#include <opencv2/core.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> #include <opencv2/features2d.hpp> #include "opencv2/core/opengl.hpp" #include <vector> #include <map> #include <iostream> #include <iomanip> #include <limits> #include <stdint.h> #ifdef HAVE_OPENGL #ifdef _WIN32 #define WIN32_LEAN_AND_MEAN 1 #define NOMINMAX 1 #include <windows.h> #endif #if defined(_WIN64) #include <windows.h> #endif #if defined(__APPLE__) #include <OpenGL/gl.h> #include <OpenGL/glu.h> #else #include <GL/gl.h> #include <GL/glu.h> #endif #endif using namespace std; using namespace cv; static void help() { cout << "\n This program demonstrates how to use MSER to detect extremal regions \n" "Usage: \n" " ./detect_mser <image1(without parameter a syntehtic image is used as default)>\n" "Press esc key when image window is active to change descriptor parameter\n" "Press 2, 8, 4, 6, +,- or 5 keys in openGL windows to change view or use mouse\n"; } struct MSERParams { MSERParams(int _delta = 5, int _min_area = 60, int _max_area = 14400, double _max_variation = 0.25, double _min_diversity = .2, int _max_evolution = 200, double _area_threshold = 1.01, double _min_margin = 0.003, int _edge_blur_size = 5) { delta = _delta; minArea = _min_area; maxArea = _max_area; maxVariation = _max_variation; minDiversity = _min_diversity; maxEvolution = _max_evolution; areaThreshold = _area_threshold; minMargin = _min_margin; edgeBlurSize = _edge_blur_size; pass2Only = false; } int delta; int minArea; int maxArea; double maxVariation; double minDiversity; bool pass2Only; int maxEvolution; double areaThreshold; double minMargin; int edgeBlurSize; }; static String Legende(const MSERParams &pAct) { ostringstream ss; ss << "Area[" << pAct.minArea << "," << pAct.maxArea << "] "; ss << "del. [" << pAct.delta << "] "; ss << "var. [" << pAct.maxVariation << "] "; ss << "div. [" << (int)pAct.minDiversity << "] "; ss << "pas. [" << (int)pAct.pass2Only << "] "; ss << "RGb->evo. [" << pAct.maxEvolution << "] "; ss << "are. [" << (int)pAct.areaThreshold << "] "; ss << "mar. [" << (int)pAct.minMargin << "] "; ss << "siz. [" << pAct.edgeBlurSize << "]"; return ss.str(); } #ifdef HAVE_OPENGL const int win_width = 800; const int win_height = 640; #endif bool rotateEnable=true; bool keyPressed=false; Vec4f rotAxis(1,0,1,0); Vec3f zoom(1,0,0); float obsX = 0.f; float obsY = 0.f; float obsZ = -10.f; float tx = 0.f; float ty = 0.f; float thetaObs = -1.570f; float phiObs = 1.570f; float rObs = 10.f; int prevX = -1; int prevY = -1; int prevTheta = -1000; int prevPhi = -1000; #ifdef HAVE_OPENGL struct DrawData { ogl::Arrays arr; ogl::Texture2D tex; ogl::Buffer indices; }; static void draw(void* userdata) { DrawData* data = static_cast<DrawData*>(userdata); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); gluLookAt(obsX, obsY, obsZ, 0, 0, .0, .0, 10.0, 0.0); glTranslatef(tx,ty,0); keyPressed = false; ogl::render(data->arr, data->indices, ogl::TRIANGLES); } static void onMouse(int event, int x, int y, int flags, void*) { if (event == EVENT_RBUTTONDOWN) { prevX = x; prevY = y; } if (event == EVENT_RBUTTONUP) { prevX = -1; prevY = -1; } if (prevX != -1) { tx += float((x - prevX) / 100.0); ty -= float((y - prevY) / 100.0); prevX = x; prevY = y; } if (event == EVENT_LBUTTONDOWN) { prevTheta = x; prevPhi = y; } if (event == EVENT_LBUTTONUP) { prevTheta = -1000; prevPhi = -1000; } if (prevTheta != -1000) { if (x - prevTheta<0) { thetaObs += 0.02f; } else if (x - prevTheta>0) { thetaObs -= 0.02f; } if (y - prevPhi<0) { phiObs -= 0.02f; } else if (y - prevPhi>0) { phiObs += 0.02f; } prevTheta = x; prevPhi = y; } if (event==EVENT_MOUSEWHEEL) { if (getMouseWheelDelta(flags)>0) rObs += 0.1f; else rObs -= 0.1f; } float pi = static_cast<float>(CV_PI); if (thetaObs>pi) { thetaObs = -2 * pi + thetaObs; } if (thetaObs<-pi) { thetaObs = 2 * pi + thetaObs; } if (phiObs>pi / 2) { phiObs = pi / 2 - 0.0001f; } if (phiObs<-pi / 2) { phiObs = -pi / 2 + 0.00001f; } if (rObs<0) { rObs = 0; } } #endif #ifdef HAVE_OPENGL static void DrawOpenGLMSER(Mat img, Mat result) { Mat imgGray; if (img.type() != CV_8UC1) cvtColor(img, imgGray, COLOR_BGR2GRAY); else imgGray = img; namedWindow("OpenGL", WINDOW_OPENGL); setMouseCallback("OpenGL", onMouse, NULL); Mat_<Vec3f> vertex(1, img.cols*img.rows); Mat_<Vec2f> texCoords(1, img.cols*img.rows); for (int i = 0, nbPix = 0; i<img.rows; i++) { for (int j = 0; j<img.cols; j++, nbPix++) { float x = (j) / (float)img.cols; float y = (i) / (float)img.rows; vertex.at< Vec3f >(0, nbPix) = Vec3f(float(2 * (x - 0.5)), float(2 * (0.5 - y)), float(imgGray.at<uchar>(i, j) / 512.0)); texCoords.at< Vec2f>(0, nbPix) = Vec2f(x, y); } } Mat_<int> indices(1, (img.rows - 1)*(6 * img.cols)); for (int i = 1, nbPix = 0; i<img.rows; i++) { for (int j = 1; j<img.cols; j++) { int c = i*img.cols + j; indices.at<int>(0, nbPix++) = c; indices.at<int>(0, nbPix++) = c - 1; indices.at<int>(0, nbPix++) = c - img.cols - 1; indices.at<int>(0, nbPix++) = c - img.cols - 1; indices.at<int>(0, nbPix++) = c - img.cols; indices.at<int>(0, nbPix++) = c; } } DrawData *data = new DrawData; data->arr.setVertexArray(vertex); data->arr.setTexCoordArray(texCoords); data->indices.copyFrom(indices); data->tex.copyFrom(result); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0, (double)win_width / win_height, 0.0, 1000.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glEnable(GL_TEXTURE_2D); data->tex.bind(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glDisable(GL_CULL_FACE); setOpenGlDrawCallback("OpenGL", draw, data); for (;;) { updateWindow("OpenGL"); char key = (char)waitKey(40); if (key == 27) break; if (key == 0x20) rotateEnable = !rotateEnable; float pi = static_cast<float>(CV_PI); switch (key) { case '5': obsX = 0, obsY = 0, obsZ = -10; thetaObs = -pi/2, phiObs = pi/2, rObs = 10; tx=0; ty=0; break; case '4': thetaObs += 0.1f; break; case '6': thetaObs -= 0.1f; break; case '2': phiObs -= 0.1f; break; case '8': phiObs += 0.1f; break; case '+': rObs -= 0.1f; break; case '-': rObs += 0.1f; break; } if (thetaObs>pi) { thetaObs = -2 * pi + thetaObs; } if (thetaObs<-pi) thetaObs = 2 * pi + thetaObs; if (phiObs>pi / 2) phiObs = pi / 2 - 0.0001f; if (phiObs<-pi / 2) phiObs = -pi / 2 + 0.00001f; if (rObs<0) rObs = 0; obsX = rObs*cos(thetaObs)*cos(phiObs); obsY = rObs*sin(thetaObs)*cos(phiObs); obsZ = rObs*sin(phiObs); } setOpenGlDrawCallback("OpenGL", 0, 0); destroyAllWindows(); } #endif // Add nested rectangles of different widths and colors to an image static void addNestedRectangles(Mat &img, Point p0, int* width, int *color, int n) { for (int i = 0; i<n; i++) { rectangle(img, Rect(p0, Size(width[i], width[i])), Scalar(color[i]), 1); p0 += Point((width[i] - width[i + 1]) / 2, (width[i] - width[i + 1]) / 2); floodFill(img, p0, Scalar(color[i])); } } // Add nested circles of different widths and colors to an image static void addNestedCircles(Mat &img, Point p0, int *width, int *color, int n) { for (int i = 0; i<n; i++) { circle(img, p0, width[i] / 2, Scalar(color[i]), 1); floodFill(img, p0, Scalar(color[i])); } } static Mat MakeSyntheticImage() { const int fond = 0; Mat img(800, 800, CV_8UC1); img = Scalar(fond); int width[] = { 390, 380, 300, 290, 280, 270, 260, 250, 210, 190, 150, 100, 80, 70 }; int color1[] = { 80, 180, 160, 140, 120, 100, 90, 110, 170, 150, 140, 100, 220 }; int color2[] = { 81, 181, 161, 141, 121, 101, 91, 111, 171, 151, 141, 101, 221 }; int color3[] = { 175, 75, 95, 115, 135, 155, 165, 145, 85, 105, 115, 155, 35 }; int color4[] = { 173, 73, 93, 113, 133, 153, 163, 143, 83, 103, 113, 153, 33 }; addNestedRectangles(img, Point(10, 10), width, color1, 13); addNestedCircles(img, Point(200, 600), width, color2, 13); addNestedRectangles(img, Point(410, 10), width, color3, 13); addNestedCircles(img, Point(600, 600), width, color4, 13); int histSize = 256; float range[] = { 0, 256 }; const float* histRange[] = { range }; Mat hist; // we compute the histogram calcHist(&img, 1, 0, Mat(), hist, 1, &histSize, histRange, true, false); cout << "****************Maximal region************************\n"; for (int i = 0; i < hist.rows; i++) { if (hist.at<float>(i, 0)!=0) { cout << "h" << setw(3) << left << i << "\t=\t" << hist.at<float>(i, 0) << "\n"; } } return img; } int main(int argc, char *argv[]) { Mat imgOrig, img; Size blurSize(5, 5); cv::CommandLineParser parser(argc, argv, "{ help h | | }{ @input | | }"); if (parser.has("help")) { help(); return 0; } string input = parser.get<string>("@input"); if (!input.empty()) { imgOrig = imread(input, IMREAD_GRAYSCALE); blur(imgOrig, img, blurSize); } else { imgOrig = MakeSyntheticImage(); img = imgOrig; } // Descriptor array MSER vector<String> typeDesc; // Param array for MSER vector<MSERParams> pMSER; // Color palette vector<Vec3b> palette; for (int i = 0; i<=numeric_limits<uint16_t>::max(); i++) palette.push_back(Vec3b((uchar)rand(), (uchar)rand(), (uchar)rand())); help(); MSERParams params; params.delta = 10; params.minArea = 100; params.maxArea = 5000; params.maxVariation = 2; params.minDiversity = 0; params.pass2Only = true; typeDesc.push_back("MSER"); pMSER.push_back(params); params.pass2Only = false; typeDesc.push_back("MSER"); pMSER.push_back(params); params.delta = 100; typeDesc.push_back("MSER"); pMSER.push_back(params); vector<MSERParams>::iterator itMSER = pMSER.begin(); Ptr<Feature2D> b; String label; // Descriptor loop vector<String>::iterator itDesc; Mat result(img.rows, img.cols, CV_8UC3); for (itDesc = typeDesc.begin(); itDesc != typeDesc.end(); ++itDesc) { vector<KeyPoint> keyImg1; if (*itDesc == "MSER") { if (img.type() == CV_8UC3) { b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity, itMSER->maxEvolution, itMSER->areaThreshold, itMSER->minMargin, itMSER->edgeBlurSize); label = Legende(*itMSER); ++itMSER; } else { b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity); b.dynamicCast<MSER>()->setPass2Only(itMSER->pass2Only); label = Legende(*itMSER); ++itMSER; } } if (img.type()==CV_8UC3) { img.copyTo(result); } else { vector<Mat> plan; plan.push_back(img); plan.push_back(img); plan.push_back(img); merge(plan,result); } try { // We can detect regions using detectRegions method vector<KeyPoint> keyImg; vector<Rect> zone; vector<vector <Point> > region; Mat desc; if (b.dynamicCast<MSER>() != NULL) { Ptr<MSER> sbd = b.dynamicCast<MSER>(); sbd->detectRegions(img, region, zone); //result = Scalar(0, 0, 0); int nbPixelInMSER=0; for (vector<vector <Point> >::iterator itr = region.begin(); itr != region.end(); ++itr) { for (vector <Point>::iterator itp = itr->begin(); itp != itr->end(); ++itp) { // all pixels belonging to region become blue result.at<Vec3b>(itp->y, itp->x) = Vec3b(128, 0, 0); nbPixelInMSER++; } } cout << "Number of MSER region: " << region.size() << "; Number of pixels in all MSER region: " << nbPixelInMSER << "\n"; } const string winName = *itDesc + label; namedWindow(winName, WINDOW_AUTOSIZE); imshow(winName, result); imshow("Original", img); } catch (Exception& e) { cout << "Feature: " << *itDesc << "\n"; cout << e.msg << endl; } #ifdef HAVE_OPENGL DrawOpenGLMSER(img, result); #endif waitKey(); } return 0; }