//! max keypoints = keypointsRatio * img.size().area()
float keypointsRatio;
GpuMat sum, mask1, maskSum, intBuffer;
GpuMat det, trace;
GpuMat maxPosBuffer;
};
The class ``SURF_GPU`` implements Speeded Up Robust Features descriptor. There is a fast multi-scale Hessian keypoint detector that can be used to find the keypoints (which is the default option). But the descriptors can also be computed for the user-specified keypoints. Only 8-bit grayscale images are supported.
The class ``SURF_GPU`` can store results in the GPU and CPU memory. It provides functions to convert results between CPU and GPU version ( ``uploadKeypoints``, ``downloadKeypoints``, ``downloadDescriptors`` ). The format of CPU results is the same as ``SURF`` results. GPU results are stored in ``GpuMat``. The ``keypoints`` matrix is :math:`\texttt{nFeatures} \times 7` matrix with the ``CV_32FC1`` type.
* ``keypoints.ptr<float>(X_ROW)[i]`` contains x coordinate of the i-th feature.
* ``keypoints.ptr<float>(Y_ROW)[i]`` contains y coordinate of the i-th feature.
* ``keypoints.ptr<float>(LAPLACIAN_ROW)[i]`` contains the laplacian sign of the i-th feature.
* ``keypoints.ptr<float>(OCTAVE_ROW)[i]`` contains the octave of the i-th feature.
* ``keypoints.ptr<float>(SIZE_ROW)[i]`` contains the size of the i-th feature.
* ``keypoints.ptr<float>(ANGLE_ROW)[i]`` contain orientation of the i-th feature.
* ``keypoints.ptr<float>(HESSIAN_ROW)[i]`` contains the response of the i-th feature.
The ``descriptors`` matrix is :math:`\texttt{nFeatures} \times \texttt{descriptorSize}` matrix with the ``CV_32FC1`` type.
The class ``SURF_GPU`` uses some buffers and provides access to it. All buffers can be safely released between function calls.
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [VIBE2011]_.
gpu::VIBE_GPU::VIBE_GPU
-----------------------
The constructor.
.. ocv:function:: gpu::VIBE_GPU::VIBE_GPU(unsigned long rngSeed = 1234567)
:param rngSeed: Value used to initiate a random sequence.
Default constructor sets all parameters to default values.
gpu::VIBE_GPU::initialize
-------------------------
Initialize background model and allocates all inner buffers.
:param fgmask: The output foreground mask as an 8-bit binary image.
:param stream: Stream for the asynchronous version.
gpu::VIBE_GPU::release
----------------------
Releases all inner buffer's memory.
.. ocv:function:: void gpu::VIBE_GPU::release()
gpu::GMG_GPU
------------
.. ocv:class:: gpu::GMG_GPU
...
...
@@ -1209,5 +1139,4 @@ Parse next video frame. Implementation must call this method after new frame was
.. [MOG2001] P. KadewTraKuPong and R. Bowden. *An improved adaptive background mixture model for real-time tracking with shadow detection*. Proc. 2nd European Workshop on Advanced Video-Based Surveillance Systems, 2001
.. [MOG2004] Z. Zivkovic. *Improved adaptive Gausian mixture model for background subtraction*. International Conference Pattern Recognition, UK, August, 2004
.. [VIBE2011] O. Barnich and M. Van D Roogenbroeck. *ViBe: A universal background subtraction algorithm for video sequences*. IEEE Transactions on Image Processing, 20(6) :1709-1724, June 2011
.. [GMG2012] A. Godbehere, A. Matsukawa and K. Goldberg. *Visual Tracking of Human Visitors under Variable-Lighting Conditions for a Responsive Audio Art Installation*. American Control Conference, Montreal, June 2012
//! max keypoints = keypointsRatio * img.size().area()
float keypointsRatio;
GpuMat sum, mask1, maskSum, intBuffer;
GpuMat det, trace;
GpuMat maxPosBuffer;
};
The class ``SURF_GPU`` implements Speeded Up Robust Features descriptor. There is a fast multi-scale Hessian keypoint detector that can be used to find the keypoints (which is the default option). But the descriptors can also be computed for the user-specified keypoints. Only 8-bit grayscale images are supported.
The class ``SURF_GPU`` can store results in the GPU and CPU memory. It provides functions to convert results between CPU and GPU version ( ``uploadKeypoints``, ``downloadKeypoints``, ``downloadDescriptors`` ). The format of CPU results is the same as ``SURF`` results. GPU results are stored in ``GpuMat``. The ``keypoints`` matrix is :math:`\texttt{nFeatures} \times 7` matrix with the ``CV_32FC1`` type.
* ``keypoints.ptr<float>(X_ROW)[i]`` contains x coordinate of the i-th feature.
* ``keypoints.ptr<float>(Y_ROW)[i]`` contains y coordinate of the i-th feature.
* ``keypoints.ptr<float>(LAPLACIAN_ROW)[i]`` contains the laplacian sign of the i-th feature.
* ``keypoints.ptr<float>(OCTAVE_ROW)[i]`` contains the octave of the i-th feature.
* ``keypoints.ptr<float>(SIZE_ROW)[i]`` contains the size of the i-th feature.
* ``keypoints.ptr<float>(ANGLE_ROW)[i]`` contain orientation of the i-th feature.
* ``keypoints.ptr<float>(HESSIAN_ROW)[i]`` contains the response of the i-th feature.
The ``descriptors`` matrix is :math:`\texttt{nFeatures} \times \texttt{descriptorSize}` matrix with the ``CV_32FC1`` type.
The class ``SURF_GPU`` uses some buffers and provides access to it. All buffers can be safely released between function calls.
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [VIBE2011]_.
gpu::VIBE_GPU::VIBE_GPU
-----------------------
The constructor.
.. ocv:function:: gpu::VIBE_GPU::VIBE_GPU(unsigned long rngSeed = 1234567)
:param rngSeed: Value used to initiate a random sequence.
Default constructor sets all parameters to default values.
gpu::VIBE_GPU::initialize
-------------------------
Initialize background model and allocates all inner buffers.
:param fgmask: The output foreground mask as an 8-bit binary image.
:param stream: Stream for the asynchronous version.
gpu::VIBE_GPU::release
----------------------
Releases all inner buffer's memory.
.. ocv:function:: void gpu::VIBE_GPU::release()
.. [VIBE2011] O. Barnich and M. Van D Roogenbroeck. *ViBe: A universal background subtraction algorithm for video sequences*. IEEE Transactions on Image Processing, 20(6) :1709-1724, June 2011