- 01 Nov, 2018 1 commit
-
-
Vadim Pisarevsky authored
* integrated the new C++ persistence; removed old persistence; most of OpenCV compiles fine! the tests have not been run yet * fixed multiple bugs in the new C++ persistence * fixed raw size of the parsed empty sequences * [temporarily] excluded obsolete applications traincascade and createsamples from build * fixed several compiler warnings and multiple test failures * undo changes in cocoa window rendering (that was fixed in another PR) * fixed more compile warnings and the remaining test failures (hopefully) * trying to fix the last little warning
-
- 09 Sep, 2018 1 commit
-
-
Alexander Alekhin authored
-
- 07 Sep, 2018 1 commit
-
-
Hamdi Sahloul authored
-
- 31 Aug, 2018 2 commits
-
-
Jakub Golinowski authored
* Add HPX backend for OpenCV implementation Adds hpx backend for cv::parallel_for_() calls respecting the nstripes chunking parameter. C++ code for the backend is added to modules/core/parallel.cpp. Also, the necessary changes to cmake files are introduced. Backend can operate in 2 versions (selectable by cmake build option WITH_HPX_STARTSTOP): hpx (runtime always on) and hpx_startstop (start and stop the backend for each cv::parallel_for_() call) * WIP: Conditionally include hpx_main.hpp to tests in core module Header hpx_main.hpp is included to both core/perf/perf_main.cpp and core/test/test_main.cpp. The changes to cmake files for linking hpx library to above mentioned test executalbles are proposed but have issues. * Add coditional iclusion of hpx_main.hpp to cpp cpu modules * Remove start/stop version of hpx backend
-
berak authored
-
- 18 Aug, 2018 1 commit
-
-
Alexander Alekhin authored
It is designed for 1D vectors only
-
- 17 Aug, 2018 1 commit
-
-
Alexander Alekhin authored
-
- 31 Jul, 2018 1 commit
-
-
luz.paz authored
Found via `codespell -q 3 -I ../opencv-whitelist.txt --skip="./3rdparty"`
-
- 24 Jul, 2018 1 commit
-
-
Maksim Shabunin authored
-
- 17 Jul, 2018 1 commit
-
-
Maksim Shabunin authored
-
- 04 Jul, 2018 1 commit
-
-
Alexander Alekhin authored
-
- 11 May, 2018 1 commit
-
-
berak authored
-
- 24 Apr, 2018 2 commits
-
-
Alexander Alekhin authored
-
berak authored
-
- 10 Apr, 2018 1 commit
-
-
Alexander Alekhin authored
-
- 04 Apr, 2018 1 commit
-
-
lopespt authored
-
- 28 Mar, 2018 1 commit
-
-
Alexander Alekhin authored
-
- 27 Mar, 2018 1 commit
-
-
codingforfun authored
In case of regression trees, node risk is computed as sum of squared error. To get a meaningfull value to compare with it needs to be normalized to the number of samples in the node (or more generally to the sum of sample weights in this node). Otherwise the sum of squared error is highly dependend on the number of samples in the node and comparision with `regressionAccuracy` parameter is not very meaningful. After normalization `node_risk` means in fact sample variance for all samples in the node, which makes much more sence and seams to be what was originaly intended by the code given that node risk is later used as a split termination criteria by ``` sqrt(node.node_risk) < params.getRegressionAccuracy() ```
-
- 22 Feb, 2018 1 commit
-
-
Maksim Shabunin authored
-
- 19 Feb, 2018 1 commit
-
-
Alexander Alekhin authored
-
- 12 Feb, 2018 1 commit
-
-
luz.paz authored
Found via `codespell`
-
- 03 Feb, 2018 1 commit
-
-
Alexander Alekhin authored
- removed tr1 usage (dropped in C++17) - moved includes of vector/map/iostream/limits into ts.hpp - require opencv_test + anonymous namespace (added compile check) - fixed norm() usage (must be from cvtest::norm for checks) and other conflict functions - added missing license headers
-
- 22 Dec, 2017 2 commits
-
-
Alexander Alekhin authored
-
Alexander Alekhin authored
-
- 20 Dec, 2017 1 commit
-
-
LaurentBerger authored
* Calcerror uses now sample weights * catree comment in #10319
-
- 15 Dec, 2017 3 commits
-
-
Alexander Alekhin authored
-
catree authored
-
LaurentBerger authored
* Simulated Annealing for ANN_MLP training method * EXPECT_LT * just to test new data * manage RNG * Try again * Just run buildbot with new data * try to understand * Test layer * New data- new test * Force RNG in backprop * Use Impl to avoid virtual method * reset all weights * try to solve ABI * retry * ABI solved? * till problem with dynamic_cast * Something is wrong * Solved? * disable backprop test * remove ANN_MLP_ANNEALImpl * Disable weight in varmap * Add example for SimulatedAnnealing
-
- 28 Nov, 2017 1 commit
-
-
LaurentBerger authored
-
- 27 Nov, 2017 1 commit
-
-
LaurentBerger authored
-
- 09 Nov, 2017 1 commit
-
-
LaurentBerger authored
-
- 08 Sep, 2017 1 commit
-
-
Maksim Shabunin authored
-
- 07 Sep, 2017 1 commit
-
-
Vladislav Sovrasov authored
-
- 08 Aug, 2017 1 commit
-
-
David Geldreich authored
-
- 30 Jun, 2017 1 commit
-
-
Rink Springer authored
This is at least useful when using an SVM one-class linear classifier, so there are valid use cases.
-
- 28 Jun, 2017 1 commit
-
-
Maksim Shabunin authored
-
- 27 Jun, 2017 1 commit
-
-
Maksim Shabunin authored
-
- 26 Jun, 2017 1 commit
-
-
Alexander Alekhin authored
-
- 18 Apr, 2017 1 commit
-
-
David Carlier authored
-
- 05 Apr, 2017 1 commit
-
-
Maksim Shabunin authored
-