Commit facff37e authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

reviewed ? marks in features2d

parent 039c35e2
......@@ -13,7 +13,7 @@ descriptor extractors inherit the
DescriptorExtractor
-------------------
.. c:type:: DescriptorExtractor
.. cpp:class:: DescriptorExtractor
Abstract base class for computing descriptors for image keypoints ::
......@@ -95,9 +95,9 @@ DescriptorExtractor::write
DescriptorExtractor::create
-------------------------------
.. c:function:: Ptr<DescriptorExtractor> DescriptorExtractor::create( const string\& descriptorExtractorType )
.. c:function:: Ptr<DescriptorExtractor> DescriptorExtractor::create( const string& descriptorExtractorType )
Creates a descriptor extractor of a given type with the default parameters (using the default constructor).??
Creates a descriptor extractor by name.
:param descriptorExtractorType: Descriptor extractor type.
......@@ -115,7 +115,7 @@ for example: ``"OpponentSIFT"`` .
SiftDescriptorExtractor
-----------------------
.. c:type:: SiftDescriptorExtractor
.. cpp:class:: SiftDescriptorExtractor
Wrapping class for computing descriptors by using the
:ref:`SIFT` class ::
......@@ -145,7 +145,7 @@ Wrapping class for computing descriptors by using the
SurfDescriptorExtractor
-----------------------
.. c:type:: SurfDescriptorExtractor
.. cpp:class:: SurfDescriptorExtractor
Wrapping class for computing descriptors by using the
:ref:`SURF` class ::
......@@ -169,7 +169,7 @@ Wrapping class for computing descriptors by using the
CalonderDescriptorExtractor
---------------------------
.. c:type:: CalonderDescriptorExtractor
.. cpp:class:: CalonderDescriptorExtractor
Wrapping class for computing descriptors by using the
:ref:`RTreeClassifier` class ::
......@@ -195,7 +195,7 @@ Wrapping class for computing descriptors by using the
OpponentColorDescriptorExtractor
--------------------------------
.. c:type:: OpponentColorDescriptorExtractor
.. cpp:class:: OpponentColorDescriptorExtractor
Class adapting a descriptor extractor to compute descriptors in the Opponent Color Space
(refer to Van de Sande et al., CGIV 2008 *Color Descriptors for Object Category Recognition*).
......@@ -223,7 +223,7 @@ them into a single color descriptor. ::
BriefDescriptorExtractor
------------------------
.. c:type:: BriefDescriptorExtractor
.. cpp:class:: BriefDescriptorExtractor
Class for computing BRIEF descriptors described in a paper of Calonder M., Lepetit V.,
Strecha C., Fua P. *BRIEF: Binary Robust Independent Elementary Features* ,
......
......@@ -6,9 +6,9 @@ Drawing Function of Keypoints and Matches
drawMatches
---------------
.. c:function:: void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1, const Mat& img2, const vector<KeyPoint>& keypoints2, const vector<DMatch>& matches1to2, Mat& outImg, const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), const vector<char>& matchesMask=vector<char>(), int flags=DrawMatchesFlags::DEFAULT )
.. cpp:function:: void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1, const Mat& img2, const vector<KeyPoint>& keypoints2, const vector<DMatch>& matches1to2, Mat& outImg, const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), const vector<char>& matchesMask=vector<char>(), int flags=DrawMatchesFlags::DEFAULT )
.. c:function:: void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1, const Mat& img2, const vector<KeyPoint>& keypoints2, const vector<vector<DMatch> >& matches1to2, Mat& outImg, const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), const vector<vector<char>>& matchesMask= vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT )
.. cpp:function:: void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1, const Mat& img2, const vector<KeyPoint>& keypoints2, const vector<vector<DMatch> >& matches1to2, Mat& outImg, const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), const vector<vector<char>>& matchesMask= vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT )
:param img1: The first source image.
......@@ -61,7 +61,7 @@ This function draws matches of keypoints from two images in the output image. Ma
drawKeypoints
-----------------
.. c:function:: void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, Mat& outImg, const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT )
.. cpp:function:: void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, Mat& outImg, const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT )
Draws keypoints.
......
......@@ -25,7 +25,7 @@ FAST
MSER
----
.. c:type:: MSER
.. cpp:class:: MSER
Maximally stable extremal region extractor ::
......@@ -54,7 +54,7 @@ http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions).
StarDetector
------------
.. c:type:: StarDetector
.. cpp:class:: StarDetector
Class implementing the Star keypoint detector ::
......@@ -93,7 +93,7 @@ The class implements a modified version of the ``CenSurE`` keypoint detector des
SIFT
----
.. c:type:: SIFT
.. cpp:class:: SIFT
Class for extracting keypoints and computing descriptors using the Scale Invariant Feature Transform (SIFT) approach ::
......@@ -183,7 +183,7 @@ Class for extracting keypoints and computing descriptors using the Scale Invaria
SURF
----
.. c:type:: SURF
.. cpp:class:: SURF
Class for extracting Speeded Up Robust Features from an image ::
......@@ -221,7 +221,7 @@ The algorithm can be used for object tracking and localization, image stitching,
RandomizedTree
--------------
.. c:type:: RandomizedTree
.. cpp:class:: RandomizedTree
Class containing a base structure for ``RTreeClassifier`` ::
......@@ -361,7 +361,7 @@ RandomizedTree::applyQuantization
RTreeNode
---------
.. c:type:: RTreeNode
.. cpp:class:: RTreeNode
Class containing a base structure for ``RandomizedTree`` ::
......@@ -389,7 +389,7 @@ Class containing a base structure for ``RandomizedTree`` ::
RTreeClassifier
---------------
.. c:type:: RTreeClassifier
.. cpp:class:: RTreeClassifier
Class containing ``RTreeClassifier`` . It represents the Calonder descriptor that was originally introduced by Michael Calonder. ::
......
......@@ -11,7 +11,7 @@ This section describes approaches based on local 2D features and used to categor
BOWTrainer
----------
.. c:type:: BOWTrainer
.. cpp:class:: BOWTrainer
Abstract base class for training the *bag of visual words* vocabulary from a set of descriptors.
For details, see, for example, *Visual Categorization with Bags of Keypoints* by Gabriella Csurka, Christopher R. Dance,
......@@ -41,7 +41,7 @@ Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. ::
BOWTrainer::add
-------------------
.. c:function:: void BOWTrainer::add( const Mat\& descriptors )
.. c:function:: void BOWTrainer::add( const Mat& descriptors )
Adds descriptors to a training set. The training set is clustered using ``clustermethod`` to construct the vocabulary.
......@@ -51,7 +51,7 @@ BOWTrainer::add
BOWTrainer::getDescriptors
------------------------------
.. c:function:: const vector<Mat>\& BOWTrainer::getDescriptors() const
.. c:function:: const vector<Mat>& BOWTrainer::getDescriptors() const
Returns a training set of descriptors.
......@@ -59,7 +59,7 @@ BOWTrainer::getDescriptors
BOWTrainer::descripotorsCount
---------------------------------
.. c:function:: const vector<Mat>\& BOWTrainer::descripotorsCount() const
.. c:function:: const vector<Mat>& BOWTrainer::descripotorsCount() const
Returns the count of all descriptors stored in the training set.
......@@ -71,7 +71,7 @@ BOWTrainer::cluster
Clusters train descriptors. The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first variant of the method, train descriptors stored in the object are clustered. In the second variant, input descriptors are clustered.
.. c:function:: Mat BOWTrainer::cluster( const Mat\& descriptors ) const
.. c:function:: Mat BOWTrainer::cluster( const Mat& descriptors ) const
:param descriptors: Descriptors to cluster. Each row of the ``descriptors`` matrix is a descriptor. Descriptors are not added to the inner train descriptor set.
......@@ -81,7 +81,7 @@ BOWTrainer::cluster
BOWKMeansTrainer
----------------
.. c:type:: BOWKMeansTrainer
.. cpp:class:: BOWKMeansTrainer
:ref:`kmeans` -based class to train visual vocabulary using the *bag of visual words* approach ::
......@@ -111,13 +111,15 @@ arguments.
BOWImgDescriptorExtractor
-------------------------
.. c:type:: BOWImgDescriptorExtractor
.. cpp:class:: BOWImgDescriptorExtractor
Class to compute an image descriptor using the ''bag of visual words''. Such a computation consists of the following steps:
#. Compute descriptors for a given image and its keypoints set.
#. Find the nearest visual words from the vocabulary for each keypoint descriptor.
#. Image descriptor is a normalized histogram of vocabulary words encountered in the image. This means that the ``i`` -th bin of the histogram is a frequency of ``i`` -th word of the vocabulary in the given image.??this is not a step ::
#. Compute the bag-of-words image descriptor as is a normalized histogram of vocabulary words encountered in the image. The ``i``-th bin of the histogram is a frequency of ``i``-th word of the vocabulary in the given image.
Here is the class declaration ::
class BOWImgDescriptorExtractor
{
......@@ -144,9 +146,9 @@ Class to compute an image descriptor using the ''bag of visual words''. Such a c
BOWImgDescriptorExtractor::BOWImgDescriptorExtractor
--------------------------------------------------------
.. c:function:: BOWImgDescriptorExtractor::BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>\& dextractor, const Ptr<DescriptorMatcher>\& dmatcher )
.. c:function:: BOWImgDescriptorExtractor::BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor, const Ptr<DescriptorMatcher>& dmatcher )
Constructs ??.
The class constructor.
:param dextractor: Descriptor extractor that is used to compute descriptors for an input image and its keypoints.
......@@ -156,7 +158,7 @@ BOWImgDescriptorExtractor::BOWImgDescriptorExtractor
BOWImgDescriptorExtractor::setVocabulary
--------------------------------------------
.. c:function:: void BOWImgDescriptorExtractor::setVocabulary( const Mat\& vocabulary )
.. c:function:: void BOWImgDescriptorExtractor::setVocabulary( const Mat& vocabulary )
Sets a visual vocabulary.
......@@ -166,7 +168,7 @@ BOWImgDescriptorExtractor::setVocabulary
BOWImgDescriptorExtractor::getVocabulary
--------------------------------------------
.. c:function:: const Mat\& BOWImgDescriptorExtractor::getVocabulary() const
.. c:function:: const Mat& BOWImgDescriptorExtractor::getVocabulary() const
Returns the set vocabulary.
......@@ -174,11 +176,11 @@ BOWImgDescriptorExtractor::getVocabulary
BOWImgDescriptorExtractor::compute
--------------------------------------
.. c:function:: void BOWImgDescriptorExtractor::compute( const Mat\& image, vector<KeyPoint>\& keypoints, Mat\& imgDescriptor, vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 )
.. c:function:: void BOWImgDescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor, vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 )
Computes an image descriptor using the set visual vocabulary.
:param image: Image. Descriptor is computed for each image.??
:param image: Image, for which the descriptor is computed.
:param keypoints: Keypoints detected in the input image.
......
......@@ -235,9 +235,7 @@ The function finds the most prominent corners in the image or in the specified i
:func:`cornerHarris` .
#.
Function performs a non-maximum?? suppression (the local maximums in
:math:`3\times 3` neighborhood
are retained).
Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are retained).
#.
The corners with the minimal eigenvalue less than
......@@ -247,10 +245,7 @@ The function finds the most prominent corners in the image or in the specified i
The remaining corners are sorted by the quality measure in the descending order.
#.
Function throws away each corner
:math:`pt_j` if there is a stronger corner
:math:`pt_i` (
:math:`i < j` ) so that the distance between them is less than ``minDistance`` .
Then the function throws away each corner for which there is a stronger corner at a distance less than ``maxDistance``.
The function can be used to initialize a point-based tracker of an object.
......@@ -278,7 +273,7 @@ HoughCircles
:param circles: Output vector of found circles. Each vector is encoded as a 3-element floating-point vector :math:`(x, y, radius)` .
:param method: desc required?? Currently, the only implemented method is ``CV_HOUGH_GRADIENT`` , which is basically *21HT* , described in Yuen90 .
:param method: The detection method to use. Currently, the only implemented method is ``CV_HOUGH_GRADIENT`` , which is basically *21HT* , described in [Yuen90].
:param dp: Inverse ratio of the accumulator resolution to the image resolution. For example, if ``dp=1`` , the accumulator has the same resolution as the input image. If ``dp=2`` , the accumulator has half as big width and height.
......@@ -286,7 +281,7 @@ HoughCircles
:param param1: The first method-specific parameter. In case of ``CV_HOUGH_GRADIENT`` , it is the higher threshold of the two passed to the :func:`Canny` edge detector (the lower one is twice smaller).
:param param2: The second method-specific parameter. In case of ``CV_HOUGH_GRADIENT`` , it is the accumulator threshold at the center of ?? detection stage. The smaller it is, the more false circles may be detected. Circles, corresponding to the larger accumulator values, will be returned first
:param param2: The second method-specific parameter. In case of ``CV_HOUGH_GRADIENT`` , it is the accumulator threshold for the circle centers at the detection stage. The smaller it is, the more false circles may be detected. Circles, corresponding to the larger accumulator values, will be returned first
:param minRadius: Minimum circle radius.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment