- 22 Nov, 2017 1 commit
-
-
Alexander Alekhin authored
-
- 20 Nov, 2017 2 commits
-
-
Alexander Alekhin authored
-
Tomoaki Teshima authored
* add accuracy test and performance check for matmul * add performance tests for transform and dotProduct * add test Core_TransformLargeTest for 8u version of transform * remove raw SSE2/NEON implementation from matmul.cpp * use universal intrinsic instead of raw intrinsic * remove unused templated function * add v_matmuladd which multiply 3x3 matrix and add 3x1 vector * add v_rotate_left/right in universal intrinsic * suppress intrinsic on some function and platform * add pure SW implementation of new universal intrinsics * add test for new universal intrinsics * core: prevent memory access after the end of buffer * fix perf tests
-
- 03 Nov, 2017 3 commits
-
-
Maksim Shabunin authored
-
Alexander Alekhin authored
-
Alexander Alekhin authored
-
- 02 Nov, 2017 1 commit
-
-
Alexander Alekhin authored
-
- 30 Oct, 2017 1 commit
-
-
Alexander Alekhin authored
Flush deallocation queue before calling map/unmap
-
- 28 Oct, 2017 1 commit
-
-
Sayed Adel authored
- changed behavior of vec_ctf, vec_ctu, vec_cts in gcc and clang to make them compatible with XLC - implemented most of missing conversion intrinsics in gcc and clang - implemented conversions intrinsics of odd-numbered elements - ignored gcc bug warning that caused by -Wunused-but-set-variable in rare cases - replaced right shift with algebraic right shift for signed vectors to shift in the sign bit. - added new universal intrinsics v_matmuladd, v_rotate_left/right - avoid using floating multiply-add in RNG
-
- 23 Oct, 2017 2 commits
-
-
Alexander Alekhin authored
MacOSX OpenCL compiler is very strict to whitespace issues
-
Alexander Alekhin authored
To prevent unnecessary compiler invocations
-
- 18 Oct, 2017 1 commit
-
-
Alexander Alekhin authored
-
- 16 Oct, 2017 2 commits
-
-
Mattia Rizzolo authored
Exampls of these are gnu/kfreebsd and gnu/hurd, both available as unofficial Debian ports. They don't define __linux__ (as they are non-linux…) but still define __GLIBC__, so check on that. Signed-off-by:
Mattia Rizzolo <mattia@mapreri.org>
-
Gregory Morse authored
* Update OpenCVCompilerOptimizations.cmake Neon not supported on MSVC ARM breaking build fix * Update OpenCVCompilerOptimizations.cmake Whitespace * Update intrin.hpp Many problems in MSVC ARM builds (at least on VS2017) being fixed in this PR now. C:\Users\Gregory\DOCUME~1\MYLIBR~1\OPENCV~3\opencv\sources\modules\core\include\opencv2/core/hal/intrin.hpp(444): error C3861: '_tzcnt_u32': identifier not found * Update hal_replacement.hpp Passing variadic expansion in a macro to another macro does not work properly in MSVC and a famous known workaround is hereby applied. Discussion of it: https://stackoverflow.com/questions/5134523/msvc-doesnt-expand-va-args-correctly Only needed the fix for ARM builds: TEGRA_ macros are used for cv_hal_ functions in the carotene library. C:\Users\Gregory\Documents\My Libraries\opencv330\opencv\sources\modules\core\src\arithm.cpp(2378): warning C4003: not enough actual parameters for macro 'TEGRA_ADD' C:\Users\Gregory\Documents\My Libraries\opencv330\opencv\sources\modules\core\src\arithm.cpp(2378): error C2143: syntax error: missing ')' before ',' C:\Users\Gregory\Documents\My Libraries\opencv330\opencv\sources\modules\core\src\arithm.cpp(2378): error C2059: syntax error: ')' * Update hal_replacement.hpp All hal_replacement's using carotene\hal\tegra_hal.hpp TEGRA_ functions as macros preprocessed by variadic macros should be changed, identical as was done in core. C:\Users\Gregory\Documents\My Libraries\opencv330\opencv\sources\modules\imgproc\src\color.cpp(9604): warning C4003: not enough actual parameters for macro 'TEGRA_CVTBGRTOBGR' C:\Users\Gregory\Documents\My Libraries\opencv330\opencv\sources\modules\imgproc\src\color.cpp(9604): error C2059: syntax error: '==' * Update OpenCVCompilerOptimizations.cmake * Update hal_replacement.hpp * Update hal_replacement.hpp
-
- 14 Oct, 2017 1 commit
-
-
Tomoaki Teshima authored
* replace the implementation by universal intrinsic * make sure no degradation happens on ARM platform
-
- 12 Oct, 2017 1 commit
-
-
Alexander Alekhin authored
-
- 09 Oct, 2017 2 commits
-
-
Wu Zhiwen authored
Use clFinish to gurantee commands completed, instead of waiting for events. Signed-off-by:
Wu Zhiwen <zhiwen.wu@intel.com>
-
Sayed Adel authored
-
- 08 Oct, 2017 2 commits
-
-
Alexander Alekhin authored
-
Alexander Alekhin authored
no changes in code
-
- 07 Oct, 2017 2 commits
-
-
Igor Wodiany authored
The same code was repeated several time for different data types, so it was extracted as a templated function to improve maintability and make a code more clear.
-
Igor Wodiany authored
Exception may be rasied inside the body of a copying constructor after refcount has been increased, and beacause in the case of the exception destrcutor is never called what causes memory leak. This commit adds a workaround that calls the release() function before the exception is thrown outside the contructor.
-
- 02 Oct, 2017 1 commit
-
-
pengli authored
add libdnn acceleration to dnn module (#9114) * import libdnn code Signed-off-by:
Li Peng <peng.li@intel.com> * add convolution layer ocl acceleration Signed-off-by:
Li Peng <peng.li@intel.com> * add pooling layer ocl acceleration Signed-off-by:
Li Peng <peng.li@intel.com> * add softmax layer ocl acceleration Signed-off-by:
Li Peng <peng.li@intel.com> * add lrn layer ocl acceleration Signed-off-by:
Li Peng <peng.li@intel.com> * add innerproduct layer ocl acceleration Signed-off-by:
Li Peng <peng.li@intel.com> * add HAVE_OPENCL macro Signed-off-by:
Li Peng <peng.li@intel.com> * fix for convolution ocl Signed-off-by:
Li Peng <peng.li@intel.com> * enable getUMat() for multi-dimension Mat Signed-off-by:
Li Peng <peng.li@intel.com> * use getUMat for ocl acceleration Signed-off-by:
Li Peng <peng.li@intel.com> * use CV_OCL_RUN macro Signed-off-by:
Li Peng <peng.li@intel.com> * set OPENCL target when it is available and disable fuseLayer for OCL target for the time being Signed-off-by:
Li Peng <peng.li@intel.com> * fix innerproduct accuracy test Signed-off-by:
Li Peng <peng.li@intel.com> * remove trailing space Signed-off-by:
Li Peng <peng.li@intel.com> * Fixed tensorflow demo bug. Root cause is that tensorflow has different algorithm with libdnn to calculate convolution output dimension. libdnn don't calculate output dimension anymore and just use one passed in by config. * split gemm ocl file split it into gemm_buffer.cl and gemm_image.cl Signed-off-by:
Li Peng <peng.li@intel.com> * Fix compile failure Signed-off-by:
Li Peng <peng.li@intel.com> * check env flag for auto tuning Signed-off-by:
Li Peng <peng.li@intel.com> * switch to new ocl kernels for softmax layer Signed-off-by:
Li Peng <peng.li@intel.com> * update softmax layer on some platform subgroup extension may not work well, fallback to non subgroup ocl acceleration. Signed-off-by:
Li Peng <peng.li@intel.com> * fallback to cpu path for fc layer with multi output Signed-off-by:
Li Peng <peng.li@intel.com> * update output message Signed-off-by:
Li Peng <peng.li@intel.com> * update fully connected layer fallback to gemm API if libdnn return false Signed-off-by:
Li Peng <peng.li@intel.com> * Add ReLU OCL implementation * disable layer fusion for now Signed-off-by:
Li Peng <peng.li@intel.com> * Add OCL implementation for concat layer Signed-off-by:
Wu Zhiwen <zhiwen.wu@intel.com> * libdnn: update license and copyrights Also refine libdnn coding style Signed-off-by:
Wu Zhiwen <zhiwen.wu@intel.com> Signed-off-by:
Li Peng <peng.li@intel.com> * DNN: Don't link OpenCL library explicitly * DNN: Make default preferableTarget to DNN_TARGET_CPU User should set it to DNN_TARGET_OPENCL explicitly if want to use OpenCL acceleration. Also don't fusion when using DNN_TARGET_OPENCL * DNN: refine coding style * Add getOpenCLErrorString * DNN: Use int32_t/uint32_t instread of alias * Use namespace ocl4dnn to include libdnn things * remove extra copyTo in softmax ocl path Signed-off-by:
Li Peng <peng.li@intel.com> * update ReLU layer ocl path Signed-off-by:
Li Peng <peng.li@intel.com> * Add prefer target property for layer class It is used to indicate the target for layer forwarding, either the default CPU target or OCL target. Signed-off-by:
Li Peng <peng.li@intel.com> * Add cl_event based timer for cv::ocl * Rename libdnn to ocl4dnn Signed-off-by:
Li Peng <peng.li@intel.com> Signed-off-by:
wzw <zhiwen.wu@intel.com> * use UMat for ocl4dnn internal buffer Remove allocateMemory which use clCreateBuffer directly Signed-off-by:
Li Peng <peng.li@intel.com> Signed-off-by:
wzw <zhiwen.wu@intel.com> * enable buffer gemm in ocl4dnn innerproduct Signed-off-by:
Li Peng <peng.li@intel.com> * replace int_tp globally for ocl4dnn kernels. Signed-off-by:
wzw <zhiwen.wu@intel.com> Signed-off-by:
Li Peng <peng.li@intel.com> * create UMat for layer params Signed-off-by:
Li Peng <peng.li@intel.com> * update sign ocl kernel Signed-off-by:
Li Peng <peng.li@intel.com> * update image based gemm of inner product layer Signed-off-by:
Li Peng <peng.li@intel.com> * remove buffer gemm of inner product layer call cv::gemm API instead Signed-off-by:
Li Peng <peng.li@intel.com> * change ocl4dnn forward parameter to UMat Signed-off-by:
Li Peng <peng.li@intel.com> * Refine auto-tuning mechanism. - Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory for fine-tuned kernel configuration. e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp, the cache directory will be /home/tmp/spatialkernels/ on Linux. - Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable auto-tuning. - OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling for OpenCL command queue. This fix basic kernel get wrong running time, i.e. 0ms. - If creating cache directory failed, disable auto-tuning. * Detect and create cache dir on windows Signed-off-by:
Li Peng <peng.li@intel.com> * Refine gemm like convolution kernel. Signed-off-by:
Li Peng <peng.li@intel.com> * Fix redundant swizzleWeights calling when use cached kernel config. * Fix "out of resource" bug when auto-tuning too many kernels. * replace cl_mem with UMat in ocl4dnnConvSpatial class * OCL4DNN: reduce the tuning kernel candidate. This patch could reduce 75% of the tuning candidates with less than 2% performance impact for the final result. Signed-off-by:
Zhigang Gong <zhigang.gong@intel.com> * replace cl_mem with umat in ocl4dnn convolution Signed-off-by:
Li Peng <peng.li@intel.com> * remove weight_image_ of ocl4dnn inner product Actually it is unused in the computation Signed-off-by:
Li Peng <peng.li@intel.com> * Various fixes for ocl4dnn 1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()) 2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp 3. Code comments cleanup 4. ignore check on OCL cpu device Signed-off-by:
Li Peng <peng.li@intel.com> * add build option for log softmax Signed-off-by:
Li Peng <peng.li@intel.com> * remove unused ocl kernels in ocl4dnn Signed-off-by:
Li Peng <peng.li@intel.com> * replace ocl4dnnSet with opencv setTo Signed-off-by:
Li Peng <peng.li@intel.com> * replace ALIGN with cv::alignSize Signed-off-by:
Li Peng <peng.li@intel.com> * check kernel build options Signed-off-by:
Li Peng <peng.li@intel.com> * Handle program compilation fail properly. * Use std::numeric_limits<float>::infinity() for large float number * check ocl4dnn kernel compilation result Signed-off-by:
Li Peng <peng.li@intel.com> * remove unused ctx_id Signed-off-by:
Li Peng <peng.li@intel.com> * change clEnqueueNDRangeKernel to kernel.run() Signed-off-by:
Li Peng <peng.li@intel.com> * change cl_mem to UMat in image based gemm Signed-off-by:
Li Peng <peng.li@intel.com> * check intel subgroup support for lrn and pooling layer Signed-off-by:
Li Peng <peng.li@intel.com> * Fix convolution bug if group is greater than 1 Signed-off-by:
Li Peng <peng.li@intel.com> * Set default layer preferableTarget to be DNN_TARGET_CPU Signed-off-by:
Li Peng <peng.li@intel.com> * Add ocl perf test for convolution Signed-off-by:
Li Peng <peng.li@intel.com> * Add more ocl accuracy test Signed-off-by:
Li Peng <peng.li@intel.com> * replace cl_image with ocl::Image2D Signed-off-by:
Li Peng <peng.li@intel.com> * Fix build failure in elementwise layer Signed-off-by:
Li Peng <peng.li@intel.com> * use getUMat() to get blob data Signed-off-by:
Li Peng <peng.li@intel.com> * replace cl_mem handle with ocl::KernelArg Signed-off-by:
Li Peng <peng.li@intel.com> * dnn(build): don't use C++11, OPENCL_LIBRARIES fix * dnn(ocl4dnn): remove unused OpenCL kernels * dnn(ocl4dnn): extract OpenCL code into .cl files * dnn(ocl4dnn): refine auto-tuning Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING environment variable to enable it. Use a set of pre-tuned configs as default config if auto-tuning is disabled. These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet, AlexNet, ResNet-50 If default config is not suitable, use the first available kernel config from the candidates. Candidate priority from high to low is gemm like kernel, IDLF kernel, basick kernel. * dnn(ocl4dnn): pooling doesn't use OpenCL subgroups * dnn(ocl4dnn): fix perf test OpenCV has default 3sec time limit for each performance test. Warmup OpenCL backend outside of perf measurement loop. * use ocl::KernelArg as much as possible Signed-off-by:
Li Peng <peng.li@intel.com> * dnn(ocl4dnn): fix bias bug for gemm like kernel * dnn(ocl4dnn): wrap cl_mem into UMat Signed-off-by:
Li Peng <peng.li@intel.com> * dnn(ocl4dnn): Refine signature of kernel config - Use more readable string as signture of kernel config - Don't count device name and vendor in signature string - Default kernel configurations are tuned for Intel GPU with 24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model. * dnn(ocl4dnn): swap width/height in configuration * dnn(ocl4dnn): enable configs for Intel OpenCL runtime only * core: make configuration helper functions accessible from non-core modules * dnn(ocl4dnn): update kernel auto-tuning behavior Avoid unwanted creation of directories * dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash * dnn(ocl4dnn): remove redundant code * dnn(ocl4dnn): Add more clear message for simd size dismatch. * dnn(ocl4dnn): add const to const argument Signed-off-by:
Li Peng <peng.li@intel.com> * dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel * dnn(ocl4dnn): drop unused tuneLocalSize() * dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method * dnn(ocl4dnn): sanitize file names used for cache * dnn(perf): enable Network tests with OpenCL * dnn(ocl4dnn/conv): drop computeGlobalSize() * dnn(ocl4dnn/conv): drop unused fields * dnn(ocl4dnn/conv): simplify ctor * dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL * dnn(ocl4dnn/conv): drop unsupported double / untested half types * dnn(ocl4dnn/conv): drop unused variable * dnn(ocl4dnn/conv): alignSize/divUp * dnn(ocl4dnn/conv): use enum values * dnn(ocl4dnn): drop unused innerproduct variable Signed-off-by:
Li Peng <peng.li@intel.com> * dnn(ocl4dnn): add an generic function to check cl option support * dnn(ocl4dnn): run softmax subgroup version kernel first Signed-off-by:
Li Peng <peng.li@intel.com>
-
- 01 Oct, 2017 2 commits
-
-
Alexander Alekhin authored
-
Alexander Alekhin authored
-
- 28 Sep, 2017 1 commit
-
-
Tomoaki Teshima authored
* remove raw NEON/SSE2 implementation as much as possible * replace them to universal intrinsic in InRange/Compare/AddWeighted
-
- 27 Sep, 2017 1 commit
-
-
Deric Crago authored
-
- 26 Sep, 2017 1 commit
-
-
Alexander Alekhin authored
-
- 25 Sep, 2017 1 commit
-
-
Rostislav Vasilikhin authored
-
- 19 Sep, 2017 3 commits
-
-
Alexander Alekhin authored
-
Alexander Alekhin authored
-
Alexander Alekhin authored
-
- 18 Sep, 2017 1 commit
-
-
Alexander Alekhin authored
Prevents 10000x1 => 10000x8 transformation after getContinuousSize() call
-
- 17 Sep, 2017 2 commits
-
-
Christof Kaufmann authored
-
RAJ NATARAJAN authored
-
- 16 Sep, 2017 1 commit
-
-
RAJ NATARAJAN authored
Input arrays must be depth CV_8U and of identical size.
-
- 10 Sep, 2017 1 commit
-
-
Alexander Alekhin authored
-
- 08 Sep, 2017 3 commits
-
-
Alexander Alekhin authored
-
Maksim Shabunin authored
-
Pavel Vlasov authored
Manual IPP dispatcher simplification;
-