Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
fa446e7e
Commit
fa446e7e
authored
Jan 31, 2011
by
Alexey Spizhevoy
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
removed linear_filters_beta.cu as its functionality was moved into filters.cu
parent
8274ed22
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
16 additions
and
308 deletions
+16
-308
linear_filters_beta.cu
modules/gpu/src/cuda/linear_filters_beta.cu
+0
-266
imgproc_gpu.cpp
modules/gpu/src/imgproc_gpu.cpp
+16
-42
No files found.
modules/gpu/src/cuda/linear_filters_beta.cu
deleted
100644 → 0
View file @
8274ed22
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/gpu/devmem2d.hpp"
#include "opencv2/gpu/device/border_interpolate.hpp"
#include "safe_call.hpp"
#include "internal_shared.hpp"
#define BLOCK_DIM_X 16
#define BLOCK_DIM_Y 16
#define MAX_KERNEL_SIZE 16
using namespace cv::gpu;
using namespace cv::gpu::device;
namespace cv { namespace gpu { namespace linear_filters {
// Global linear kernel data storage
__constant__ float ckernel[MAX_KERNEL_SIZE];
void loadKernel(const float* kernel, int ksize)
{
cudaSafeCall(cudaMemcpyToSymbol(ckernel, kernel, ksize * sizeof(float)));
}
template <typename T, typename B, int ksize>
__global__ void rowFilterKernel(const DevMem2D_<T> src, PtrStepf dst,
int anchor, B border)
{
__shared__ float smem[BLOCK_DIM_X * BLOCK_DIM_Y * 3];
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
float* srow = smem + threadIdx.y * blockDim.x * 3;
if (y < src.rows)
{
const T* src_row = src.ptr(y);
srow[threadIdx.x + blockDim.x] = border.at_high(x, src_row);
srow[threadIdx.x] = border.at_low(x - blockDim.x, src_row);
srow[threadIdx.x + (blockDim.x << 1)] = border.at_high(x + blockDim.x, src_row);
__syncthreads();
if (x < src.cols)
{
srow += threadIdx.x + blockDim.x - anchor;
float sum = 0.f;
for (int i = 0; i < ksize; ++i)
sum += srow[i] * ckernel[i];
dst.ptr(y)[x] = sum;
}
}
}
template <typename T, typename B, int ksize>
void rowFilterCaller(const DevMem2D_<T> src, PtrStepf dst, int anchor)
{
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y);
dim3 grid(divUp(src.cols, threads.x), divUp(src.rows, threads.y));
B border(src.cols);
if (!border.is_range_safe(-BLOCK_DIM_X, (grid.x + 1) * BLOCK_DIM_X - 1))
cv::gpu::error("rowFilterCaller: can't use specified border extrapolation, image is too small, "
"try bigger image or another border extrapolation mode", __FILE__, __LINE__);
rowFilterKernel<T, B, ksize><<<grid, threads>>>(src, dst, anchor, border);
cudaSafeCall(cudaThreadSynchronize());
}
template <typename T, typename B>
void rowFilterCaller(const DevMem2D_<T> src, PtrStepf dst, int anchor,
const float* kernel, int ksize)
{
typedef void (*Caller)(const DevMem2D_<T>, PtrStepf, int);
static const Caller callers[] =
{
0, rowFilterCaller<T, B, 1>,
rowFilterCaller<T, B, 2>, rowFilterCaller<T, B, 3>,
rowFilterCaller<T, B, 4>, rowFilterCaller<T, B, 5>,
rowFilterCaller<T, B, 6>, rowFilterCaller<T, B, 7>,
rowFilterCaller<T, B, 8>, rowFilterCaller<T, B, 9>,
rowFilterCaller<T, B, 10>, rowFilterCaller<T, B, 11>,
rowFilterCaller<T, B, 12>, rowFilterCaller<T, B, 13>,
rowFilterCaller<T, B, 14>, rowFilterCaller<T, B, 15>
};
loadKernel(kernel, ksize);
callers[ksize](src, dst, anchor);
}
template <typename T>
void rowFilterCaller(const DevMem2D_<T> src, PtrStepf dst, int anchor,
const float* kernel, int ksize, int brd_interp)
{
typedef void (*Caller)(const DevMem2D_<T>, PtrStepf, int, const float*, int);
static const Caller callers[] =
{
rowFilterCaller<T, BrdRowReflect101<T> >,
rowFilterCaller<T, BrdRowReplicate<T> >
};
callers[brd_interp](src, dst, anchor, kernel, ksize);
}
template void rowFilterCaller<unsigned char>(const DevMem2D_<unsigned char>, PtrStepf, int, const float*, int, int);
template void rowFilterCaller<float>(const DevMem2D_<float>, PtrStepf, int, const float*, int, int);
template <typename T, typename B, int ksize>
__global__ void colFilterKernel(const DevMem2D_<T> src, PtrStepf dst, int anchor, B border)
{
__shared__ float smem[BLOCK_DIM_X * BLOCK_DIM_Y * 3];
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int smem_step = blockDim.x;
float* scol = smem + threadIdx.x;
if (x < src.cols)
{
const T* src_col = src.data + x;
scol[(threadIdx.y + blockDim.y) * smem_step] = border.at_high(y, src_col);
scol[threadIdx.y * smem_step] = border.at_low(y - blockDim.y, src_col);
scol[(threadIdx.y + (blockDim.y << 1)) * smem_step] = border.at_high(y + blockDim.y, src_col);
__syncthreads();
if (y < src.rows)
{
scol += (threadIdx.y + blockDim.y - anchor)* smem_step;
float sum = 0.f;
for(int i = 0; i < ksize; ++i)
sum += scol[i * smem_step] * ckernel[i];
dst.ptr(y)[x] = sum;
}
}
}
template <typename T, typename B, int ksize>
void colFilterCaller(const DevMem2D_<T> src, PtrStepf dst, int anchor)
{
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y);
dim3 grid(divUp(src.cols, threads.x), divUp(src.rows, threads.y));
B border(src.rows, src.step / src.elem_size);
if (src.step - border.step * src.elem_size != 0)
cv::gpu::error("colFilterCaller: src step must be multiple of its element size",
__FILE__, __LINE__);
if (!border.is_range_safe(-BLOCK_DIM_Y, (grid.y + 1) * BLOCK_DIM_Y - 1))
cv::gpu::error("colFilterCaller: can't use specified border extrapolation, image is too small, "
"try bigger image or another border extrapolation mode", __FILE__, __LINE__);
colFilterKernel<T, B, ksize><<<grid, threads>>>(src, dst, anchor, border);
cudaSafeCall(cudaThreadSynchronize());
}
template <typename T, typename B>
void colFilterCaller(const DevMem2D_<T> src, PtrStepf dst, int anchor,
const float* kernel, int ksize)
{
typedef void (*Caller)(const DevMem2D_<T>, PtrStepf, int);
static const Caller callers[] =
{
0, colFilterCaller<T, B, 1>,
colFilterCaller<T, B, 2>, colFilterCaller<T, B, 3>,
colFilterCaller<T, B, 4>, colFilterCaller<T, B, 5>,
colFilterCaller<T, B, 6>, colFilterCaller<T, B, 7>,
colFilterCaller<T, B, 8>, colFilterCaller<T, B, 9>,
colFilterCaller<T, B, 10>, colFilterCaller<T, B, 11>,
colFilterCaller<T, B, 12>, colFilterCaller<T, B, 13>,
colFilterCaller<T, B, 14>, colFilterCaller<T, B, 15>
};
loadKernel(kernel, ksize);
callers[ksize](src, dst, anchor);
}
template <typename T>
void colFilterCaller(const DevMem2D_<T> src, PtrStepf dst, int anchor,
const float* kernel, int ksize, int brd_interp)
{
typedef void (*Caller)(const DevMem2D_<T>, PtrStepf, int, const float*, int);
static const Caller callers[] =
{
colFilterCaller<T, BrdColReflect101<T> >,
colFilterCaller<T, BrdColReplicate<T> >
};
callers[brd_interp](src, dst, anchor, kernel, ksize);
}
template void colFilterCaller<unsigned char>(const DevMem2D_<unsigned char>, PtrStepf, int, const float*, int, int);
template void colFilterCaller<float>(const DevMem2D_<float>, PtrStepf, int, const float*, int, int);
}}}
modules/gpu/src/imgproc_gpu.cpp
View file @
fa446e7e
...
...
@@ -986,22 +986,10 @@ namespace cv { namespace gpu { namespace imgproc {
}}}
namespace
cv
{
namespace
gpu
{
namespace
linear_filters
{
template
<
typename
T
>
void
rowFilterCaller
(
const
DevMem2D_
<
T
>
src
,
PtrStepf
dst
,
int
anchor
,
const
float
*
kernel
,
int
ksize
,
int
brd_interp
);
template
<
typename
T
>
void
colFilterCaller
(
const
DevMem2D_
<
T
>
src
,
PtrStepf
dst
,
int
anchor
,
const
float
*
kernel
,
int
ksize
,
int
brd_interp
);
}}}
namespace
{
template
<
typename
T
>
void
extractCovData
(
const
GpuMat
&
src
,
GpuMat
&
Dx
,
GpuMat
&
Dy
,
int
blockSize
,
int
ksize
,
int
gpuB
orderType
)
void
extractCovData
(
const
GpuMat
&
src
,
GpuMat
&
Dx
,
GpuMat
&
Dy
,
int
blockSize
,
int
ksize
,
int
b
orderType
)
{
double
scale
=
(
double
)(
1
<<
((
ksize
>
0
?
ksize
:
3
)
-
1
))
*
blockSize
;
if
(
ksize
<
0
)
...
...
@@ -1013,42 +1001,28 @@ namespace
GpuMat
tmp_buf
(
src
.
size
(),
CV_32F
);
Dx
.
create
(
src
.
size
(),
CV_32F
);
Dy
.
create
(
src
.
size
(),
CV_32F
);
Mat
kx
,
ky
;
getDerivKernels
(
kx
,
ky
,
1
,
0
,
ksize
,
false
,
CV_32F
);
kx
=
kx
.
reshape
(
1
,
1
)
*
scale
;
ky
=
ky
.
reshape
(
1
,
1
);
linear_filters
::
rowFilterCaller
<
T
>
(
src
,
tmp_buf
,
kx
.
cols
>>
1
,
kx
.
ptr
<
float
>
(
0
),
kx
.
cols
,
gpuBorderType
);
linear_filters
::
colFilterCaller
<
float
>
(
tmp_buf
,
Dx
,
ky
.
cols
>>
1
,
ky
.
ptr
<
float
>
(
0
),
ky
.
cols
,
gpuBorderType
);
getDerivKernels
(
kx
,
ky
,
0
,
1
,
ksize
,
false
,
CV_32F
);
kx
=
kx
.
reshape
(
1
,
1
);
ky
=
ky
.
reshape
(
1
,
1
)
*
scale
;
linear_filters
::
rowFilterCaller
<
T
>
(
src
,
tmp_buf
,
kx
.
cols
>>
1
,
kx
.
ptr
<
float
>
(
0
),
kx
.
cols
,
gpuBorderType
);
linear_filters
::
colFilterCaller
<
float
>
(
tmp_buf
,
Dy
,
ky
.
cols
>>
1
,
ky
.
ptr
<
float
>
(
0
),
ky
.
cols
,
gpuBorderType
);
if
(
ksize
>
0
)
{
Sobel
(
src
,
Dx
,
CV_32F
,
1
,
0
,
ksize
,
scale
,
borderType
);
Sobel
(
src
,
Dy
,
CV_32F
,
0
,
1
,
ksize
,
scale
,
borderType
);
}
else
{
Scharr
(
src
,
Dx
,
CV_32F
,
1
,
0
,
scale
,
borderType
);
Scharr
(
src
,
Dy
,
CV_32F
,
0
,
1
,
scale
,
borderType
);
}
}
void
extractCovData
(
const
GpuMat
&
src
,
GpuMat
&
Dx
,
GpuMat
&
Dy
,
int
blockSize
,
int
ksize
,
int
gpuB
orderType
)
void
extractCovData
(
const
GpuMat
&
src
,
GpuMat
&
Dx
,
GpuMat
&
Dy
,
int
blockSize
,
int
ksize
,
int
b
orderType
)
{
switch
(
src
.
type
())
{
case
CV_8U
:
extractCovData
<
unsigned
char
>
(
src
,
Dx
,
Dy
,
blockSize
,
ksize
,
gpuB
orderType
);
extractCovData
<
unsigned
char
>
(
src
,
Dx
,
Dy
,
blockSize
,
ksize
,
b
orderType
);
break
;
case
CV_32F
:
extractCovData
<
float
>
(
src
,
Dx
,
Dy
,
blockSize
,
ksize
,
gpuB
orderType
);
extractCovData
<
float
>
(
src
,
Dx
,
Dy
,
blockSize
,
ksize
,
b
orderType
);
break
;
default
:
CV_Error
(
CV_StsBadArg
,
"extractCovData: unsupported type of the source matrix"
);
...
...
@@ -1090,7 +1064,7 @@ void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ks
CV_Assert
(
tryConvertToGpuBorderType
(
borderType
,
gpuBorderType
));
GpuMat
Dx
,
Dy
;
extractCovData
(
src
,
Dx
,
Dy
,
blockSize
,
ksize
,
gpuB
orderType
);
extractCovData
(
src
,
Dx
,
Dy
,
blockSize
,
ksize
,
b
orderType
);
dst
.
create
(
src
.
size
(),
CV_32F
);
imgproc
::
cornerHarris_caller
(
blockSize
,
(
float
)
k
,
Dx
,
Dy
,
dst
,
gpuBorderType
);
}
...
...
@@ -1104,7 +1078,7 @@ void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, i
CV_Assert
(
tryConvertToGpuBorderType
(
borderType
,
gpuBorderType
));
GpuMat
Dx
,
Dy
;
extractCovData
(
src
,
Dx
,
Dy
,
blockSize
,
ksize
,
gpuB
orderType
);
extractCovData
(
src
,
Dx
,
Dy
,
blockSize
,
ksize
,
b
orderType
);
dst
.
create
(
src
.
size
(),
CV_32F
);
imgproc
::
cornerMinEigenVal_caller
(
blockSize
,
Dx
,
Dy
,
dst
,
gpuBorderType
);
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment