/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// Authors:
//  * Ozan Tonkal, ozantonkal@gmail.com
//  * Anatoly Baksheev, Itseez Inc.  myname.mysurname <> mycompany.com
//
//  OpenCV Viz module is complete rewrite of
//  PCL visualization module (www.pointclouds.org)
//
//M*/

#ifndef __OPENCV_VIZ_VIZ3D_IMPL_HPP__
#define __OPENCV_VIZ_VIZ3D_IMPL_HPP__

#include <opencv2/viz.hpp>
#include "interactor_style.h"

struct cv::viz::Viz3d::VizImpl
{
public:
    typedef cv::Ptr<VizImpl> Ptr;
    typedef Viz3d::KeyboardCallback KeyboardCallback;
    typedef Viz3d::MouseCallback MouseCallback;

    int ref_counter;

    VizImpl(const String &name);
    virtual ~VizImpl();

    void showWidget(const String &id, const Widget &widget, const Affine3f &pose = Affine3f::Identity());
    void removeWidget(const String &id);
    Widget getWidget(const String &id) const;
    void removeAllWidgets();

    void setWidgetPose(const String &id, const Affine3f &pose);
    void updateWidgetPose(const String &id, const Affine3f &pose);
    Affine3f getWidgetPose(const String &id) const;

    void setDesiredUpdateRate(double rate);
    double getDesiredUpdateRate();

    /** \brief Returns true when the user tried to close the window */
    bool wasStopped() const { if (interactor_ != NULL) return (stopped_); else return true; }

    /** \brief Set the stopped flag back to false */
    void resetStoppedFlag() { if (interactor_ != NULL) stopped_ = false; }

    /** \brief Stop the interaction and close the visualizaton window. */
    void close()
    {
        stopped_ = true;
        if (interactor_)
        {
            interactor_->GetRenderWindow()->Finalize();
            interactor_->TerminateApp(); // This tends to close the window...
        }
    }

    void setRepresentation(int representation);

    void setCamera(const Camera &camera);
    Camera getCamera() const;

    /** \brief Reset the camera to a given widget */
    void resetCameraViewpoint(const String& id);
    void resetCamera();

    void setViewerPose(const Affine3f &pose);
    Affine3f getViewerPose();

    void convertToWindowCoordinates(const Point3d &pt, Point3d &window_coord);
    void converTo3DRay(const Point3d &window_coord, Point3d &origin, Vec3d &direction);

    void saveScreenshot(const String &file);
    void setWindowPosition(int x, int y);
    Size getWindowSize() const;
    void setWindowSize(int xw, int yw);
    void setFullScreen(bool mode);
    String getWindowName() const;
    void setBackgroundColor(const Color& color);

    void spin();
    void spinOnce(int time = 1, bool force_redraw = false);

    void registerKeyboardCallback(KeyboardCallback callback, void* cookie = 0);
    void registerMouseCallback(MouseCallback callback, void* cookie = 0);

private:
    vtkSmartPointer<vtkRenderWindowInteractor> interactor_;

    struct ExitMainLoopTimerCallback : public vtkCommand
    {
        static ExitMainLoopTimerCallback* New()
        {
            return new ExitMainLoopTimerCallback;
        }
        virtual void Execute(vtkObject* vtkNotUsed(caller), unsigned long event_id, void* call_data)
        {
            if (event_id != vtkCommand::TimerEvent)
                return;

            int timer_id = *reinterpret_cast<int*>(call_data);
            if (timer_id != right_timer_id)
                return;

            // Stop vtk loop and send notification to app to wake it up
            viz_->interactor_->TerminateApp();
        }
        int right_timer_id;
        VizImpl* viz_;
    };

    struct ExitCallback : public vtkCommand
    {
        static ExitCallback* New()
        {
            return new ExitCallback;
        }
        virtual void Execute(vtkObject*, unsigned long event_id, void*)
        {
            if (event_id == vtkCommand::ExitEvent)
            {
                viz_->stopped_ = true;
                viz_->interactor_->GetRenderWindow()->Finalize();
                viz_->interactor_->TerminateApp();
            }
        }
        VizImpl* viz_;
    };

    /** \brief Set to false if the interaction loop is running. */
    bool stopped_;

    double s_lastDone_;

    /** \brief Global timer ID. Used in destructor only. */
    int timer_id_;

    /** \brief Callback object enabling us to leave the main loop, when a timer fires. */
    vtkSmartPointer<ExitMainLoopTimerCallback> exit_main_loop_timer_callback_;
    vtkSmartPointer<ExitCallback> exit_callback_;

    vtkSmartPointer<vtkRenderer> renderer_;
    vtkSmartPointer<vtkRenderWindow> window_;

    /** \brief The render window interactor style. */
    vtkSmartPointer<InteractorStyle> style_;

    /** \brief Internal list with actor pointers and name IDs for all widget actors */
    cv::Ptr<WidgetActorMap> widget_actor_map_;

    /** \brief Boolean that holds whether or not the camera parameters were manually initialized*/
    bool camera_set_;

    bool removeActorFromRenderer(const vtkSmartPointer<vtkProp> &actor);

    /** \brief Internal method. Creates a vtk actor from a vtk polydata object.
          * \param[in] data the vtk polydata object to create an actor for
          * \param[out] actor the resultant vtk actor object
          * \param[in] use_scalars set scalar properties to the mapper if it exists in the data. Default: true.
          */
    void createActorFromVTKDataSet(const vtkSmartPointer<vtkDataSet> &data, vtkSmartPointer<vtkLODActor> &actor, bool use_scalars = true);

    /** \brief Updates a set of cells (vtkIdTypeArray) if the number of points in a cloud changes
          * \param[out] cells the vtkIdTypeArray object (set of cells) to update
          * \param[out] initcells a previously saved set of cells. If the number of points in the current cloud is
          * higher than the number of cells in \a cells, and initcells contains enough data, then a copy from it
          * will be made instead of regenerating the entire array.
          * \param[in] nr_points the number of points in the new cloud. This dictates how many cells we need to
          * generate
          */
    void updateCells(vtkSmartPointer<vtkIdTypeArray> &cells, vtkSmartPointer<vtkIdTypeArray> &initcells, vtkIdType nr_points);
};



namespace cv
{
    namespace viz
    {
        vtkSmartPointer<vtkMatrix4x4> convertToVtkMatrix(const cv::Matx44f &m);
        cv::Matx44f convertToMatx(const vtkSmartPointer<vtkMatrix4x4>& vtk_matrix);

        struct NanFilter
        {
            template<typename _Tp, typename _Msk>
            struct Impl
            {
                typedef Vec<_Tp, 3> _Out;

                static _Out* copy(const Mat& source, _Out* output, const Mat& nan_mask)
                {
                    CV_Assert(DataDepth<_Tp>::value == source.depth() && source.size() == nan_mask.size());
                    CV_Assert(nan_mask.channels() == 3 || nan_mask.channels() == 4);
                    CV_DbgAssert(DataDepth<_Msk>::value == nan_mask.depth());

                    int s_chs = source.channels();
                    int m_chs = nan_mask.channels();

                    for (int y = 0; y < source.rows; ++y)
                    {
                        const _Tp* srow = source.ptr<_Tp>(y);
                        const _Msk* mrow = nan_mask.ptr<_Msk>(y);

                        for (int x = 0; x < source.cols; ++x, srow += s_chs, mrow += m_chs)
                            if (!isNan(mrow[0]) && !isNan(mrow[1]) && !isNan(mrow[2]))
                                *output++ = _Out(srow);
                    }
                    return output;
                }

                static _Out* copyColor(const Mat& source, _Out* output, const Mat& nan_mask)
                {
                    CV_Assert(DataDepth<_Tp>::value == source.depth() && source.size() == nan_mask.size());
                    CV_Assert(nan_mask.channels() == 3 || nan_mask.channels() == 4);
                    CV_DbgAssert(DataDepth<_Msk>::value == nan_mask.depth());

                    int s_chs = source.channels();
                    int m_chs = nan_mask.channels();

                    for (int y = 0; y < source.rows; ++y)
                    {
                        const _Tp* srow = source.ptr<_Tp>(y);
                        const _Msk* mrow = nan_mask.ptr<_Msk>(y);

                        for (int x = 0; x < source.cols; ++x, srow += s_chs, mrow += m_chs)
                            if (!isNan(mrow[0]) && !isNan(mrow[1]) && !isNan(mrow[2]))
                            {
                                *output = _Out(srow);
                                std::swap((*output)[0], (*output)[2]); // BGR -> RGB
                                ++output;
                            }
                    }
                    return output;
                }
            };

            template<typename _Tp>
            static inline Vec<_Tp, 3>* copy(const Mat& source, Vec<_Tp, 3>* output, const Mat& nan_mask)
            {
                CV_Assert(nan_mask.depth() == CV_32F || nan_mask.depth() == CV_64F);

                typedef Vec<_Tp, 3>* (*copy_func)(const Mat&, Vec<_Tp, 3>*, const Mat&);
                const static copy_func table[2] = { &NanFilter::Impl<_Tp, float>::copy, &NanFilter::Impl<_Tp, double>::copy };

                return table[nan_mask.depth() - 5](source, output, nan_mask);
            }

            template<typename _Tp>
            static inline Vec<_Tp, 3>* copyColor(const Mat& source, Vec<_Tp, 3>* output, const Mat& nan_mask)
            {
                CV_Assert(nan_mask.depth() == CV_32F || nan_mask.depth() == CV_64F);

                typedef Vec<_Tp, 3>* (*copy_func)(const Mat&, Vec<_Tp, 3>*, const Mat&);
                const static copy_func table[2] = { &NanFilter::Impl<_Tp, float>::copyColor, &NanFilter::Impl<_Tp, double>::copyColor };

                return table[nan_mask.depth() - 5](source, output, nan_mask);
            }
        };

        struct ApplyAffine
        {
            const Affine3f& affine_;
            ApplyAffine(const Affine3f& affine) : affine_(affine) {}

            template<typename _Tp> Point3_<_Tp> operator()(const Point3_<_Tp>& p) const { return affine_ * p; }

            template<typename _Tp> Vec<_Tp, 3> operator()(const Vec<_Tp, 3>& v) const
            {
                const float* m = affine_.matrix.val;

                Vec<_Tp, 3> result;
                result[0] = (_Tp)(m[0] * v[0] + m[1] * v[1] + m[ 2] * v[2] + m[ 3]);
                result[1] = (_Tp)(m[4] * v[0] + m[5] * v[1] + m[ 6] * v[2] + m[ 7]);
                result[2] = (_Tp)(m[8] * v[0] + m[9] * v[1] + m[10] * v[2] + m[11]);
                return result;
            }

        private:
            ApplyAffine(const ApplyAffine&);
            ApplyAffine& operator=(const ApplyAffine&);
        };


        inline Color vtkcolor(const Color& color)
        {
            Color scaled_color = color * (1.0/255.0);
            std::swap(scaled_color[0], scaled_color[2]);
            return scaled_color;
        }

        inline Vec3d vtkpoint(const Point3f& point) { return Vec3d(point.x, point.y, point.z); }
        template<typename _Tp> inline _Tp normalized(const _Tp& v) { return v * 1/cv::norm(v); }

        struct ConvertToVtkImage
        {
            struct Impl
            {
                static void copyImageMultiChannel(const Mat &image, vtkSmartPointer<vtkImageData> output)
                {
                    int i_chs = image.channels();

                    for (int i = 0; i < image.rows; ++i)
                    {
                        const unsigned char * irows = image.ptr<unsigned char>(i);
                        for (int j = 0; j < image.cols; ++j, irows += i_chs)
                        {
                            unsigned char * vrows = static_cast<unsigned char *>(output->GetScalarPointer(j,i,0));
                            memcpy(vrows, irows, i_chs);
                            std::swap(vrows[0], vrows[2]); // BGR -> RGB
                        }
                    }
                    output->Modified();
                }

                static void copyImageSingleChannel(const Mat &image, vtkSmartPointer<vtkImageData> output)
                {
                    for (int i = 0; i < image.rows; ++i)
                    {
                        const unsigned char * irows = image.ptr<unsigned char>(i);
                        for (int j = 0; j < image.cols; ++j, ++irows)
                        {
                            unsigned char * vrows = static_cast<unsigned char *>(output->GetScalarPointer(j,i,0));
                            *vrows = *irows;
                        }
                    }
                    output->Modified();
                }
            };

            static void convert(const Mat &image, vtkSmartPointer<vtkImageData> output)
            {
                // Create the vtk image
                output->SetDimensions(image.cols, image.rows, 1);
#if VTK_MAJOR_VERSION <= 5
                output->SetNumberOfScalarComponents(image.channels());
                output->SetScalarTypeToUnsignedChar();
                output->AllocateScalars();
#else
                output->AllocateScalars(VTK_UNSIGNED_CHAR, image.channels());
#endif

                int i_chs = image.channels();
                if (i_chs > 1)
                {
                    // Multi channel images are handled differently because of BGR <-> RGB
                    Impl::copyImageMultiChannel(image, output);
                }
                else
                {
                    Impl::copyImageSingleChannel(image, output);
                }
            }
        };
    }
}

#endif