data)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&left_col)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&mat_src.rows)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&hist_step)); openCLExecuteKernel(mat_src.clCxt, &imgproc_histogram, "calc_sub_hist_border", globalThreads, localThreads, args, -1, depth); } } static void merge_sub_hist(const oclMat &sub_hist, oclMat &mat_hist) { using namespace histograms; size_t localThreads[3] = { 256, 1, 1 }; size_t globalThreads[3] = { HISTOGRAM256_BIN_COUNT *localThreads[0], 1, 1}; int src_step = sub_hist.step >> 2; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&sub_hist.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mat_hist.data)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_step)); openCLExecuteKernel(sub_hist.clCxt, &imgproc_histogram, "merge_hist", globalThreads, localThreads, args, -1, -1); } void calcHist(const oclMat &mat_src, oclMat &mat_hist) { using namespace histograms; CV_Assert(mat_src.type() == CV_8UC1); mat_hist.create(1, 256, CV_32SC1); oclMat buf(PARTIAL_HISTOGRAM256_COUNT, HISTOGRAM256_BIN_COUNT, CV_32SC1); buf.setTo(0); calc_sub_hist(mat_src, buf); merge_sub_hist(buf, mat_hist); } ///////////////////////////////////equalizeHist///////////////////////////////////////////////////// void equalizeHist(const oclMat &mat_src, oclMat &mat_dst) { mat_dst.create(mat_src.rows, mat_src.cols, CV_8UC1); oclMat mat_hist(1, 256, CV_32SC1); calcHist(mat_src, mat_hist); size_t localThreads[3] = { 256, 1, 1}; size_t globalThreads[3] = { 256, 1, 1}; oclMat lut(1, 256, CV_8UC1); int total = mat_src.rows * mat_src.cols; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&lut.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mat_hist.data)); args.push_back( std::make_pair( sizeof(int), (void *)&total)); openCLExecuteKernel(mat_src.clCxt, &imgproc_histogram, "calLUT", globalThreads, localThreads, args, -1, -1); LUT(mat_src, lut, mat_dst); } //////////////////////////////////////////////////////////////////////// // CLAHE namespace clahe { static void calcLut(const oclMat &src, oclMat &dst, const int tilesX, const int tilesY, const cv::Size tileSize, const int clipLimit, const float lutScale) { cl_int2 tile_size; tile_size.s[0] = tileSize.width; tile_size.s[1] = tileSize.height; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int2), (void *)&tile_size )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesX )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&clipLimit )); args.push_back( std::make_pair( sizeof(cl_float), (void *)&lutScale )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); String kernelName = "calcLut"; size_t localThreads[3] = { 32, 8, 1 }; size_t globalThreads[3] = { tilesX * localThreads[0], tilesY * localThreads[1], 1 }; bool is_cpu = isCpuDevice(); if (is_cpu) openCLExecuteKernel(Context::getContext(), &imgproc_clahe, kernelName, globalThreads, localThreads, args, -1, -1, (char*)"-D CPU"); else { cl_kernel kernel = openCLGetKernelFromSource(Context::getContext(), &imgproc_clahe, kernelName); int wave_size = (int)queryWaveFrontSize(kernel); openCLSafeCall(clReleaseKernel(kernel)); std::string opt = format("-D WAVE_SIZE=%d", wave_size); openCLExecuteKernel(Context::getContext(), &imgproc_clahe, kernelName, globalThreads, localThreads, args, -1, -1, opt.c_str()); } } static void transform(const oclMat &src, oclMat &dst, const oclMat &lut, const int tilesX, const int tilesY, const Size & tileSize) { cl_int2 tile_size; tile_size.s[0] = tileSize.width; tile_size.s[1] = tileSize.height; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&lut.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&lut.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows )); args.push_back( std::make_pair( sizeof(cl_int2), (void *)&tile_size )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesX )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesY )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&lut.offset )); size_t localThreads[3] = { 32, 8, 1 }; size_t globalThreads[3] = { src.cols, src.rows, 1 }; openCLExecuteKernel(Context::getContext(), &imgproc_clahe, "transform", globalThreads, localThreads, args, -1, -1); } } namespace { class CLAHE_Impl : public cv::CLAHE { public: CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8); cv::AlgorithmInfo* info() const; void apply(cv::InputArray src, cv::OutputArray dst); void setClipLimit(double clipLimit); double getClipLimit() const; void setTilesGridSize(cv::Size tileGridSize); cv::Size getTilesGridSize() const; void collectGarbage(); private: double clipLimit_; int tilesX_; int tilesY_; oclMat srcExt_; oclMat lut_; }; CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) : clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY) { } CV_INIT_ALGORITHM(CLAHE_Impl, "CLAHE_OCL", obj.info()->addParam(obj, "clipLimit", obj.clipLimit_); obj.info()->addParam(obj, "tilesX", obj.tilesX_); obj.info()->addParam(obj, "tilesY", obj.tilesY_)) void CLAHE_Impl::apply(cv::InputArray src_raw, cv::OutputArray dst_raw) { oclMat& src = getOclMatRef(src_raw); oclMat& dst = getOclMatRef(dst_raw); CV_Assert( src.type() == CV_8UC1 ); dst.create( src.size(), src.type() ); const int histSize = 256; ensureSizeIsEnough(tilesX_ * tilesY_, histSize, CV_8UC1, lut_); cv::Size tileSize; oclMat srcForLut; if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0) { tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_); srcForLut = src; } else { ocl::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), BORDER_REFLECT_101, Scalar::all(0)); tileSize = Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_); srcForLut = srcExt_; } const int tileSizeTotal = tileSize.area(); const float lutScale = static_cast(histSize - 1) / tileSizeTotal; int clipLimit = 0; if (clipLimit_ > 0.0) { clipLimit = static_cast(clipLimit_ * tileSizeTotal / histSize); clipLimit = std::max(clipLimit, 1); } clahe::calcLut(srcForLut, lut_, tilesX_, tilesY_, tileSize, clipLimit, lutScale); clahe::transform(src, dst, lut_, tilesX_, tilesY_, tileSize); } void CLAHE_Impl::setClipLimit(double clipLimit) { clipLimit_ = clipLimit; } double CLAHE_Impl::getClipLimit() const { return clipLimit_; } void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize) { tilesX_ = tileGridSize.width; tilesY_ = tileGridSize.height; } cv::Size CLAHE_Impl::getTilesGridSize() const { return cv::Size(tilesX_, tilesY_); } void CLAHE_Impl::collectGarbage() { srcExt_.release(); lut_.release(); } } cv::Ptr createCLAHE(double clipLimit, cv::Size tileGridSize) { return makePtr(clipLimit, tileGridSize.width, tileGridSize.height); } //////////////////////////////////bilateralFilter//////////////////////////////////////////////////// static void oclbilateralFilter_8u( const oclMat &src, oclMat &dst, int d, double sigma_color, double sigma_space, int borderType ) { int cn = src.channels(); int i, j, maxk, radius; CV_Assert( (src.channels() == 1 || src.channels() == 3) && src.type() == dst.type() && src.size() == dst.size() && src.data != dst.data ); if ( sigma_color <= 0 ) sigma_color = 1; if ( sigma_space <= 0 ) sigma_space = 1; double gauss_color_coeff = -0.5 / (sigma_color * sigma_color); double gauss_space_coeff = -0.5 / (sigma_space * sigma_space); if ( d <= 0 ) radius = cvRound(sigma_space * 1.5); else radius = d / 2; radius = MAX(radius, 1); d = radius * 2 + 1; oclMat temp; copyMakeBorder( src, temp, radius, radius, radius, radius, borderType ); std::vector _color_weight(cn * 256); std::vector _space_weight(d * d); std::vector _space_ofs(d * d); float *color_weight = &_color_weight[0]; float *space_weight = &_space_weight[0]; int *space_ofs = &_space_ofs[0]; int dst_step_in_pixel = dst.step / dst.elemSize(); int dst_offset_in_pixel = dst.offset / dst.elemSize(); int temp_step_in_pixel = temp.step / temp.elemSize(); // initialize color-related bilateral filter coefficients for( i = 0; i < 256 * cn; i++ ) color_weight[i] = (float)std::exp(i * i * gauss_color_coeff); // initialize space-related bilateral filter coefficients for( i = -radius, maxk = 0; i <= radius; i++ ) for( j = -radius; j <= radius; j++ ) { double r = std::sqrt((double)i * i + (double)j * j); if ( r > radius ) continue; space_weight[maxk] = (float)std::exp(r * r * gauss_space_coeff); space_ofs[maxk++] = (int)(i * temp_step_in_pixel + j); } oclMat oclcolor_weight(1, cn * 256, CV_32FC1, color_weight); oclMat oclspace_weight(1, d * d, CV_32FC1, space_weight); oclMat oclspace_ofs(1, d * d, CV_32SC1, space_ofs); String kernelName = "bilateral"; #ifdef ANDROID size_t localThreads[3] = { 16, 8, 1 }; #else size_t localThreads[3] = { 16, 16, 1 }; #endif size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; if ((dst.type() == CV_8UC1) && ((dst.offset & 3) == 0) && ((dst.cols & 3) == 0)) { kernelName = "bilateral2"; globalThreads[0] = dst.cols >> 2; } std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&temp.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&maxk )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&radius )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step_in_pixel )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_offset_in_pixel )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&temp_step_in_pixel )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&temp.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&temp.cols )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&oclcolor_weight.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&oclspace_weight.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&oclspace_ofs.data )); openCLExecuteKernel(src.clCxt, &imgproc_bilateral, kernelName, globalThreads, localThreads, args, dst.oclchannels(), dst.depth()); } void bilateralFilter(const oclMat &src, oclMat &dst, int radius, double sigmaclr, double sigmaspc, int borderType) { dst.create( src.size(), src.type() ); if ( src.depth() == CV_8U ) oclbilateralFilter_8u( src, dst, radius, sigmaclr, sigmaspc, borderType ); else CV_Error(Error::StsUnsupportedFormat, "Bilateral filtering is only implemented for CV_8U images"); } } } //////////////////////////////////mulSpectrums//////////////////////////////////////////////////// void cv::ocl::mulSpectrums(const oclMat &a, const oclMat &b, oclMat &c, int /*flags*/, float scale, bool conjB) { CV_Assert(a.type() == CV_32FC2); CV_Assert(b.type() == CV_32FC2); c.create(a.size(), CV_32FC2); size_t lt[3] = { 16, 16, 1 }; size_t gt[3] = { a.cols, a.rows, 1 }; String kernelName = conjB ? "mulAndScaleSpectrumsKernel_CONJ":"mulAndScaleSpectrumsKernel"; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&a.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&b.data )); args.push_back( std::make_pair( sizeof(cl_float), (void *)&scale)); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&c.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&a.cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&a.rows)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&a.step )); Context *clCxt = Context::getContext(); openCLExecuteKernel(clCxt, &imgproc_mulAndScaleSpectrums, kernelName, gt, lt, args, -1, -1); } //////////////////////////////////convolve//////////////////////////////////////////////////// // ported from CUDA module void cv::ocl::ConvolveBuf::create(Size image_size, Size templ_size) { result_size = Size(image_size.width - templ_size.width + 1, image_size.height - templ_size.height + 1); block_size = user_block_size; if (user_block_size.width == 0 || user_block_size.height == 0) block_size = estimateBlockSize(result_size, templ_size); dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.))); dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.))); // CUFFT has hard-coded kernels for power-of-2 sizes (up to 8192), // see CUDA Toolkit 4.1 CUFFT Library Programming Guide //if (dft_size.width > 8192) dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1.); //if (dft_size.height > 8192) dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1.); // To avoid wasting time doing small DFTs dft_size.width = std::max(dft_size.width, 512); dft_size.height = std::max(dft_size.height, 512); image_block.create(dft_size, CV_32F); templ_block.create(dft_size, CV_32F); result_data.create(dft_size, CV_32F); //spect_len = dft_size.height * (dft_size.width / 2 + 1); image_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2); templ_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2); result_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2); // Use maximum result matrix block size for the estimated DFT block size block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width); block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height); } Size cv::ocl::ConvolveBuf::estimateBlockSize(Size result_size, Size /*templ_size*/) { int width = (result_size.width + 2) / 3; int height = (result_size.height + 2) / 3; width = std::min(width, result_size.width); height = std::min(height, result_size.height); return Size(width, height); } static void convolve_run_fft(const oclMat &image, const oclMat &templ, oclMat &result, bool ccorr, ConvolveBuf& buf) { #if defined HAVE_CLAMDFFT CV_Assert(image.type() == CV_32F); CV_Assert(templ.type() == CV_32F); buf.create(image.size(), templ.size()); result.create(buf.result_size, CV_32F); Size& block_size = buf.block_size; Size& dft_size = buf.dft_size; oclMat& image_block = buf.image_block; oclMat& templ_block = buf.templ_block; oclMat& result_data = buf.result_data; oclMat& image_spect = buf.image_spect; oclMat& templ_spect = buf.templ_spect; oclMat& result_spect = buf.result_spect; oclMat templ_roi = templ; copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0, templ_block.cols - templ_roi.cols, 0, Scalar()); cv::ocl::dft(templ_block, templ_spect, dft_size); // Process all blocks of the result matrix for (int y = 0; y < result.rows; y += block_size.height) { for (int x = 0; x < result.cols; x += block_size.width) { Size image_roi_size(std::min(x + dft_size.width, image.cols) - x, std::min(y + dft_size.height, image.rows) - y); Rect roi0(x, y, image_roi_size.width, image_roi_size.height); oclMat image_roi(image, roi0); copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows, 0, image_block.cols - image_roi.cols, 0, Scalar()); cv::ocl::dft(image_block, image_spect, dft_size); mulSpectrums(image_spect, templ_spect, result_spect, 0, 1.f / dft_size.area(), ccorr); cv::ocl::dft(result_spect, result_data, dft_size, cv::DFT_INVERSE | cv::DFT_REAL_OUTPUT); Size result_roi_size(std::min(x + block_size.width, result.cols) - x, std::min(y + block_size.height, result.rows) - y); Rect roi1(x, y, result_roi_size.width, result_roi_size.height); Rect roi2(0, 0, result_roi_size.width, result_roi_size.height); oclMat result_roi(result, roi1); oclMat result_block(result_data, roi2); result_block.copyTo(result_roi); } } #else CV_Error(Error::OpenCLNoAMDBlasFft, "OpenCL DFT is not implemented"); #define UNUSED(x) (void)(x); UNUSED(image) UNUSED(templ) UNUSED(result) UNUSED(ccorr) UNUSED(buf) #undef UNUSED #endif } static void convolve_run(const oclMat &src, const oclMat &temp1, oclMat &dst, String kernelName, const cv::ocl::ProgramEntry* source) { CV_Assert(src.depth() == CV_32FC1); CV_Assert(temp1.depth() == CV_32F); CV_Assert(temp1.cols <= 17 && temp1.rows <= 17); dst.create(src.size(), src.type()); CV_Assert(src.cols == dst.cols && src.rows == dst.rows); CV_Assert(src.type() == dst.type()); size_t localThreads[3] = { 16, 16, 1 }; size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; int src_step = src.step / src.elemSize(), src_offset = src.offset / src.elemSize(); int dst_step = dst.step / dst.elemSize(), dst_offset = dst.offset / dst.elemSize(); int temp1_step = temp1.step / temp1.elemSize(), temp1_offset = temp1.offset / temp1.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&temp1.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&temp1_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&temp1.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&temp1.cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&temp1_offset )); openCLExecuteKernel(src.clCxt, source, kernelName, globalThreads, localThreads, args, -1, dst.depth()); } void cv::ocl::convolve(const oclMat &x, const oclMat &t, oclMat &y, bool ccorr) { CV_Assert(x.depth() == CV_32F); CV_Assert(t.depth() == CV_32F); y.create(x.size(), x.type()); String kernelName = "convolve"; if(t.cols > 17 || t.rows > 17) { ConvolveBuf buf; convolve_run_fft(x, t, y, ccorr, buf); } else { CV_Assert(ccorr == false); convolve_run(x, t, y, kernelName, &imgproc_convolve); } } void cv::ocl::convolve(const oclMat &image, const oclMat &templ, oclMat &result, bool ccorr, ConvolveBuf& buf) { result.create(image.size(), image.type()); convolve_run_fft(image, templ, result, ccorr, buf); }