// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "opencl_kernels_core.hpp" namespace cv { namespace hal { #if CV_SIMD /* The trick with STORE_UNALIGNED/STORE_ALIGNED_NOCACHE is the following: on IA there are instructions movntps and such to which v_store_interleave(...., STORE_ALIGNED_NOCACHE) is mapped. Those instructions write directly into memory w/o touching cache that results in dramatic speed improvements, especially on large arrays (FullHD, 4K etc.). Those intrinsics require the destination address to be aligned by 16/32 bits (with SSE2 and AVX2, respectively). So we potentially split the processing into 3 stages: 1) the optional prefix part [0:i0), where we use simple unaligned stores. 2) the optional main part [i0:len - VECSZ], where we use "nocache" mode. But in some cases we have to use unaligned stores in this part. 3) the optional suffix part (the tail) (len - VECSZ:len) where we switch back to "unaligned" mode to process the remaining len - VECSZ elements. In principle there can be very poorly aligned data where there is no main part. For that we set i0=0 and use unaligned stores for the whole array. */ template<typename T, typename VecT> static void vecmerge_( const T** src, T* dst, int len, int cn ) { const int VECSZ = VecT::nlanes; int i, i0 = 0; const T* src0 = src[0]; const T* src1 = src[1]; const int dstElemSize = cn * sizeof(T); int r = (int)((size_t)(void*)dst % (VECSZ*sizeof(T))); hal::StoreMode mode = hal::STORE_ALIGNED_NOCACHE; if( r != 0 ) { mode = hal::STORE_UNALIGNED; if (r % dstElemSize == 0 && len > VECSZ*2) i0 = VECSZ - (r / dstElemSize); } if( cn == 2 ) { for( i = 0; i < len; i += VECSZ ) { if( i > len - VECSZ ) { i = len - VECSZ; mode = hal::STORE_UNALIGNED; } VecT a = vx_load(src0 + i), b = vx_load(src1 + i); v_store_interleave(dst + i*cn, a, b, mode); if( i < i0 ) { i = i0 - VECSZ; mode = hal::STORE_ALIGNED_NOCACHE; } } } else if( cn == 3 ) { const T* src2 = src[2]; for( i = 0; i < len; i += VECSZ ) { if( i > len - VECSZ ) { i = len - VECSZ; mode = hal::STORE_UNALIGNED; } VecT a = vx_load(src0 + i), b = vx_load(src1 + i), c = vx_load(src2 + i); v_store_interleave(dst + i*cn, a, b, c, mode); if( i < i0 ) { i = i0 - VECSZ; mode = hal::STORE_ALIGNED_NOCACHE; } } } else { CV_Assert( cn == 4 ); const T* src2 = src[2]; const T* src3 = src[3]; for( i = 0; i < len; i += VECSZ ) { if( i > len - VECSZ ) { i = len - VECSZ; mode = hal::STORE_UNALIGNED; } VecT a = vx_load(src0 + i), b = vx_load(src1 + i); VecT c = vx_load(src2 + i), d = vx_load(src3 + i); v_store_interleave(dst + i*cn, a, b, c, d, mode); if( i < i0 ) { i = i0 - VECSZ; mode = hal::STORE_ALIGNED_NOCACHE; } } } vx_cleanup(); } #endif template<typename T> static void merge_( const T** src, T* dst, int len, int cn ) { int k = cn % 4 ? cn % 4 : 4; int i, j; if( k == 1 ) { const T* src0 = src[0]; for( i = j = 0; i < len; i++, j += cn ) dst[j] = src0[i]; } else if( k == 2 ) { const T *src0 = src[0], *src1 = src[1]; i = j = 0; for( ; i < len; i++, j += cn ) { dst[j] = src0[i]; dst[j+1] = src1[i]; } } else if( k == 3 ) { const T *src0 = src[0], *src1 = src[1], *src2 = src[2]; i = j = 0; for( ; i < len; i++, j += cn ) { dst[j] = src0[i]; dst[j+1] = src1[i]; dst[j+2] = src2[i]; } } else { const T *src0 = src[0], *src1 = src[1], *src2 = src[2], *src3 = src[3]; i = j = 0; for( ; i < len; i++, j += cn ) { dst[j] = src0[i]; dst[j+1] = src1[i]; dst[j+2] = src2[i]; dst[j+3] = src3[i]; } } for( ; k < cn; k += 4 ) { const T *src0 = src[k], *src1 = src[k+1], *src2 = src[k+2], *src3 = src[k+3]; for( i = 0, j = k; i < len; i++, j += cn ) { dst[j] = src0[i]; dst[j+1] = src1[i]; dst[j+2] = src2[i]; dst[j+3] = src3[i]; } } } void merge8u(const uchar** src, uchar* dst, int len, int cn ) { CALL_HAL(merge8u, cv_hal_merge8u, src, dst, len, cn) #if CV_SIMD if( len >= v_uint8::nlanes && 2 <= cn && cn <= 4 ) vecmerge_<uchar, v_uint8>(src, dst, len, cn); else #endif merge_(src, dst, len, cn); } void merge16u(const ushort** src, ushort* dst, int len, int cn ) { CALL_HAL(merge16u, cv_hal_merge16u, src, dst, len, cn) #if CV_SIMD if( len >= v_uint16::nlanes && 2 <= cn && cn <= 4 ) vecmerge_<ushort, v_uint16>(src, dst, len, cn); else #endif merge_(src, dst, len, cn); } void merge32s(const int** src, int* dst, int len, int cn ) { CALL_HAL(merge32s, cv_hal_merge32s, src, dst, len, cn) #if CV_SIMD if( len >= v_int32::nlanes && 2 <= cn && cn <= 4 ) vecmerge_<int, v_int32>(src, dst, len, cn); else #endif merge_(src, dst, len, cn); } void merge64s(const int64** src, int64* dst, int len, int cn ) { CALL_HAL(merge64s, cv_hal_merge64s, src, dst, len, cn) #if CV_SIMD if( len >= v_int64::nlanes && 2 <= cn && cn <= 4 ) vecmerge_<int64, v_int64>(src, dst, len, cn); else #endif merge_(src, dst, len, cn); } }} // cv::hal:: typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn); static MergeFunc getMergeFunc(int depth) { static MergeFunc mergeTab[] = { (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge64s), 0 }; return mergeTab[depth]; } #ifdef HAVE_IPP namespace cv { static bool ipp_merge(const Mat* mv, Mat& dst, int channels) { #ifdef HAVE_IPP_IW CV_INSTRUMENT_REGION_IPP(); if(channels != 3 && channels != 4) return false; if(mv[0].dims <= 2) { IppiSize size = ippiSize(mv[0].size()); const void *srcPtrs[4] = {NULL}; size_t srcStep = mv[0].step; for(int i = 0; i < channels; i++) { srcPtrs[i] = mv[i].ptr(); if(srcStep != mv[i].step) return false; } return CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, srcPtrs, (int)srcStep, dst.ptr(), (int)dst.step, size, (int)mv[0].elemSize1(), channels, 0) >= 0; } else { const Mat *arrays[5] = {NULL}; uchar *ptrs[5] = {NULL}; arrays[0] = &dst; for(int i = 1; i < channels; i++) { arrays[i] = &mv[i-1]; } NAryMatIterator it(arrays, ptrs); IppiSize size = { (int)it.size, 1 }; for( size_t i = 0; i < it.nplanes; i++, ++it ) { if(CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, (const void**)&ptrs[1], 0, ptrs[0], 0, size, (int)mv[0].elemSize1(), channels, 0) < 0) return false; } return true; } #else CV_UNUSED(dst); CV_UNUSED(mv); CV_UNUSED(channels); return false; #endif } } #endif void cv::merge(const Mat* mv, size_t n, OutputArray _dst) { CV_INSTRUMENT_REGION(); CV_Assert( mv && n > 0 ); int depth = mv[0].depth(); bool allch1 = true; int k, cn = 0; size_t i; for( i = 0; i < n; i++ ) { CV_Assert(mv[i].size == mv[0].size && mv[i].depth() == depth); allch1 = allch1 && mv[i].channels() == 1; cn += mv[i].channels(); } CV_Assert( 0 < cn && cn <= CV_CN_MAX ); _dst.create(mv[0].dims, mv[0].size, CV_MAKETYPE(depth, cn)); Mat dst = _dst.getMat(); if( n == 1 ) { mv[0].copyTo(dst); return; } CV_IPP_RUN_FAST(ipp_merge(mv, dst, (int)n)); if( !allch1 ) { AutoBuffer<int> pairs(cn*2); int j, ni=0; for( i = 0, j = 0; i < n; i++, j += ni ) { ni = mv[i].channels(); for( k = 0; k < ni; k++ ) { pairs[(j+k)*2] = j + k; pairs[(j+k)*2+1] = j + k; } } mixChannels( mv, n, &dst, 1, &pairs[0], cn ); return; } MergeFunc func = getMergeFunc(depth); CV_Assert( func != 0 ); size_t esz = dst.elemSize(), esz1 = dst.elemSize1(); size_t blocksize0 = (int)((BLOCK_SIZE + esz-1)/esz); AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16); const Mat** arrays = (const Mat**)_buf.data(); uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16); arrays[0] = &dst; for( k = 0; k < cn; k++ ) arrays[k+1] = &mv[k]; NAryMatIterator it(arrays, ptrs, cn+1); size_t total = (int)it.size; size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0)); for( i = 0; i < it.nplanes; i++, ++it ) { for( size_t j = 0; j < total; j += blocksize ) { size_t bsz = std::min(total - j, blocksize); func( (const uchar**)&ptrs[1], ptrs[0], (int)bsz, cn ); if( j + blocksize < total ) { ptrs[0] += bsz*esz; for( int t = 0; t < cn; t++ ) ptrs[t+1] += bsz*esz1; } } } } #ifdef HAVE_OPENCL namespace cv { static bool ocl_merge( InputArrayOfArrays _mv, OutputArray _dst ) { std::vector<UMat> src, ksrc; _mv.getUMatVector(src); CV_Assert(!src.empty()); int type = src[0].type(), depth = CV_MAT_DEPTH(type), rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; Size size = src[0].size(); for (size_t i = 0, srcsize = src.size(); i < srcsize; ++i) { int itype = src[i].type(), icn = CV_MAT_CN(itype), idepth = CV_MAT_DEPTH(itype), esz1 = CV_ELEM_SIZE1(idepth); if (src[i].dims > 2) return false; CV_Assert(size == src[i].size() && depth == idepth); for (int cn = 0; cn < icn; ++cn) { UMat tsrc = src[i]; tsrc.offset += cn * esz1; ksrc.push_back(tsrc); } } int dcn = (int)ksrc.size(); String srcargs, processelem, cndecl, indexdecl; for (int i = 0; i < dcn; ++i) { srcargs += format("DECLARE_SRC_PARAM(%d)", i); processelem += format("PROCESS_ELEM(%d)", i); indexdecl += format("DECLARE_INDEX(%d)", i); cndecl += format(" -D scn%d=%d", i, ksrc[i].channels()); } ocl::Kernel k("merge", ocl::core::split_merge_oclsrc, format("-D OP_MERGE -D cn=%d -D T=%s -D DECLARE_SRC_PARAMS_N=%s" " -D DECLARE_INDEX_N=%s -D PROCESS_ELEMS_N=%s%s", dcn, ocl::memopTypeToStr(depth), srcargs.c_str(), indexdecl.c_str(), processelem.c_str(), cndecl.c_str())); if (k.empty()) return false; _dst.create(size, CV_MAKE_TYPE(depth, dcn)); UMat dst = _dst.getUMat(); int argidx = 0; for (int i = 0; i < dcn; ++i) argidx = k.set(argidx, ocl::KernelArg::ReadOnlyNoSize(ksrc[i])); argidx = k.set(argidx, ocl::KernelArg::WriteOnly(dst)); k.set(argidx, rowsPerWI); size_t globalsize[2] = { (size_t)dst.cols, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI }; return k.run(2, globalsize, NULL, false); } } #endif void cv::merge(InputArrayOfArrays _mv, OutputArray _dst) { CV_INSTRUMENT_REGION(); CV_OCL_RUN(_mv.isUMatVector() && _dst.isUMat(), ocl_merge(_mv, _dst)) std::vector<Mat> mv; _mv.getMatVector(mv); merge(!mv.empty() ? &mv[0] : 0, mv.size(), _dst); }