//*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include <cstdio> #include <iostream> #include <fstream> using namespace std; class CSMatrixGenerator { public: typedef enum { PDT_GAUSS=1, PDT_BERNOULLI, PDT_DBFRIENDLY } PHI_DISTR_TYPE; ~CSMatrixGenerator(); static float* getCSMatrix(int m, int n, PHI_DISTR_TYPE dt); // do NOT free returned pointer private: static float *cs_phi_; // matrix for compressive sensing static int cs_phi_m_, cs_phi_n_; }; float* CSMatrixGenerator::getCSMatrix(int m, int n, PHI_DISTR_TYPE dt) { assert(m <= n); if (cs_phi_m_!=m || cs_phi_n_!=n || cs_phi_==NULL) { if (cs_phi_) delete [] cs_phi_; cs_phi_ = new float[m*n]; } #if 0 // debug - load the random matrix from a file (for reproducability of results) //assert(m == 176); //assert(n == 500); //const char *phi = "/u/calonder/temp/dim_red/kpca_phi.txt"; const char *phi = "/u/calonder/temp/dim_red/debug_phi.txt"; std::ifstream ifs(phi); for (size_t i=0; i<m*n; ++i) { if (!ifs.good()) { printf("[ERROR] RandomizedTree::makeRandomMeasMatrix: problem reading '%s'\n", phi); exit(0); } ifs >> cs_phi[i]; } ifs.close(); static bool warned=false; if (!warned) { printf("[NOTE] RT: reading %ix%i PHI matrix from '%s'...\n", m, n, phi); warned=true; } return; #endif float *cs_phi = cs_phi_; if (m == n) { // special case - set to 0 for safety memset(cs_phi, 0, m*n*sizeof(float)); printf("[WARNING] %s:%i: square CS matrix (-> no reduction)\n", __FILE__, __LINE__); } else { cv::RNG rng(23); // par is distr param, cf 'Favorable JL Distributions' (Baraniuk et al, 2006) if (dt == PDT_GAUSS) { float par = (float)(1./m); for (int i=0; i<m*n; ++i) *cs_phi++ = (float)rng.gaussian(par); } else if (dt == PDT_BERNOULLI) { float par = (float)(1./sqrt((float)m)); for (int i=0; i<m*n; ++i) *cs_phi++ = (rng(2)==0 ? par : -par); } else if (dt == PDT_DBFRIENDLY) { float par = (float)sqrt(3./m); for (int i=0; i<m*n; ++i) { int r = rng(6); *cs_phi++ = (r==0 ? par : (r==1 ? -par : 0.f)); } } else throw("PHI_DISTR_TYPE not implemented."); } return cs_phi_; } CSMatrixGenerator::~CSMatrixGenerator() { if (cs_phi_) delete [] cs_phi_; cs_phi_ = NULL; } float *CSMatrixGenerator::cs_phi_ = NULL; int CSMatrixGenerator::cs_phi_m_ = 0; int CSMatrixGenerator::cs_phi_n_ = 0; inline void addVec(int size, const float* src1, const float* src2, float* dst) { while(--size >= 0) { *dst = *src1 + *src2; ++dst; ++src1; ++src2; } } // sum up 50 byte vectors of length 176 // assume 4 bits max for input vector values // final shift is 2 bits right // temp buffer should be twice as long as signature // sig and buffer need not be initialized inline void sum_50t_176c(uchar **pp, uchar *sig, unsigned short *temp) { #if CV_SSE2 __m128i acc, *acc1, *acc2, *acc3, *acc4, tzero; __m128i *ssig, *ttemp; ssig = (__m128i *)sig; ttemp = (__m128i *)temp; // empty ttemp[] tzero = _mm_set_epi32(0, 0, 0, 0); for (int i=0; i<22; i++) ttemp[i] = tzero; for (int j=0; j<48; j+=16) { // empty ssig[] for (int i=0; i<11; i++) ssig[i] = tzero; for (int i=j; i<j+16; i+=4) // 4 columns at a time, to 16 { acc1 = (__m128i *)pp[i]; acc2 = (__m128i *)pp[i+1]; acc3 = (__m128i *)pp[i+2]; acc4 = (__m128i *)pp[i+3]; // add next four columns acc = _mm_adds_epu8(acc1[0],acc2[0]); acc = _mm_adds_epu8(acc,acc3[0]); acc = _mm_adds_epu8(acc,acc4[1]); ssig[0] = _mm_adds_epu8(acc,ssig[0]); // add four columns acc = _mm_adds_epu8(acc1[1],acc2[1]); acc = _mm_adds_epu8(acc,acc3[1]); acc = _mm_adds_epu8(acc,acc4[1]); ssig[1] = _mm_adds_epu8(acc,ssig[1]); // add four columns acc = _mm_adds_epu8(acc1[2],acc2[2]); acc = _mm_adds_epu8(acc,acc3[2]); acc = _mm_adds_epu8(acc,acc4[2]); ssig[2] = _mm_adds_epu8(acc,ssig[2]); // add four columns acc = _mm_adds_epu8(acc1[3],acc2[3]); acc = _mm_adds_epu8(acc,acc3[3]); acc = _mm_adds_epu8(acc,acc4[3]); ssig[3] = _mm_adds_epu8(acc,ssig[3]); // add four columns acc = _mm_adds_epu8(acc1[4],acc2[4]); acc = _mm_adds_epu8(acc,acc3[4]); acc = _mm_adds_epu8(acc,acc4[4]); ssig[4] = _mm_adds_epu8(acc,ssig[4]); // add four columns acc = _mm_adds_epu8(acc1[5],acc2[5]); acc = _mm_adds_epu8(acc,acc3[5]); acc = _mm_adds_epu8(acc,acc4[5]); ssig[5] = _mm_adds_epu8(acc,ssig[5]); // add four columns acc = _mm_adds_epu8(acc1[6],acc2[6]); acc = _mm_adds_epu8(acc,acc3[6]); acc = _mm_adds_epu8(acc,acc4[6]); ssig[6] = _mm_adds_epu8(acc,ssig[6]); // add four columns acc = _mm_adds_epu8(acc1[7],acc2[7]); acc = _mm_adds_epu8(acc,acc3[7]); acc = _mm_adds_epu8(acc,acc4[7]); ssig[7] = _mm_adds_epu8(acc,ssig[7]); // add four columns acc = _mm_adds_epu8(acc1[8],acc2[8]); acc = _mm_adds_epu8(acc,acc3[8]); acc = _mm_adds_epu8(acc,acc4[8]); ssig[8] = _mm_adds_epu8(acc,ssig[8]); // add four columns acc = _mm_adds_epu8(acc1[9],acc2[9]); acc = _mm_adds_epu8(acc,acc3[9]); acc = _mm_adds_epu8(acc,acc4[9]); ssig[9] = _mm_adds_epu8(acc,ssig[9]); // add four columns acc = _mm_adds_epu8(acc1[10],acc2[10]); acc = _mm_adds_epu8(acc,acc3[10]); acc = _mm_adds_epu8(acc,acc4[10]); ssig[10] = _mm_adds_epu8(acc,ssig[10]); } // unpack to ttemp buffer and add ttemp[0] = _mm_add_epi16(_mm_unpacklo_epi8(ssig[0],tzero),ttemp[0]); ttemp[1] = _mm_add_epi16(_mm_unpackhi_epi8(ssig[0],tzero),ttemp[1]); ttemp[2] = _mm_add_epi16(_mm_unpacklo_epi8(ssig[1],tzero),ttemp[2]); ttemp[3] = _mm_add_epi16(_mm_unpackhi_epi8(ssig[1],tzero),ttemp[3]); ttemp[4] = _mm_add_epi16(_mm_unpacklo_epi8(ssig[2],tzero),ttemp[4]); ttemp[5] = _mm_add_epi16(_mm_unpackhi_epi8(ssig[2],tzero),ttemp[5]); ttemp[6] = _mm_add_epi16(_mm_unpacklo_epi8(ssig[3],tzero),ttemp[6]); ttemp[7] = _mm_add_epi16(_mm_unpackhi_epi8(ssig[3],tzero),ttemp[7]); ttemp[8] = _mm_add_epi16(_mm_unpacklo_epi8(ssig[4],tzero),ttemp[8]); ttemp[9] = _mm_add_epi16(_mm_unpackhi_epi8(ssig[4],tzero),ttemp[9]); ttemp[10] = _mm_add_epi16(_mm_unpacklo_epi8(ssig[5],tzero),ttemp[10]); ttemp[11] = _mm_add_epi16(_mm_unpackhi_epi8(ssig[5],tzero),ttemp[11]); ttemp[12] = _mm_add_epi16(_mm_unpacklo_epi8(ssig[6],tzero),ttemp[12]); ttemp[13] = _mm_add_epi16(_mm_unpackhi_epi8(ssig[6],tzero),ttemp[13]); ttemp[14] = _mm_add_epi16(_mm_unpacklo_epi8(ssig[7],tzero),ttemp[14]); ttemp[15] = _mm_add_epi16(_mm_unpackhi_epi8(ssig[7],tzero),ttemp[15]); ttemp[16] = _mm_add_epi16(_mm_unpacklo_epi8(ssig[8],tzero),ttemp[16]); ttemp[17] = _mm_add_epi16(_mm_unpackhi_epi8(ssig[8],tzero),ttemp[17]); ttemp[18] = _mm_add_epi16(_mm_unpacklo_epi8(ssig[9],tzero),ttemp[18]); ttemp[19] = _mm_add_epi16(_mm_unpackhi_epi8(ssig[9],tzero),ttemp[19]); ttemp[20] = _mm_add_epi16(_mm_unpacklo_epi8(ssig[10],tzero),ttemp[20]); ttemp[21] = _mm_add_epi16(_mm_unpackhi_epi8(ssig[10],tzero),ttemp[21]); } // create ssignature from 16-bit result ssig[0] =_mm_packus_epi16(_mm_srai_epi16(ttemp[0],2),_mm_srai_epi16(ttemp[1],2)); ssig[1] =_mm_packus_epi16(_mm_srai_epi16(ttemp[2],2),_mm_srai_epi16(ttemp[3],2)); ssig[2] =_mm_packus_epi16(_mm_srai_epi16(ttemp[4],2),_mm_srai_epi16(ttemp[5],2)); ssig[3] =_mm_packus_epi16(_mm_srai_epi16(ttemp[6],2),_mm_srai_epi16(ttemp[7],2)); ssig[4] =_mm_packus_epi16(_mm_srai_epi16(ttemp[8],2),_mm_srai_epi16(ttemp[9],2)); ssig[5] =_mm_packus_epi16(_mm_srai_epi16(ttemp[10],2),_mm_srai_epi16(ttemp[11],2)); ssig[6] =_mm_packus_epi16(_mm_srai_epi16(ttemp[12],2),_mm_srai_epi16(ttemp[13],2)); ssig[7] =_mm_packus_epi16(_mm_srai_epi16(ttemp[14],2),_mm_srai_epi16(ttemp[15],2)); ssig[8] =_mm_packus_epi16(_mm_srai_epi16(ttemp[16],2),_mm_srai_epi16(ttemp[17],2)); ssig[9] =_mm_packus_epi16(_mm_srai_epi16(ttemp[18],2),_mm_srai_epi16(ttemp[19],2)); ssig[10] =_mm_packus_epi16(_mm_srai_epi16(ttemp[20],2),_mm_srai_epi16(ttemp[21],2)); #else CV_Error( CV_StsNotImplemented, "Not supported without SSE2" ); #endif } namespace cv { RandomizedTree::RandomizedTree() : posteriors_(NULL), posteriors2_(NULL) { } RandomizedTree::~RandomizedTree() { freePosteriors(3); } void RandomizedTree::createNodes(int num_nodes, RNG &rng) { nodes_.reserve(num_nodes); for (int i = 0; i < num_nodes; ++i) { nodes_.push_back( RTreeNode((uchar)rng(RandomizedTree::PATCH_SIZE), (uchar)rng(RandomizedTree::PATCH_SIZE), (uchar)rng(RandomizedTree::PATCH_SIZE), (uchar)rng(RandomizedTree::PATCH_SIZE)) ); } } int RandomizedTree::getIndex(uchar* patch_data) const { int index = 0; for (int d = 0; d < depth_; ++d) { int child_offset = nodes_[index](patch_data); index = 2*index + 1 + child_offset; } return (int)(index - nodes_.size()); } void RandomizedTree::train(std::vector<BaseKeypoint> const& base_set, RNG &rng, int depth, int views, size_t reduced_num_dim, int num_quant_bits) { PatchGenerator make_patch; train(base_set, rng, make_patch, depth, views, reduced_num_dim, num_quant_bits); } void RandomizedTree::train(std::vector<BaseKeypoint> const& base_set, RNG &rng, PatchGenerator &make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits) { init((int)base_set.size(), depth, rng); Mat patch; // Estimate posterior probabilities using random affine views std::vector<BaseKeypoint>::const_iterator keypt_it; int class_id = 0; Size patchSize(PATCH_SIZE, PATCH_SIZE); for (keypt_it = base_set.begin(); keypt_it != base_set.end(); ++keypt_it, ++class_id) { for (int i = 0; i < views; ++i) { make_patch( Mat(keypt_it->image), Point(keypt_it->x, keypt_it->y ), patch, patchSize, rng ); IplImage iplPatch = patch; addExample(class_id, getData(&iplPatch)); } } finalize(reduced_num_dim, num_quant_bits); } void RandomizedTree::allocPosteriorsAligned(int num_leaves, int num_classes) { freePosteriors(3); posteriors_ = new float*[num_leaves]; //(float**) malloc(num_leaves*sizeof(float*)); for (int i=0; i<num_leaves; ++i) { posteriors_[i] = (float*)cvAlloc(num_classes*sizeof(posteriors_[i][0])); memset(posteriors_[i], 0, num_classes*sizeof(float)); } posteriors2_ = new uchar*[num_leaves]; for (int i=0; i<num_leaves; ++i) { posteriors2_[i] = (uchar*)cvAlloc(num_classes*sizeof(posteriors2_[i][0])); memset(posteriors2_[i], 0, num_classes*sizeof(uchar)); } classes_ = num_classes; } void RandomizedTree::freePosteriors(int which) { if (posteriors_ && (which&1)) { for (int i=0; i<num_leaves_; ++i) if (posteriors_[i]) cvFree( &posteriors_[i] ); delete [] posteriors_; posteriors_ = NULL; } if (posteriors2_ && (which&2)) { for (int i=0; i<num_leaves_; ++i) cvFree( &posteriors2_[i] ); delete [] posteriors2_; posteriors2_ = NULL; } classes_ = -1; } void RandomizedTree::init(int num_classes, int depth, RNG &rng) { depth_ = depth; num_leaves_ = 1 << depth; // 2**d int num_nodes = num_leaves_ - 1; // 2**d - 1 // Initialize probabilities and counts to 0 allocPosteriorsAligned(num_leaves_, num_classes); // will set classes_ correctly for (int i = 0; i < num_leaves_; ++i) memset((void*)posteriors_[i], 0, num_classes*sizeof(float)); leaf_counts_.resize(num_leaves_); for (int i = 0; i < num_leaves_; ++i) memset((void*)posteriors2_[i], 0, num_classes*sizeof(uchar)); createNodes(num_nodes, rng); } void RandomizedTree::addExample(int class_id, uchar* patch_data) { int index = getIndex(patch_data); float* posterior = getPosteriorByIndex(index); ++leaf_counts_[index]; ++posterior[class_id]; } // returns the p% percentile of data (length n vector) static float percentile(float *data, int n, float p) { assert(n>0); assert(p>=0 && p<=1); std::vector<float> vec(data, data+n); std::sort(vec.begin(), vec.end()); int ix = (int)(p*(n-1)); return vec[ix]; } void RandomizedTree::finalize(size_t reduced_num_dim, int num_quant_bits) { // Normalize by number of patches to reach each leaf for (int index = 0; index < num_leaves_; ++index) { float* posterior = posteriors_[index]; assert(posterior != NULL); int count = leaf_counts_[index]; if (count != 0) { float normalizer = 1.0f / count; for (int c = 0; c < classes_; ++c) { *posterior *= normalizer; ++posterior; } } } leaf_counts_.clear(); // apply compressive sensing if ((int)reduced_num_dim != classes_) compressLeaves(reduced_num_dim); else { static bool notified = false; if (!notified) printf("\n[OK] NO compression to leaves applied, dim=%i\n", (int)reduced_num_dim); notified = true; } // convert float-posteriors to char-posteriors (quantization step) makePosteriors2(num_quant_bits); } void RandomizedTree::compressLeaves(size_t reduced_num_dim) { static bool warned = false; if (!warned) { printf("\n[OK] compressing leaves with phi %i x %i\n", (int)reduced_num_dim, (int)classes_); warned = true; } static bool warned2 = false; if ((int)reduced_num_dim == classes_) { if (!warned2) printf("[WARNING] RandomizedTree::compressLeaves: not compressing because reduced_dim == classes()\n"); warned2 = true; return; } // DO NOT FREE RETURNED POINTER float *cs_phi = CSMatrixGenerator::getCSMatrix((int)reduced_num_dim, classes_, CSMatrixGenerator::PDT_BERNOULLI); float *cs_posteriors = new float[num_leaves_ * reduced_num_dim]; // temp, num_leaves_ x reduced_num_dim for (int i=0; i<num_leaves_; ++i) { float *post = getPosteriorByIndex(i); float *prod = &cs_posteriors[i*reduced_num_dim]; Mat A( (int)reduced_num_dim, classes_, CV_32FC1, cs_phi ); Mat X( classes_, 1, CV_32FC1, post ); Mat Y( (int)reduced_num_dim, 1, CV_32FC1, prod ); Y = A*X; } // copy new posteriors freePosteriors(3); allocPosteriorsAligned(num_leaves_, (int)reduced_num_dim); for (int i=0; i<num_leaves_; ++i) memcpy(posteriors_[i], &cs_posteriors[i*reduced_num_dim], reduced_num_dim*sizeof(float)); classes_ = (int)reduced_num_dim; delete [] cs_posteriors; } void RandomizedTree::makePosteriors2(int num_quant_bits) { int N = (1<<num_quant_bits) - 1; float perc[2]; estimateQuantPercForPosteriors(perc); assert(posteriors_ != NULL); for (int i=0; i<num_leaves_; ++i) quantizeVector(posteriors_[i], classes_, N, perc, posteriors2_[i]); // printf("makePosteriors2 quantization bounds: %.3e, %.3e (num_leaves=%i, N=%i)\n", // perc[0], perc[1], num_leaves_, N); } void RandomizedTree::estimateQuantPercForPosteriors(float perc[2]) { // _estimate_ percentiles for this tree // TODO: do this more accurately assert(posteriors_ != NULL); perc[0] = perc[1] = .0f; for (int i=0; i<num_leaves_; i++) { perc[0] += percentile(posteriors_[i], classes_, GET_LOWER_QUANT_PERC()); perc[1] += percentile(posteriors_[i], classes_, GET_UPPER_QUANT_PERC()); } perc[0] /= num_leaves_; perc[1] /= num_leaves_; } float* RandomizedTree::getPosterior(uchar* patch_data) { return const_cast<float*>(const_cast<const RandomizedTree*>(this)->getPosterior(patch_data)); } const float* RandomizedTree::getPosterior(uchar* patch_data) const { return getPosteriorByIndex( getIndex(patch_data) ); } uchar* RandomizedTree::getPosterior2(uchar* patch_data) { return const_cast<uchar*>(const_cast<const RandomizedTree*>(this)->getPosterior2(patch_data)); } const uchar* RandomizedTree::getPosterior2(uchar* patch_data) const { return getPosteriorByIndex2( getIndex(patch_data) ); } void RandomizedTree::quantizeVector(float *vec, int dim, int N, float bnds[2], int clamp_mode) { float map_bnd[2] = {0.f,(float)N}; // bounds of quantized target interval we're mapping to for (int k=0; k<dim; ++k, ++vec) { *vec = float(int((*vec - bnds[0])/(bnds[1] - bnds[0])*(map_bnd[1] - map_bnd[0]) + map_bnd[0])); // 0: clamp both, lower and upper values if (clamp_mode == 0) *vec = (*vec<map_bnd[0]) ? map_bnd[0] : ((*vec>map_bnd[1]) ? map_bnd[1] : *vec); // 1: clamp lower values only else if (clamp_mode == 1) *vec = (*vec<map_bnd[0]) ? map_bnd[0] : *vec; // 2: clamp upper values only else if (clamp_mode == 2) *vec = (*vec>map_bnd[1]) ? map_bnd[1] : *vec; // 4: no clamping else if (clamp_mode == 4) ; // yep, nothing else { printf("clamp_mode == %i is not valid (%s:%i).\n", clamp_mode, __FILE__, __LINE__); exit(1); } } } void RandomizedTree::quantizeVector(float *vec, int dim, int N, float bnds[2], uchar *dst) { int map_bnd[2] = {0, N}; // bounds of quantized target interval we're mapping to int tmp; for (int k=0; k<dim; ++k) { tmp = int((*vec - bnds[0])/(bnds[1] - bnds[0])*(map_bnd[1] - map_bnd[0]) + map_bnd[0]); *dst = (uchar)((tmp<0) ? 0 : ((tmp>N) ? N : tmp)); ++vec; ++dst; } } void RandomizedTree::read(const char* file_name, int num_quant_bits) { std::ifstream file(file_name, std::ifstream::binary); read(file, num_quant_bits); file.close(); } void RandomizedTree::read(std::istream &is, int num_quant_bits) { is.read((char*)(&classes_), sizeof(classes_)); is.read((char*)(&depth_), sizeof(depth_)); num_leaves_ = 1 << depth_; int num_nodes = num_leaves_ - 1; nodes_.resize(num_nodes); is.read((char*)(&nodes_[0]), num_nodes * sizeof(nodes_[0])); //posteriors_.resize(classes_ * num_leaves_); //freePosteriors(3); //printf("[DEBUG] reading: %i leaves, %i classes\n", num_leaves_, classes_); allocPosteriorsAligned(num_leaves_, classes_); for (int i=0; i<num_leaves_; i++) is.read((char*)posteriors_[i], classes_ * sizeof(*posteriors_[0])); // make char-posteriors from float-posteriors makePosteriors2(num_quant_bits); } void RandomizedTree::write(const char* file_name) const { std::ofstream file(file_name, std::ofstream::binary); write(file); file.close(); } void RandomizedTree::write(std::ostream &os) const { if (!posteriors_) { printf("WARNING: Cannot write float posteriors (posteriors_ = NULL).\n"); return; } os.write((char*)(&classes_), sizeof(classes_)); os.write((char*)(&depth_), sizeof(depth_)); os.write((char*)(&nodes_[0]), (int)(nodes_.size() * sizeof(nodes_[0]))); for (int i=0; i<num_leaves_; i++) { os.write((char*)posteriors_[i], classes_ * sizeof(*posteriors_[0])); } } void RandomizedTree::savePosteriors(std::string url, bool append) { std::ofstream file(url.c_str(), (append?std::ios::app:std::ios::out)); for (int i=0; i<num_leaves_; i++) { float *post = posteriors_[i]; char buf[20]; for (int i=0; i<classes_; i++) { sprintf(buf, "%.10e", *post++); file << buf << ((i<classes_-1) ? " " : ""); } file << std::endl; } file.close(); } void RandomizedTree::savePosteriors2(std::string url, bool append) { std::ofstream file(url.c_str(), (append?std::ios::app:std::ios::out)); for (int i=0; i<num_leaves_; i++) { uchar *post = posteriors2_[i]; for (int i=0; i<classes_; i++) file << int(*post++) << (i<classes_-1?" ":""); file << std::endl; } file.close(); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// RTreeClassifier::RTreeClassifier() : classes_(0) { posteriors_ = NULL; } void RTreeClassifier::train(std::vector<BaseKeypoint> const& base_set, RNG &rng, int num_trees, int depth, int views, size_t reduced_num_dim, int num_quant_bits) { PatchGenerator make_patch; train(base_set, rng, make_patch, num_trees, depth, views, reduced_num_dim, num_quant_bits); } // Single-threaded version of train(), with progress output void RTreeClassifier::train(std::vector<BaseKeypoint> const& base_set, RNG &rng, PatchGenerator &make_patch, int num_trees, int depth, int views, size_t reduced_num_dim, int num_quant_bits) { if (reduced_num_dim > base_set.size()) { printf("INVALID PARAMS in RTreeClassifier::train: reduced_num_dim{%i} > base_set.size(){%i}\n", (int)reduced_num_dim, (int)base_set.size()); return; } num_quant_bits_ = num_quant_bits; classes_ = (int)reduced_num_dim; // base_set.size(); original_num_classes_ = (int)base_set.size(); trees_.resize(num_trees); printf("[OK] Training trees: base size=%i, reduced size=%i\n", (int)base_set.size(), (int)reduced_num_dim); int count = 1; printf("[OK] Trained 0 / %i trees", num_trees); fflush(stdout); for( int ti = 0; ti < num_trees; ti++ ) { trees_[ti].train(base_set, rng, make_patch, depth, views, reduced_num_dim, num_quant_bits_); printf("\r[OK] Trained %i / %i trees", count++, num_trees); fflush(stdout); } printf("\n"); countZeroElements(); printf("\n\n"); } void RTreeClassifier::getSignature(IplImage* patch, float *sig) const { // Need pointer to 32x32 patch data uchar buffer[RandomizedTree::PATCH_SIZE * RandomizedTree::PATCH_SIZE]; uchar* patch_data; if (patch->widthStep != RandomizedTree::PATCH_SIZE) { //printf("[INFO] patch is padded, data will be copied (%i/%i).\n", // patch->widthStep, RandomizedTree::PATCH_SIZE); uchar* data = getData(patch); patch_data = buffer; for (int i = 0; i < RandomizedTree::PATCH_SIZE; ++i) { memcpy((void*)patch_data, (void*)data, RandomizedTree::PATCH_SIZE); data += patch->widthStep; patch_data += RandomizedTree::PATCH_SIZE; } patch_data = buffer; } else { patch_data = getData(patch); } memset((void*)sig, 0, classes_ * sizeof(float)); std::vector<RandomizedTree>::const_iterator tree_it; // get posteriors float **posteriors = new float*[trees_.size()]; // TODO: move alloc outside this func float **pp = posteriors; for (tree_it = trees_.begin(); tree_it != trees_.end(); ++tree_it, pp++) { *pp = const_cast<float*>(tree_it->getPosterior(patch_data)); assert(*pp != NULL); } // sum them up pp = posteriors; for (tree_it = trees_.begin(); tree_it != trees_.end(); ++tree_it, pp++) addVec(classes_, sig, *pp, sig); delete [] posteriors; posteriors = NULL; // full quantization (experimental) #if 0 int n_max = 1<<8 - 1; int sum_max = (1<<4 - 1)*trees_.size(); int shift = 0; while ((sum_max>>shift) > n_max) shift++; for (int i = 0; i < classes_; ++i) { sig[i] = int(sig[i] + .5) >> shift; if (sig[i]>n_max) sig[i] = n_max; } static bool warned = false; if (!warned) { printf("[WARNING] Using full quantization (RTreeClassifier::getSignature)! shift=%i\n", shift); warned = true; } #else // TODO: get rid of this multiply (-> number of trees is known at train // time, exploit it in RandomizedTree::finalize()) float normalizer = 1.0f / trees_.size(); for (int i = 0; i < classes_; ++i) sig[i] *= normalizer; #endif } void RTreeClassifier::getSignature(IplImage* patch, uchar *sig) const { // Need pointer to 32x32 patch data uchar buffer[RandomizedTree::PATCH_SIZE * RandomizedTree::PATCH_SIZE]; uchar* patch_data; if (patch->widthStep != RandomizedTree::PATCH_SIZE) { //printf("[INFO] patch is padded, data will be copied (%i/%i).\n", // patch->widthStep, RandomizedTree::PATCH_SIZE); uchar* data = getData(patch); patch_data = buffer; for (int i = 0; i < RandomizedTree::PATCH_SIZE; ++i) { memcpy((void*)patch_data, (void*)data, RandomizedTree::PATCH_SIZE); data += patch->widthStep; patch_data += RandomizedTree::PATCH_SIZE; } patch_data = buffer; } else { patch_data = getData(patch); } std::vector<RandomizedTree>::const_iterator tree_it; // get posteriors if (posteriors_ == NULL) { posteriors_ = (uchar**)cvAlloc( trees_.size()*sizeof(posteriors_[0]) ); ptemp_ = (unsigned short*)cvAlloc( classes_*sizeof(ptemp_[0]) ); } /// @todo What is going on in the next 4 lines? uchar **pp = posteriors_; for (tree_it = trees_.begin(); tree_it != trees_.end(); ++tree_it, pp++) *pp = const_cast<uchar*>(tree_it->getPosterior2(patch_data)); pp = posteriors_; #if 1 // SSE2 optimized code sum_50t_176c(pp, sig, ptemp_); // sum them up #else static bool warned = false; memset((void*)sig, 0, classes_ * sizeof(sig[0])); unsigned short *sig16 = new unsigned short[classes_]; // TODO: make member, no alloc here memset((void*)sig16, 0, classes_ * sizeof(sig16[0])); for (tree_it = trees_.begin(); tree_it != trees_.end(); ++tree_it, pp++) addVec(classes_, sig16, *pp, sig16); // squeeze signatures into an uchar const bool full_shifting = true; int shift; if (full_shifting) { float num_add_bits_f = log((float)trees_.size())/log(2.f); // # additional bits required due to summation int num_add_bits = int(num_add_bits_f); if (num_add_bits_f != float(num_add_bits)) ++num_add_bits; shift = num_quant_bits_ + num_add_bits - 8*sizeof(uchar); //shift = num_quant_bits_ + num_add_bits - 2; //shift = 6; if (shift>0) for (int i = 0; i < classes_; ++i) sig[i] = (sig16[i] >> shift); // &3 cut off all but lowest 2 bits, 3(dec) = 11(bin) if (!warned) printf("[OK] RTC: quantizing by FULL RIGHT SHIFT, shift = %i\n", shift); } else { printf("[ERROR] RTC: not implemented!\n"); exit(0); } if (!warned) printf("[WARNING] RTC: unoptimized signature computation\n"); warned = true; #endif } void RTreeClassifier::getSparseSignature(IplImage *patch, float *sig, float thresh) const { getFloatSignature(patch, sig); for (int i=0; i<classes_; ++i, sig++) if (*sig < thresh) *sig = 0.f; } int RTreeClassifier::countNonZeroElements(float *vec, int n, double tol) { int res = 0; while (n-- > 0) res += (fabs(*vec++) > tol); return res; } void RTreeClassifier::read(const char* file_name) { std::ifstream file(file_name, std::ifstream::binary); if( file.is_open() ) { read(file); file.close(); } } void RTreeClassifier::read(std::istream &is) { int num_trees = 0; is.read((char*)(&num_trees), sizeof(num_trees)); is.read((char*)(&classes_), sizeof(classes_)); is.read((char*)(&original_num_classes_), sizeof(original_num_classes_)); is.read((char*)(&num_quant_bits_), sizeof(num_quant_bits_)); if (num_quant_bits_<1 || num_quant_bits_>8) { printf("[WARNING] RTC: suspicious value num_quant_bits_=%i found; setting to %i.\n", num_quant_bits_, (int)DEFAULT_NUM_QUANT_BITS); num_quant_bits_ = DEFAULT_NUM_QUANT_BITS; } trees_.resize(num_trees); std::vector<RandomizedTree>::iterator tree_it; for (tree_it = trees_.begin(); tree_it != trees_.end(); ++tree_it) { tree_it->read(is, num_quant_bits_); } printf("[OK] Loaded RTC, quantization=%i bits\n", num_quant_bits_); countZeroElements(); } void RTreeClassifier::write(const char* file_name) const { std::ofstream file(file_name, std::ofstream::binary); write(file); file.close(); } void RTreeClassifier::write(std::ostream &os) const { int num_trees = (int)trees_.size(); os.write((char*)(&num_trees), sizeof(num_trees)); os.write((char*)(&classes_), sizeof(classes_)); os.write((char*)(&original_num_classes_), sizeof(original_num_classes_)); os.write((char*)(&num_quant_bits_), sizeof(num_quant_bits_)); printf("RTreeClassifier::write: num_quant_bits_=%i\n", num_quant_bits_); std::vector<RandomizedTree>::const_iterator tree_it; for (tree_it = trees_.begin(); tree_it != trees_.end(); ++tree_it) tree_it->write(os); } void RTreeClassifier::saveAllFloatPosteriors(std::string url) { printf("[DEBUG] writing all float posteriors to %s...\n", url.c_str()); for (int i=0; i<(int)trees_.size(); ++i) trees_[i].savePosteriors(url, (i==0 ? false : true)); printf("[DEBUG] done\n"); } void RTreeClassifier::saveAllBytePosteriors(std::string url) { printf("[DEBUG] writing all byte posteriors to %s...\n", url.c_str()); for (int i=0; i<(int)trees_.size(); ++i) trees_[i].savePosteriors2(url, (i==0 ? false : true)); printf("[DEBUG] done\n"); } void RTreeClassifier::setFloatPosteriorsFromTextfile_176(std::string url) { std::ifstream ifs(url.c_str()); for (int i=0; i<(int)trees_.size(); ++i) { int num_classes = trees_[i].classes_; assert(num_classes == 176); // TODO: remove this limitation (arose due to SSE2 optimizations) for (int k=0; k<trees_[i].num_leaves_; ++k) { float *post = trees_[i].getPosteriorByIndex(k); for (int j=0; j<num_classes; ++j, ++post) ifs >> *post; assert(ifs.good()); } } classes_ = 176; //setQuantization(num_quant_bits_); ifs.close(); printf("[EXPERIMENTAL] read entire tree from '%s'\n", url.c_str()); } float RTreeClassifier::countZeroElements() { size_t flt_zeros = 0; size_t ui8_zeros = 0; size_t num_elem = trees_[0].classes(); for (int i=0; i<(int)trees_.size(); ++i) for (int k=0; k<(int)trees_[i].num_leaves_; ++k) { float *p = trees_[i].getPosteriorByIndex(k); uchar *p2 = trees_[i].getPosteriorByIndex2(k); assert(p); assert(p2); for (int j=0; j<(int)num_elem; ++j, ++p, ++p2) { if (*p == 0.f) flt_zeros++; if (*p2 == 0) ui8_zeros++; } } num_elem = trees_.size()*trees_[0].num_leaves_*num_elem; float flt_perc = 100.f*flt_zeros/num_elem; float ui8_perc = 100.f*ui8_zeros/num_elem; printf("[OK] RTC: overall %i/%i (%.3f%%) zeros in float leaves\n", (int)flt_zeros, (int)num_elem, flt_perc); printf(" overall %i/%i (%.3f%%) zeros in uint8 leaves\n", (int)ui8_zeros, (int)num_elem, ui8_perc); return flt_perc; } void RTreeClassifier::setQuantization(int num_quant_bits) { for (int i=0; i<(int)trees_.size(); ++i) trees_[i].applyQuantization(num_quant_bits); printf("[OK] signature quantization is now %i bits (before: %i)\n", num_quant_bits, num_quant_bits_); num_quant_bits_ = num_quant_bits; } void RTreeClassifier::discardFloatPosteriors() { for (int i=0; i<(int)trees_.size(); ++i) trees_[i].discardFloatPosteriors(); printf("[OK] RTC: discarded float posteriors of all trees\n"); } }