/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Jia Haipeng, jiahaipeng95@gmail.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #define TILE_DIM 32 #define BLOCK_ROWS 8 #define LDS_STEP (TILE_DIM + 1) //8UC1 is not unoptimized, as the size of write per thread is 8 //which will use completepath __kernel void transpose_C1_D0(__global uchar* src, int src_step, int src_offset, __global uchar* dst, int dst_step, int dst_offset, int src_rows, int src_cols) { int gp_x = get_group_id(0), gp_y = get_group_id(1); int gs_x = get_num_groups(0), gs_y = get_num_groups(1); int groupId_x, groupId_y; if(src_rows == src_cols) { groupId_y = gp_x; groupId_x = (gp_x + gp_y) % gs_x; } else { int bid = gp_x + gs_x * gp_y; groupId_y = bid % gs_y; groupId_x = ((bid / gs_y) + groupId_y) % gs_x; } int lx = get_local_id(0); int ly = get_local_id(1); int x = groupId_x * TILE_DIM + lx; int y = groupId_y * TILE_DIM + ly; int x_index = groupId_y * TILE_DIM + lx; int y_index = groupId_x * TILE_DIM + ly; __local uchar title[TILE_DIM * LDS_STEP]; if(x < src_cols && y < src_rows) { int index_src = mad24(y, src_step, x); #pragma unroll for(int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { if(y + i < src_rows) { title[(ly + i) * LDS_STEP + lx] =*(src + src_offset + index_src); index_src = mad24(BLOCK_ROWS, src_step, index_src); } } } barrier(CLK_LOCAL_MEM_FENCE); if(x_index < src_rows && y_index < src_cols) { int index_dst = mad24(y_index, dst_step, x_index); #pragma unroll for(int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { if((y_index + i) < src_cols) { *(dst + dst_offset + index_dst ) = title[lx * LDS_STEP + ly + i]; index_dst += dst_step * BLOCK_ROWS ; } } } } __kernel void transpose_C1_D4(__global int* src, int src_step, int src_offset, __global int* dst, int dst_step, int dst_offset, int src_rows, int src_cols) { int gp_x = get_group_id(0), gp_y = get_group_id(1); int gs_x = get_num_groups(0), gs_y = get_num_groups(1); int groupId_x, groupId_y; if(src_rows == src_cols) { groupId_y = gp_x; groupId_x = (gp_x + gp_y) % gs_x; } else { int bid = gp_x + gs_x * gp_y; groupId_y = bid % gs_y; groupId_x = ((bid / gs_y) + groupId_y) % gs_x; } int lx = get_local_id(0); int ly = get_local_id(1); int x = groupId_x * TILE_DIM + lx; int y = groupId_y * TILE_DIM + ly; int x_index = groupId_y * TILE_DIM + lx; int y_index = groupId_x * TILE_DIM + ly; __local int title[TILE_DIM * LDS_STEP]; if(x < src_cols && y < src_rows) { int index_src = mad24(y, src_step, (x << 2)); #pragma unroll for(int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { if(y + i < src_rows) { title[(ly + i) * LDS_STEP + lx] = *((__global int *)((__global char*)src + src_offset + index_src)); index_src = mad24(BLOCK_ROWS, src_step, index_src); } } } barrier(CLK_LOCAL_MEM_FENCE); if(x_index < src_rows && y_index < src_cols) { int index_dst = mad24(y_index, dst_step, (x_index << 2)); #pragma unroll for(int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { if((y_index + i) < src_cols) { *((__global int*)((__global char*)dst + dst_offset + index_dst )) = title[lx * LDS_STEP + ly + i]; index_dst += dst_step * BLOCK_ROWS ; } } } } __kernel void transpose_C1_D5(__global float* src, int src_step, int src_offset, __global float* dst, int dst_step, int dst_offset, int src_rows, int src_cols) { int gp_x = get_group_id(0), gp_y = get_group_id(1); int gs_x = get_num_groups(0), gs_y = get_num_groups(1); int groupId_x, groupId_y; if(src_rows == src_cols) { groupId_y = gp_x; groupId_x = (gp_x + gp_y) % gs_x; } else { int bid = gp_x + gs_x * gp_y; groupId_y = bid % gs_y; groupId_x = ((bid / gs_y) + groupId_y) % gs_x; } int lx = get_local_id(0); int ly = get_local_id(1); int x = groupId_x * TILE_DIM + lx; int y = groupId_y * TILE_DIM + ly; int x_index = groupId_y * TILE_DIM + lx; int y_index = groupId_x * TILE_DIM + ly; __local float title[TILE_DIM * LDS_STEP]; if(x < src_cols && y < src_rows) { int index_src = mad24(y, src_step, (x << 2)); #pragma unroll for(int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { if(y + i < src_rows) { title[(ly + i) * LDS_STEP + lx] = *((__global float *)((__global char*)src + src_offset + index_src)); index_src = mad24(BLOCK_ROWS, src_step, index_src); } } } barrier(CLK_LOCAL_MEM_FENCE); if(x_index < src_rows && y_index < src_cols) { int index_dst = mad24(y_index, dst_step, (x_index << 2)); #pragma unroll for(int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { if((y_index + i) < src_cols) { *((__global float*)((__global char*)dst + dst_offset + index_dst )) = title[lx * LDS_STEP + ly + i]; index_dst += dst_step * BLOCK_ROWS ; } } } } __kernel void transpose_C2_D2(__global ushort* src, int src_step, int src_offset, __global ushort* dst, int dst_step, int dst_offset, int src_rows, int src_cols) { int gp_x = get_group_id(0), gp_y = get_group_id(1); int gs_x = get_num_groups(0), gs_y = get_num_groups(1); int groupId_x, groupId_y; if(src_rows == src_cols) { groupId_y = gp_x; groupId_x = (gp_x + gp_y) % gs_x; } else { int bid = gp_x + gs_x * gp_y; groupId_y = bid % gs_y; groupId_x = ((bid / gs_y) + groupId_y) % gs_x; } int lx = get_local_id(0); int ly = get_local_id(1); int x = groupId_x * TILE_DIM + lx; int y = groupId_y * TILE_DIM + ly; int x_index = groupId_y * TILE_DIM + lx; int y_index = groupId_x * TILE_DIM + ly; __local ushort2 title[TILE_DIM * LDS_STEP]; if(x < src_cols && y < src_rows) { int index_src = mad24(y, src_step, (x << 2)); #pragma unroll for(int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { if(y + i < src_rows) { title[(ly + i) * LDS_STEP + lx] = *((__global ushort2 *)((__global char*)src + src_offset + index_src)); index_src = mad24(BLOCK_ROWS, src_step, index_src); } } } barrier(CLK_LOCAL_MEM_FENCE); if(x_index < src_rows && y_index < src_cols) { int index_dst = mad24(y_index, dst_step, (x_index << 2)); #pragma unroll for(int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { if((y_index + i) < src_cols) { *((__global ushort2*)((__global char*)dst + dst_offset + index_dst )) = title[lx * LDS_STEP + ly + i]; index_dst += dst_step * BLOCK_ROWS ; } } } } __kernel void transpose_C2_D3(__global short* src, int src_step, int src_offset, __global short* dst, int dst_step, int dst_offset, int src_rows, int src_cols) { int gp_x = get_group_id(0), gp_y = get_group_id(1); int gs_x = get_num_groups(0), gs_y = get_num_groups(1); int groupId_x, groupId_y; if(src_rows == src_cols) { groupId_y = gp_x; groupId_x = (gp_x + gp_y) % gs_x; } else { int bid = gp_x + gs_x * gp_y; groupId_y = bid % gs_y; groupId_x = ((bid / gs_y) + groupId_y) % gs_x; } int lx = get_local_id(0); int ly = get_local_id(1); int x = groupId_x * TILE_DIM + lx; int y = groupId_y * TILE_DIM + ly; int x_index = groupId_y * TILE_DIM + lx; int y_index = groupId_x * TILE_DIM + ly; __local short2 title[TILE_DIM * LDS_STEP]; if(x < src_cols && y < src_rows) { int index_src = mad24(y, src_step, (x << 2)); #pragma unroll for(int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { if(y + i < src_rows) { title[(ly + i) * LDS_STEP + lx] = *((__global short2 *)((__global char*)src + src_offset + index_src)); index_src = mad24(BLOCK_ROWS, src_step, index_src); } } } barrier(CLK_LOCAL_MEM_FENCE); if(x_index < src_rows && y_index < src_cols) { int index_dst = mad24(y_index, dst_step, (x_index << 2)); #pragma unroll for(int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { if((y_index + i) < src_cols) { *((__global short2*)((__global char*)dst + dst_offset + index_dst )) = title[lx * LDS_STEP + ly + i]; index_dst += dst_step * BLOCK_ROWS ; } } } } __kernel void transpose_C4_D0(__global uchar* src, int src_step, int src_offset, __global uchar* dst, int dst_step, int dst_offset, int src_rows, int src_cols) { int gp_x = get_group_id(0), gp_y = get_group_id(1); int gs_x = get_num_groups(0), gs_y = get_num_groups(1); int groupId_x, groupId_y; if(src_rows == src_cols) { groupId_y = gp_x; groupId_x = (gp_x + gp_y) % gs_x; } else { int bid = gp_x + gs_x * gp_y; groupId_y = bid % gs_y; groupId_x = ((bid / gs_y) + groupId_y) % gs_x; } int lx = get_local_id(0); int ly = get_local_id(1); int x = groupId_x * TILE_DIM + lx; int y = groupId_y * TILE_DIM + ly; int x_index = groupId_y * TILE_DIM + lx; int y_index = groupId_x * TILE_DIM + ly; __local uchar4 title[TILE_DIM * LDS_STEP]; if(x < src_cols && y < src_rows) { int index_src = mad24(y, src_step, (x << 2)); #pragma unroll for(int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { if(y + i < src_rows) { title[(ly + i) * LDS_STEP + lx] = *((__global uchar4 *)(src + src_offset + index_src)); index_src = mad24(BLOCK_ROWS, src_step, index_src); } } } barrier(CLK_LOCAL_MEM_FENCE); if(x_index < src_rows && y_index < src_cols) { int index_dst = mad24(y_index, dst_step, (x_index << 2)); #pragma unroll for(int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { if((y_index + i) < src_cols) { *((__global uchar4*)(dst + dst_offset + index_dst )) = title[lx * LDS_STEP + ly + i]; index_dst += dst_step * BLOCK_ROWS ; } } } } __kernel void transpose_C4_D1(__global char* src, int src_step, int src_offset, __global char* dst, int dst_step, int dst_offset, int src_rows, int src_cols) { int gp_x = get_group_id(0), gp_y = get_group_id(1); int gs_x = get_num_groups(0), gs_y = get_num_groups(1); int groupId_x, groupId_y; if(src_rows == src_cols) { groupId_y = gp_x; groupId_x = (gp_x + gp_y) % gs_x; } else { int bid = gp_x + gs_x * gp_y; groupId_y = bid % gs_y; groupId_x = ((bid / gs_y) + groupId_y) % gs_x; } int lx = get_local_id(0); int ly = get_local_id(1); int x = groupId_x * TILE_DIM + lx; int y = groupId_y * TILE_DIM + ly; int x_index = groupId_y * TILE_DIM + lx; int y_index = groupId_x * TILE_DIM + ly; __local char4 title[TILE_DIM * LDS_STEP]; if(x < src_cols && y < src_rows) { int index_src = mad24(y, src_step, (x << 2)); #pragma unroll for(int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { if(y + i < src_rows) { title[(ly + i) * LDS_STEP + lx] = *((__global char4 *)(src + src_offset + index_src)); index_src = mad24(BLOCK_ROWS, src_step, index_src); } } } barrier(CLK_LOCAL_MEM_FENCE); if(x_index < src_rows && y_index < src_cols) { int index_dst = mad24(y_index, dst_step, (x_index << 2)); #pragma unroll for(int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { if((y_index + i) < src_cols) { *((__global char4*)(dst + dst_offset + index_dst )) = title[lx * LDS_STEP + ly + i]; index_dst += dst_step * BLOCK_ROWS ; } } } }