Commit fc04b7ab authored by Maria Dimashova's avatar Maria Dimashova

minor refactoring of CvMLData interface

parent 77be493e
......@@ -2061,10 +2061,9 @@ CVAPI(void) cvCreateTestSet( int type, CvMat** samples,
struct CV_EXPORTS CvTrainTestSplit
{
public:
CvTrainTestSplit();
CvTrainTestSplit( int _train_sample_count, bool _mix = true);
CvTrainTestSplit( float _train_sample_portion, bool _mix = true);
CvTrainTestSplit( int train_sample_count, bool mix = true);
CvTrainTestSplit( float train_sample_portion, bool mix = true);
union
{
......@@ -2073,14 +2072,7 @@ public:
} train_sample_part;
int train_sample_part_mode;
union
{
int *count;
float *portion;
} *class_part;
int class_part_mode;
bool mix;
bool mix;
};
class CV_EXPORTS CvMLData
......@@ -2094,24 +2086,24 @@ public:
// 1 - file can not be opened or is not correct
int read_csv( const char* filename );
const CvMat* get_values();
const CvMat* get_values() const;
const CvMat* get_responses();
const CvMat* get_missing();
const CvMat* get_missing() const;
void set_response_idx( int idx ); // old response become predictors, new response_idx = idx
// if idx < 0 there will be no response
int get_response_idx();
int get_response_idx() const;
const CvMat* get_train_sample_idx();
const CvMat* get_test_sample_idx();
void mix_train_and_test_idx();
void set_train_test_split( const CvTrainTestSplit * spl );
const CvMat* get_train_sample_idx() const;
const CvMat* get_test_sample_idx() const;
void mix_train_and_test_idx();
const CvMat* get_var_idx();
void chahge_var_idx( int vi, bool state ); // state == true to set vi-variable as predictor
const CvMat* get_var_types();
int get_var_type( int var_idx );
int get_var_type( int var_idx ) const;
// following 2 methods enable to change vars type
// use these methods to assign CV_VAR_CATEGORICAL type for categorical variable
// with numerical labels; in the other cases var types are correctly determined automatically
......@@ -2121,11 +2113,13 @@ public:
void change_var_type( int var_idx, int type); // type in { CV_VAR_ORDERED, CV_VAR_CATEGORICAL }
void set_delimiter( char ch );
char get_delimiter();
char get_delimiter() const;
void set_miss_ch( char ch );
char get_miss_ch();
char get_miss_ch() const;
const std::map<std::string, int>& get_class_labels_map() const;
protected:
virtual void clear();
......@@ -2151,7 +2145,7 @@ protected:
bool mix;
int total_class_count;
std::map<std::string, int> *class_map;
std::map<std::string, int> class_map;
CvMat* train_sample_idx;
CvMat* test_sample_idx;
......
......@@ -48,7 +48,6 @@ CvTrainTestSplit::CvTrainTestSplit()
{
train_sample_part_mode = CV_COUNT;
train_sample_part.count = -1;
class_part = 0;
mix = false;
}
......@@ -56,7 +55,6 @@ CvTrainTestSplit::CvTrainTestSplit( int _train_sample_count, bool _mix )
{
train_sample_part_mode = CV_COUNT;
train_sample_part.count = _train_sample_count;
class_part = 0;
mix = _mix;
}
......@@ -64,7 +62,6 @@ CvTrainTestSplit::CvTrainTestSplit( float _train_sample_portion, bool _mix )
{
train_sample_part_mode = CV_PORTION;
train_sample_part.portion = _train_sample_portion;
class_part = 0;
mix = _mix;
}
......@@ -83,14 +80,12 @@ CvMLData::CvMLData()
miss_ch = '?';
//flt_separator = '.';
class_map = new std::map<std::string, int>();
rng = &cv::theRNG();
}
CvMLData::~CvMLData()
{
clear();
delete class_map;
}
void CvMLData::free_train_test_idx()
......@@ -102,8 +97,7 @@ void CvMLData::free_train_test_idx()
void CvMLData::clear()
{
if ( !class_map->empty() )
class_map->clear();
class_map.clear();
cvReleaseMat( &values );
cvReleaseMat( &missing );
......@@ -244,16 +238,29 @@ int CvMLData::read_csv(const char* filename)
return 0;
}
const CvMat* CvMLData::get_values()
const CvMat* CvMLData::get_values() const
{
return values;
}
const CvMat* CvMLData::get_missing()
const CvMat* CvMLData::get_missing() const
{
CV_FUNCNAME( "CvMLData::get_missing" );
__BEGIN__;
if ( !values )
CV_ERROR( CV_StsInternal, "data is empty" );
__END__;
return missing;
}
const std::map<std::string, int>& CvMLData::get_class_labels_map() const
{
return class_map;
}
void CvMLData::str_to_flt_elem( const char* token, float& flt_elem, int& type)
{
......@@ -270,12 +277,12 @@ void CvMLData::str_to_flt_elem( const char* token, float& flt_elem, int& type)
{
if ( (*stopstring != 0) && (*stopstring != '\n') && (strcmp(stopstring, "\r\n") != 0) ) // class label
{
int idx = (*class_map)[token];
int idx = class_map[token];
if ( idx == 0)
{
total_class_count++;
idx = total_class_count;
(*class_map)[token] = idx;
class_map[token] = idx;
}
flt_elem = (float)idx;
type = CV_VAR_CATEGORICAL;
......@@ -296,7 +303,7 @@ void CvMLData::set_delimiter(char ch)
__END__;
}
char CvMLData::get_delimiter()
char CvMLData::get_delimiter() const
{
return delimiter;
}
......@@ -314,7 +321,7 @@ void CvMLData::set_miss_ch(char ch)
__END__;
}
char CvMLData::get_miss_ch()
char CvMLData::get_miss_ch() const
{
return miss_ch;
}
......@@ -339,8 +346,14 @@ void CvMLData::set_response_idx( int idx )
__END__;
}
int CvMLData::get_response_idx()
int CvMLData::get_response_idx() const
{
CV_FUNCNAME( "CvMLData::get_response_idx" );
__BEGIN__;
if ( !values )
CV_ERROR( CV_StsInternal, "data is empty" );
__END__;
return response_idx;
}
......@@ -536,7 +549,7 @@ const CvMat* CvMLData::get_var_types()
return var_types_out;
}
int CvMLData::get_var_type( int var_idx )
int CvMLData::get_var_type( int var_idx ) const
{
return var_types->data.ptr[var_idx];
}
......@@ -572,9 +585,6 @@ void CvMLData::set_train_test_split( const CvTrainTestSplit * spl)
int sample_count = 0;
if ( spl->class_part )
CV_ERROR( CV_StsBadArg, "this division type is not supported yet" );
if ( !values )
CV_ERROR( CV_StsInternal, "data is empty" );
......@@ -627,19 +637,41 @@ void CvMLData::set_train_test_split( const CvTrainTestSplit * spl)
__END__;
}
const CvMat* CvMLData::get_train_sample_idx()
const CvMat* CvMLData::get_train_sample_idx() const
{
CV_FUNCNAME( "CvMLData::get_train_sample_idx" );
__BEGIN__;
if ( !values )
CV_ERROR( CV_StsInternal, "data is empty" );
__END__;
return train_sample_idx;
}
const CvMat* CvMLData::get_test_sample_idx()
const CvMat* CvMLData::get_test_sample_idx() const
{
CV_FUNCNAME( "CvMLData::get_test_sample_idx" );
__BEGIN__;
if ( !values )
CV_ERROR( CV_StsInternal, "data is empty" );
__END__;
return test_sample_idx;
}
void CvMLData::mix_train_and_test_idx()
{
if ( !values || !sample_idx) return;
CV_FUNCNAME( "CvMLData::mix_train_and_test_idx" );
__BEGIN__;
if ( !values )
CV_ERROR( CV_StsInternal, "data is empty" );
__END__;
if ( !sample_idx)
return;
if ( train_sample_count > 0 && train_sample_count < values->rows )
{
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment