/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // // Authors: // * Ozan Tonkal, ozantonkal@gmail.com // * Anatoly Baksheev, Itseez Inc. myname.mysurname <> mycompany.com // // OpenCV Viz module is complete rewrite of // PCL visualization module (www.pointclouds.org) // //M*/ #ifndef __OPENCV_VIZ_VIZ3D_IMPL_HPP__ #define __OPENCV_VIZ_VIZ3D_IMPL_HPP__ #include <opencv2/viz.hpp> #include "interactor_style.h" struct cv::viz::Viz3d::VizImpl { public: typedef cv::Ptr<VizImpl> Ptr; typedef Viz3d::KeyboardCallback KeyboardCallback; typedef Viz3d::MouseCallback MouseCallback; int ref_counter; VizImpl(const String &name); virtual ~VizImpl(); void showWidget(const String &id, const Widget &widget, const Affine3f &pose = Affine3f::Identity()); void removeWidget(const String &id); Widget getWidget(const String &id) const; void removeAllWidgets(); void setWidgetPose(const String &id, const Affine3f &pose); void updateWidgetPose(const String &id, const Affine3f &pose); Affine3f getWidgetPose(const String &id) const; void setDesiredUpdateRate(double rate); double getDesiredUpdateRate(); /** \brief Returns true when the user tried to close the window */ bool wasStopped() const { if (interactor_ != NULL) return (stopped_); else return true; } /** \brief Set the stopped flag back to false */ void resetStoppedFlag() { if (interactor_ != NULL) stopped_ = false; } /** \brief Stop the interaction and close the visualizaton window. */ void close() { stopped_ = true; if (interactor_) { interactor_->GetRenderWindow()->Finalize(); interactor_->TerminateApp(); // This tends to close the window... } } void setRepresentation(int representation); void setCamera(const Camera &camera); Camera getCamera() const; /** \brief Reset the camera to a given widget */ void resetCameraViewpoint(const String& id); void resetCamera(); void setViewerPose(const Affine3f &pose); Affine3f getViewerPose(); void convertToWindowCoordinates(const Point3d &pt, Point3d &window_coord); void converTo3DRay(const Point3d &window_coord, Point3d &origin, Vec3d &direction); void saveScreenshot(const String &file); void setWindowPosition(int x, int y); Size getWindowSize() const; void setWindowSize(int xw, int yw); void setFullScreen(bool mode); String getWindowName() const; void setBackgroundColor(const Color& color); void spin(); void spinOnce(int time = 1, bool force_redraw = false); void registerKeyboardCallback(KeyboardCallback callback, void* cookie = 0); void registerMouseCallback(MouseCallback callback, void* cookie = 0); private: vtkSmartPointer<vtkRenderWindowInteractor> interactor_; struct ExitMainLoopTimerCallback : public vtkCommand { static ExitMainLoopTimerCallback* New() { return new ExitMainLoopTimerCallback; } virtual void Execute(vtkObject* vtkNotUsed(caller), unsigned long event_id, void* call_data) { if (event_id != vtkCommand::TimerEvent) return; int timer_id = *reinterpret_cast<int*>(call_data); if (timer_id != right_timer_id) return; // Stop vtk loop and send notification to app to wake it up viz_->interactor_->TerminateApp(); } int right_timer_id; VizImpl* viz_; }; struct ExitCallback : public vtkCommand { static ExitCallback* New() { return new ExitCallback; } virtual void Execute(vtkObject*, unsigned long event_id, void*) { if (event_id == vtkCommand::ExitEvent) { viz_->stopped_ = true; viz_->interactor_->GetRenderWindow()->Finalize(); viz_->interactor_->TerminateApp(); } } VizImpl* viz_; }; /** \brief Set to false if the interaction loop is running. */ bool stopped_; double s_lastDone_; /** \brief Global timer ID. Used in destructor only. */ int timer_id_; /** \brief Callback object enabling us to leave the main loop, when a timer fires. */ vtkSmartPointer<ExitMainLoopTimerCallback> exit_main_loop_timer_callback_; vtkSmartPointer<ExitCallback> exit_callback_; vtkSmartPointer<vtkRenderer> renderer_; vtkSmartPointer<vtkRenderWindow> window_; /** \brief The render window interactor style. */ vtkSmartPointer<InteractorStyle> style_; /** \brief Internal list with actor pointers and name IDs for all widget actors */ cv::Ptr<WidgetActorMap> widget_actor_map_; /** \brief Boolean that holds whether or not the camera parameters were manually initialized*/ bool camera_set_; bool removeActorFromRenderer(const vtkSmartPointer<vtkProp> &actor); /** \brief Internal method. Creates a vtk actor from a vtk polydata object. * \param[in] data the vtk polydata object to create an actor for * \param[out] actor the resultant vtk actor object * \param[in] use_scalars set scalar properties to the mapper if it exists in the data. Default: true. */ void createActorFromVTKDataSet(const vtkSmartPointer<vtkDataSet> &data, vtkSmartPointer<vtkLODActor> &actor, bool use_scalars = true); /** \brief Updates a set of cells (vtkIdTypeArray) if the number of points in a cloud changes * \param[out] cells the vtkIdTypeArray object (set of cells) to update * \param[out] initcells a previously saved set of cells. If the number of points in the current cloud is * higher than the number of cells in \a cells, and initcells contains enough data, then a copy from it * will be made instead of regenerating the entire array. * \param[in] nr_points the number of points in the new cloud. This dictates how many cells we need to * generate */ void updateCells(vtkSmartPointer<vtkIdTypeArray> &cells, vtkSmartPointer<vtkIdTypeArray> &initcells, vtkIdType nr_points); }; namespace cv { namespace viz { vtkSmartPointer<vtkMatrix4x4> convertToVtkMatrix(const cv::Matx44f &m); cv::Matx44f convertToMatx(const vtkSmartPointer<vtkMatrix4x4>& vtk_matrix); struct NanFilter { template<typename _Tp, typename _Msk> struct Impl { typedef Vec<_Tp, 3> _Out; static _Out* copy(const Mat& source, _Out* output, const Mat& nan_mask) { CV_Assert(DataDepth<_Tp>::value == source.depth() && source.size() == nan_mask.size()); CV_Assert(nan_mask.channels() == 3 || nan_mask.channels() == 4); CV_DbgAssert(DataDepth<_Msk>::value == nan_mask.depth()); int s_chs = source.channels(); int m_chs = nan_mask.channels(); for (int y = 0; y < source.rows; ++y) { const _Tp* srow = source.ptr<_Tp>(y); const _Msk* mrow = nan_mask.ptr<_Msk>(y); for (int x = 0; x < source.cols; ++x, srow += s_chs, mrow += m_chs) if (!isNan(mrow[0]) && !isNan(mrow[1]) && !isNan(mrow[2])) *output++ = _Out(srow); } return output; } static _Out* copyColor(const Mat& source, _Out* output, const Mat& nan_mask) { CV_Assert(DataDepth<_Tp>::value == source.depth() && source.size() == nan_mask.size()); CV_Assert(nan_mask.channels() == 3 || nan_mask.channels() == 4); CV_DbgAssert(DataDepth<_Msk>::value == nan_mask.depth()); int s_chs = source.channels(); int m_chs = nan_mask.channels(); for (int y = 0; y < source.rows; ++y) { const _Tp* srow = source.ptr<_Tp>(y); const _Msk* mrow = nan_mask.ptr<_Msk>(y); for (int x = 0; x < source.cols; ++x, srow += s_chs, mrow += m_chs) if (!isNan(mrow[0]) && !isNan(mrow[1]) && !isNan(mrow[2])) { *output = _Out(srow); std::swap((*output)[0], (*output)[2]); // BGR -> RGB ++output; } } return output; } }; template<typename _Tp> static inline Vec<_Tp, 3>* copy(const Mat& source, Vec<_Tp, 3>* output, const Mat& nan_mask) { CV_Assert(nan_mask.depth() == CV_32F || nan_mask.depth() == CV_64F); typedef Vec<_Tp, 3>* (*copy_func)(const Mat&, Vec<_Tp, 3>*, const Mat&); const static copy_func table[2] = { &NanFilter::Impl<_Tp, float>::copy, &NanFilter::Impl<_Tp, double>::copy }; return table[nan_mask.depth() - 5](source, output, nan_mask); } template<typename _Tp> static inline Vec<_Tp, 3>* copyColor(const Mat& source, Vec<_Tp, 3>* output, const Mat& nan_mask) { CV_Assert(nan_mask.depth() == CV_32F || nan_mask.depth() == CV_64F); typedef Vec<_Tp, 3>* (*copy_func)(const Mat&, Vec<_Tp, 3>*, const Mat&); const static copy_func table[2] = { &NanFilter::Impl<_Tp, float>::copyColor, &NanFilter::Impl<_Tp, double>::copyColor }; return table[nan_mask.depth() - 5](source, output, nan_mask); } }; struct ApplyAffine { const Affine3f& affine_; ApplyAffine(const Affine3f& affine) : affine_(affine) {} template<typename _Tp> Point3_<_Tp> operator()(const Point3_<_Tp>& p) const { return affine_ * p; } template<typename _Tp> Vec<_Tp, 3> operator()(const Vec<_Tp, 3>& v) const { const float* m = affine_.matrix.val; Vec<_Tp, 3> result; result[0] = (_Tp)(m[0] * v[0] + m[1] * v[1] + m[ 2] * v[2] + m[ 3]); result[1] = (_Tp)(m[4] * v[0] + m[5] * v[1] + m[ 6] * v[2] + m[ 7]); result[2] = (_Tp)(m[8] * v[0] + m[9] * v[1] + m[10] * v[2] + m[11]); return result; } private: ApplyAffine(const ApplyAffine&); ApplyAffine& operator=(const ApplyAffine&); }; inline Color vtkcolor(const Color& color) { Color scaled_color = color * (1.0/255.0); std::swap(scaled_color[0], scaled_color[2]); return scaled_color; } inline Vec3d vtkpoint(const Point3f& point) { return Vec3d(point.x, point.y, point.z); } template<typename _Tp> inline _Tp normalized(const _Tp& v) { return v * 1/cv::norm(v); } struct ConvertToVtkImage { struct Impl { static void copyImageMultiChannel(const Mat &image, vtkSmartPointer<vtkImageData> output) { int i_chs = image.channels(); for (int i = 0; i < image.rows; ++i) { const unsigned char * irows = image.ptr<unsigned char>(i); for (int j = 0; j < image.cols; ++j, irows += i_chs) { unsigned char * vrows = static_cast<unsigned char *>(output->GetScalarPointer(j,i,0)); memcpy(vrows, irows, i_chs); std::swap(vrows[0], vrows[2]); // BGR -> RGB } } output->Modified(); } static void copyImageSingleChannel(const Mat &image, vtkSmartPointer<vtkImageData> output) { for (int i = 0; i < image.rows; ++i) { const unsigned char * irows = image.ptr<unsigned char>(i); for (int j = 0; j < image.cols; ++j, ++irows) { unsigned char * vrows = static_cast<unsigned char *>(output->GetScalarPointer(j,i,0)); *vrows = *irows; } } output->Modified(); } }; static void convert(const Mat &image, vtkSmartPointer<vtkImageData> output) { // Create the vtk image output->SetDimensions(image.cols, image.rows, 1); #if VTK_MAJOR_VERSION <= 5 output->SetNumberOfScalarComponents(image.channels()); output->SetScalarTypeToUnsignedChar(); output->AllocateScalars(); #else output->AllocateScalars(VTK_UNSIGNED_CHAR, image.channels()); #endif int i_chs = image.channels(); if (i_chs > 1) { // Multi channel images are handled differently because of BGR <-> RGB Impl::copyImageMultiChannel(image, output); } else { Impl::copyImageSingleChannel(image, output); } } }; } } #endif