Commit fd619787 authored by Vladislav Sovrasov's avatar Vladislav Sovrasov

Add goodfeatures python test and cleanup in test directory

parent 947307ba
#!/usr/bin/env python
# Calculating and displaying 2D Hue-Saturation histogram of a color image
import sys
import cv2.cv as cv
def hs_histogram(src):
# Convert to HSV
hsv = cv.CreateImage(cv.GetSize(src), 8, 3)
cv.CvtColor(src, hsv, cv.CV_BGR2HSV)
# Extract the H and S planes
h_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1)
s_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1)
cv.Split(hsv, h_plane, s_plane, None, None)
planes = [h_plane, s_plane]
h_bins = 30
s_bins = 32
hist_size = [h_bins, s_bins]
# hue varies from 0 (~0 deg red) to 180 (~360 deg red again */
h_ranges = [0, 180]
# saturation varies from 0 (black-gray-white) to
# 255 (pure spectrum color)
s_ranges = [0, 255]
ranges = [h_ranges, s_ranges]
scale = 10
hist = cv.CreateHist([h_bins, s_bins], cv.CV_HIST_ARRAY, ranges, 1)
cv.CalcHist([cv.GetImage(i) for i in planes], hist)
(_, max_value, _, _) = cv.GetMinMaxHistValue(hist)
hist_img = cv.CreateImage((h_bins*scale, s_bins*scale), 8, 3)
for h in range(h_bins):
for s in range(s_bins):
bin_val = cv.QueryHistValue_2D(hist, h, s)
intensity = cv.Round(bin_val * 255 / max_value)
cv.Rectangle(hist_img,
(h*scale, s*scale),
((h+1)*scale - 1, (s+1)*scale - 1),
cv.RGB(intensity, intensity, intensity),
cv.CV_FILLED)
return hist_img
if __name__ == '__main__':
src = cv.LoadImageM(sys.argv[1])
cv.NamedWindow("Source", 1)
cv.ShowImage("Source", src)
cv.NamedWindow("H-S Histogram", 1)
cv.ShowImage("H-S Histogram", hs_histogram(src))
cv.WaitKey(0)
This diff is collapsed.
#!/usr/bin/env python
import sys
import cv2.cv as cv
def findstereocorrespondence(image_left, image_right):
# image_left and image_right are the input 8-bit single-channel images
# from the left and the right cameras, respectively
(r, c) = (image_left.rows, image_left.cols)
disparity_left = cv.CreateMat(r, c, cv.CV_16S)
disparity_right = cv.CreateMat(r, c, cv.CV_16S)
state = cv.CreateStereoGCState(16, 2)
cv.FindStereoCorrespondenceGC(image_left, image_right, disparity_left, disparity_right, state, 0)
return (disparity_left, disparity_right)
if __name__ == '__main__':
(l, r) = [cv.LoadImageM(f, cv.CV_LOAD_IMAGE_GRAYSCALE) for f in sys.argv[1:]]
(disparity_left, disparity_right) = findstereocorrespondence(l, r)
disparity_left_visual = cv.CreateMat(l.rows, l.cols, cv.CV_8U)
cv.ConvertScale(disparity_left, disparity_left_visual, -16)
cv.SaveImage("disparity.pgm", disparity_left_visual)
#!/usr/bin/env python
import cv2.cv as cv
import unittest
class TestGoodFeaturesToTrack(unittest.TestCase):
def test(self):
arr = cv.LoadImage("../samples/c/lena.jpg", 0)
original = cv.CloneImage(arr)
size = cv.GetSize(arr)
eig_image = cv.CreateImage(size, cv.IPL_DEPTH_32F, 1)
temp_image = cv.CreateImage(size, cv.IPL_DEPTH_32F, 1)
threshes = [ x / 100. for x in range(1,10) ]
results = dict([(t, cv.GoodFeaturesToTrack(arr, eig_image, temp_image, 20000, t, 2, useHarris = 1)) for t in threshes])
# Check that GoodFeaturesToTrack has not modified input image
self.assert_(arr.tostring() == original.tostring())
# Check for repeatability
for i in range(10):
results2 = dict([(t, cv.GoodFeaturesToTrack(arr, eig_image, temp_image, 20000, t, 2, useHarris = 1)) for t in threshes])
self.assert_(results == results2)
for t0,t1 in zip(threshes, threshes[1:]):
r0 = results[t0]
r1 = results[t1]
# Increasing thresh should make result list shorter
self.assert_(len(r0) > len(r1))
# Increasing thresh should monly truncate result list
self.assert_(r0[:len(r1)] == r1)
if __name__ == '__main__':
unittest.main()
#!/usr/bin/env python
import cv2.cv as cv
import numpy as np
cv.NamedWindow('Leak')
while 1:
leak = np.random.random((480, 640)) * 255
cv.ShowImage('Leak', leak.astype(np.uint8))
cv.WaitKey(10)
#!/usr/bin/env python
import cv2.cv as cv
import numpy as np
import time
while True:
for i in range(4000):
a = cv.CreateImage((1024,1024), cv.IPL_DEPTH_8U, 1)
b = cv.CreateMat(1024, 1024, cv.CV_8UC1)
c = cv.CreateMatND([1024,1024], cv.CV_8UC1)
print "pause..."
#!/usr/bin/env python
import cv2.cv as cv
import math
import time
while True:
h = cv.CreateHist([40], cv.CV_HIST_ARRAY, [[0,255]], 1)
#!/usr/bin/env python
import cv2.cv as cv
import math
import time
N=50000
print "leak4"
while True:
seq=list((i*1., i*1.) for i in range(N))
cv.Moments(seq)
#!/usr/bin/env python
import cv2.cv as cv
def precornerdetect(image):
# assume that the image is floating-point
corners = cv.CloneMat(image)
cv.PreCornerDetect(image, corners, 3)
dilated_corners = cv.CloneMat(image)
cv.Dilate(corners, dilated_corners, None, 1)
corner_mask = cv.CreateMat(image.rows, image.cols, cv.CV_8UC1)
cv.Sub(corners, dilated_corners, corners)
cv.CmpS(corners, 0, corner_mask, cv.CV_CMP_GE)
return (corners, corner_mask)
#!/usr/bin/env python
# Python 2/3 compatibility
from __future__ import print_function
import cv2
import numpy as np
from tests_common import NewOpenCVTests
class TestGoodFeaturesToTrack_test(NewOpenCVTests):
def test_goodFeaturesToTrack(self):
arr = self.get_sample('samples/data/lena.jpg', 0)
original = arr.copy(True)
threshes = [ x / 100. for x in range(1,10) ]
numPoints = 20000
results = dict([(t, cv2.goodFeaturesToTrack(arr, numPoints, t, 2, useHarrisDetector=True)) for t in threshes])
# Check that GoodFeaturesToTrack has not modified input image
self.assertTrue(arr.tostring() == original.tostring())
# Check for repeatability
for i in range(1):
results2 = dict([(t, cv2.goodFeaturesToTrack(arr, numPoints, t, 2, useHarrisDetector=True)) for t in threshes])
for t in threshes:
self.assertTrue(len(results2[t]) == len(results[t]))
for i in range(len(results[t])):
self.assertTrue(cv2.norm(results[t][i][0] - results2[t][i][0]) == 0)
for t0,t1 in zip(threshes, threshes[1:]):
r0 = results[t0]
r1 = results[t1]
# Increasing thresh should make result list shorter
self.assertTrue(len(r0) > len(r1))
# Increasing thresh should monly truncate result list
for i in range(len(r1)):
self.assertTrue(cv2.norm(r1[i][0] - r0[i][0])==0)
\ No newline at end of file
#!/usr/bin/env python
import urllib
import cv2.cv as cv
import Image
import unittest
class TestLoadImage(unittest.TestCase):
def setUp(self):
open("large.jpg", "w").write(urllib.urlopen("http://www.cs.ubc.ca/labs/lci/curious_george/img/ROS_bug_imgs/IMG_3560.jpg").read())
def test_load(self):
pilim = Image.open("large.jpg")
cvim = cv.LoadImage("large.jpg")
self.assert_(len(pilim.tostring()) == len(cvim.tostring()))
class Creating(unittest.TestCase):
size=(640, 480)
repeat=100
def test_0_Create(self):
image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1)
cnt=cv.CountNonZero(image)
self.assertEqual(cnt, 0, msg="Created image is not black. CountNonZero=%i" % cnt)
def test_2_CreateRepeat(self):
cnt=0
for i in range(self.repeat):
image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1)
cnt+=cv.CountNonZero(image)
self.assertEqual(cnt, 0, msg="Created images are not black. Mean CountNonZero=%.3f" % (1.*cnt/self.repeat))
def test_2a_MemCreated(self):
cnt=0
v=[]
for i in range(self.repeat):
image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1)
cv.FillPoly(image, [[(0, 0), (0, 100), (100, 0)]], 0)
cnt+=cv.CountNonZero(image)
v.append(image)
self.assertEqual(cnt, 0, msg="Memorized images are not black. Mean CountNonZero=%.3f" % (1.*cnt/self.repeat))
def test_3_tostirng(self):
image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1)
image.tostring()
cnt=cv.CountNonZero(image)
self.assertEqual(cnt, 0, msg="After tostring(): CountNonZero=%i" % cnt)
def test_40_tostringRepeat(self):
cnt=0
image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1)
cv.Set(image, cv.Scalar(0,0,0,0))
for i in range(self.repeat*100):
image.tostring()
cnt=cv.CountNonZero(image)
self.assertEqual(cnt, 0, msg="Repeating tostring(): Mean CountNonZero=%.3f" % (1.*cnt/self.repeat))
def test_41_CreateToStringRepeat(self):
cnt=0
for i in range(self.repeat*100):
image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1)
cv.Set(image, cv.Scalar(0,0,0,0))
image.tostring()
cnt+=cv.CountNonZero(image)
self.assertEqual(cnt, 0, msg="Repeating create and tostring(): Mean CountNonZero=%.3f" % (1.*cnt/self.repeat))
def test_4a_MemCreatedToString(self):
cnt=0
v=[]
for i in range(self.repeat):
image = cv.CreateImage(self.size, cv.IPL_DEPTH_8U, 1)
cv.Set(image, cv.Scalar(0,0,0,0))
image.tostring()
cnt+=cv.CountNonZero(image)
v.append(image)
self.assertEqual(cnt, 0, msg="Repeating and memorizing after tostring(): Mean CountNonZero=%.3f" % (1.*cnt/self.repeat))
if __name__ == '__main__':
unittest.main()
#!/usr/bin/env python
import unittest
import random
import time
import math
import sys
import array
import os
import cv2.cv as cv
def find_sample(s):
for d in ["../samples/c/", "../doc/pics/"]:
path = os.path.join(d, s)
if os.access(path, os.R_OK):
return path
return s
class TestTickets(unittest.TestCase):
def test_2542670(self):
xys = [(94, 121), (94, 122), (93, 123), (92, 123), (91, 124), (91, 125), (91, 126), (92, 127), (92, 128), (92, 129), (92, 130), (92, 131), (91, 132), (90, 131), (90, 130), (90, 131), (91, 132), (92, 133), (92, 134), (93, 135), (94, 136), (94, 137), (94, 138), (95, 139), (96, 140), (96, 141), (96, 142), (96, 143), (97, 144), (97, 145), (98, 146), (99, 146), (100, 146), (101, 146), (102, 146), (103, 146), (104, 146), (105, 146), (106, 146), (107, 146), (108, 146), (109, 146), (110, 146), (111, 146), (112, 146), (113, 146), (114, 146), (115, 146), (116, 146), (117, 146), (118, 146), (119, 146), (120, 146), (121, 146), (122, 146), (123, 146), (124, 146), (125, 146), (126, 146), (126, 145), (126, 144), (126, 143), (126, 142), (126, 141), (126, 140), (127, 139), (127, 138), (127, 137), (127, 136), (127, 135), (127, 134), (127, 133), (128, 132), (129, 132), (130, 131), (131, 130), (131, 129), (131, 128), (132, 127), (133, 126), (134, 125), (134, 124), (135, 123), (136, 122), (136, 121), (135, 121), (134, 121), (133, 121), (132, 121), (131, 121), (130, 121), (129, 121), (128, 121), (127, 121), (126, 121), (125, 121), (124, 121), (123, 121), (122, 121), (121, 121), (120, 121), (119, 121), (118, 121), (117, 121), (116, 121), (115, 121), (114, 121), (113, 121), (112, 121), (111, 121), (110, 121), (109, 121), (108, 121), (107, 121), (106, 121), (105, 121), (104, 121), (103, 121), (102, 121), (101, 121), (100, 121), (99, 121), (98, 121), (97, 121), (96, 121), (95, 121)]
#xys = xys[:12] + xys[16:]
pts = cv.CreateMat(len(xys), 1, cv.CV_32SC2)
for i,(x,y) in enumerate(xys):
pts[i,0] = (x, y)
storage = cv.CreateMemStorage()
hull = cv.ConvexHull2(pts, storage)
hullp = cv.ConvexHull2(pts, storage, return_points = 1)
defects = cv.ConvexityDefects(pts, hull, storage)
vis = cv.CreateImage((1000,1000), 8, 3)
x0 = min([x for (x,y) in xys]) - 10
x1 = max([x for (x,y) in xys]) + 10
y0 = min([y for (y,y) in xys]) - 10
y1 = max([y for (y,y) in xys]) + 10
def xform(pt):
x,y = pt
return (1000 * (x - x0) / (x1 - x0),
1000 * (y - y0) / (y1 - y0))
for d in defects[:2]:
cv.Zero(vis)
# First draw the defect as a red triangle
cv.FillConvexPoly(vis, [xform(p) for p in d[:3]], cv.RGB(255,0,0))
# Draw the convex hull as a thick green line
for a,b in zip(hullp, hullp[1:]):
cv.Line(vis, xform(a), xform(b), cv.RGB(0,128,0), 3)
# Draw the original contour as a white line
for a,b in zip(xys, xys[1:]):
cv.Line(vis, xform(a), xform(b), (255,255,255))
self.snap(vis)
def test_2686307(self):
lena = cv.LoadImage(find_sample("lena.jpg"), 1)
dst = cv.CreateImage((512,512), 8, 3)
cv.Set(dst, (128,192,255))
mask = cv.CreateImage((512,512), 8, 1)
cv.Zero(mask)
cv.Rectangle(mask, (10,10), (300,100), 255, -1)
cv.Copy(lena, dst, mask)
self.snapL([lena, dst, mask])
m = cv.CreateMat(480, 640, cv.CV_8UC1)
print "ji", m
print m.rows, m.cols, m.type, m.step
def snap(self, img):
self.snapL([img])
def snapL(self, L):
for i,img in enumerate(L):
cv.NamedWindow("snap-%d" % i, 1)
cv.ShowImage("snap-%d" % i, img)
cv.WaitKey()
cv.DestroyAllWindows()
if __name__ == '__main__':
random.seed(0)
if len(sys.argv) == 1:
suite = unittest.TestLoader().loadTestsFromTestCase(TestTickets)
unittest.TextTestRunner(verbosity=2).run(suite)
else:
suite = unittest.TestSuite()
suite.addTest(TestTickets(sys.argv[1]))
unittest.TextTestRunner(verbosity=2).run(suite)
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment