Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
f6c57388
Commit
f6c57388
authored
Jul 12, 2019
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
parents
f663e8f9
054c7962
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
275 additions
and
63 deletions
+275
-63
perf_convolution3d.cpp
modules/dnn/perf/perf_convolution3d.cpp
+182
-0
convolution_layer.cpp
modules/dnn/src/layers/convolution_layer.cpp
+0
-0
layers_common.cpp
modules/dnn/src/layers/layers_common.cpp
+3
-1
layers_common.hpp
modules/dnn/src/layers/layers_common.hpp
+2
-1
pooling_layer.cpp
modules/dnn/src/layers/pooling_layer.cpp
+0
-0
onnx_importer.cpp
modules/dnn/src/onnx/onnx_importer.cpp
+22
-27
test_onnx_importer.cpp
modules/dnn/test/test_onnx_importer.cpp
+32
-9
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+6
-6
filter.simd.hpp
modules/imgproc/src/filter.simd.hpp
+4
-3
smooth.simd.hpp
modules/imgproc/src/smooth.simd.hpp
+16
-16
test_smooth_bitexact.cpp
modules/imgproc/test/test_smooth_bitexact.cpp
+8
-0
No files found.
modules/dnn/perf/perf_convolution3d.cpp
0 → 100644
View file @
f6c57388
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "perf_precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace
opencv_test
{
struct
Conv3DParam_t
{
int
kernel
[
3
];
struct
BlobShape
{
int
dims
[
5
];
}
shapeIn
;
int
outCN
;
int
groups
;
int
stride
[
3
];
int
dilation
[
3
];
int
pad
[
6
];
const
char
*
padMode
;
bool
hasBias
;
double
declared_flops
;
};
// Details: #12142
static
const
Conv3DParam_t
testConvolution3DConfigs
[]
=
{
{{
3
,
3
,
3
},
{{
1
,
6
,
10
,
38
,
50
}},
6
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
"VALID"
,
true
,
26956800.
},
{{
3
,
3
,
3
},
{{
1
,
2
,
19
,
19
,
19
}},
2
,
2
,
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
,
1
},
""
,
true
,
218000.
},
{{
3
,
3
,
3
},
{{
1
,
2
,
25
,
19
,
19
}},
2
,
2
,
{
1
,
2
,
2
},
{
1
,
1
,
1
},
{
2
,
2
,
2
,
2
,
2
,
2
},
"SAME"
,
false
,
545000.
},
{{
3
,
3
,
3
},
{{
1
,
11
,
9
,
150
,
200
}},
11
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
"VALID"
,
true
,
1342562760.
},
{{
3
,
3
,
3
},
{{
1
,
10
,
98
,
10
,
10
}},
10
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
0
,
1
,
1
,
0
,
1
},
"SAME"
,
false
,
53018000.
},
{{
5
,
5
,
5
},
{{
1
,
6
,
19
,
19
,
19
}},
6
,
2
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
""
,
false
,
30395250.
},
{{
5
,
5
,
5
},
{{
1
,
4
,
50
,
19
,
19
}},
4
,
1
,
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
,
1
},
"VALID"
,
false
,
5893888.
},
{{
5
,
5
,
5
},
{{
1
,
3
,
75
,
75
,
100
}},
3
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
"SAME"
,
true
,
1267312500.
},
{{
5
,
5
,
5
},
{{
1
,
2
,
21
,
75
,
100
}},
2
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
""
,
true
,
116103744.
},
{{
5
,
5
,
5
},
{{
1
,
4
,
40
,
75
,
75
}},
4
,
1
,
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
""
,
false
,
93405312.
},
{{
7
,
7
,
7
},
{{
1
,
6
,
15
,
19
,
19
}},
6
,
1
,
{
2
,
1
,
1
},
{
1
,
1
,
1
},
{
3
,
3
,
3
,
3
,
3
,
3
},
"SAME"
,
true
,
71339376.
},
{{
7
,
7
,
7
},
{{
1
,
2
,
38
,
38
,
38
}},
2
,
1
,
{
1
,
2
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
""
,
false
,
44990464.
},
{{
1
,
1
,
1
},
{{
1
,
4
,
9
,
10
,
10
}},
4
,
1
,
{
1
,
1
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
,
1
},
"VALID"
,
false
,
16200.
},
{{
3
,
1
,
4
},
{{
1
,
14
,
5
,
10
,
10
}},
14
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
"SAME"
,
false
,
2359000.
},
{{
1
,
1
,
1
},
{{
1
,
8
,
1
,
10
,
10
}},
8
,
8
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
,
1
},
""
,
true
,
58752.
},
{{
3
,
4
,
2
},
{{
1
,
4
,
8
,
10
,
10
}},
4
,
4
,
{
1
,
2
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
""
,
true
,
166752.
}
};
struct
Conv3DParamID
{
enum
{
CONV_0
=
0
,
CONV_100
=
16
,
CONV_LAST
=
sizeof
(
testConvolution3DConfigs
)
/
sizeof
(
testConvolution3DConfigs
[
0
])
};
int
val_
;
\
Conv3DParamID
(
int
val
=
0
)
:
val_
(
val
)
{}
operator
int
()
const
{
return
val_
;
}
static
::
testing
::
internal
::
ParamGenerator
<
Conv3DParamID
>
all
()
{
#if 0
enum { NUM = (int)CONV_LAST };
#else
enum
{
NUM
=
(
int
)
CONV_100
};
#endif
Conv3DParamID
v_
[
NUM
];
for
(
int
i
=
0
;
i
<
NUM
;
++
i
)
{
v_
[
i
]
=
Conv3DParamID
(
i
);
}
// reduce generated code size
return
::
testing
::
ValuesIn
(
v_
,
v_
+
NUM
);
}
};
\
static
inline
void
PrintTo
(
const
Conv3DParamID
&
v
,
std
::
ostream
*
os
)
{
CV_Assert
((
int
)
v
>=
0
);
CV_Assert
((
int
)
v
<
Conv3DParamID
::
CONV_LAST
);
const
Conv3DParam_t
&
p
=
testConvolution3DConfigs
[(
int
)
v
];
*
os
<<
"GFLOPS="
<<
cv
::
format
(
"%.3f"
,
p
.
declared_flops
*
1e-9
)
<<
", K=["
<<
p
.
kernel
[
0
]
<<
" x "
<<
p
.
kernel
[
1
]
<<
" x "
<<
p
.
kernel
[
2
]
<<
"]"
<<
", IN={"
<<
p
.
shapeIn
.
dims
[
0
]
<<
", "
<<
p
.
shapeIn
.
dims
[
1
]
<<
", "
<<
p
.
shapeIn
.
dims
[
2
]
<<
", "
<<
p
.
shapeIn
.
dims
[
3
]
<<
", "
<<
p
.
shapeIn
.
dims
[
4
]
<<
"}"
<<
", OCN="
<<
p
.
outCN
;
if
(
p
.
groups
>
1
)
*
os
<<
", G="
<<
p
.
groups
;
if
(
p
.
stride
[
0
]
*
p
.
stride
[
1
]
*
p
.
stride
[
2
]
!=
1
)
*
os
<<
", S=["
<<
p
.
stride
[
0
]
<<
" x "
<<
p
.
stride
[
1
]
<<
" x "
<<
p
.
stride
[
2
]
<<
"]"
;
if
(
p
.
dilation
[
0
]
*
p
.
dilation
[
1
]
*
p
.
dilation
[
2
]
!=
1
)
*
os
<<
", D=["
<<
p
.
dilation
[
0
]
<<
" x "
<<
p
.
dilation
[
1
]
<<
" x "
<<
p
.
dilation
[
2
]
<<
"]"
;
if
(
p
.
pad
[
0
]
!=
0
&&
p
.
pad
[
1
]
!=
0
&&
p
.
pad
[
2
]
!=
0
&&
p
.
pad
[
3
]
!=
0
&&
p
.
pad
[
4
]
!=
0
&&
p
.
pad
[
5
]
!=
0
)
*
os
<<
", P=("
<<
p
.
pad
[
0
]
<<
", "
<<
p
.
pad
[
3
]
<<
") x ("
<<
p
.
pad
[
1
]
<<
", "
<<
p
.
pad
[
4
]
<<
") x ("
<<
p
.
pad
[
2
]
<<
", "
<<
p
.
pad
[
5
]
<<
")"
;
if
(
!
((
std
::
string
)
p
.
padMode
).
empty
())
*
os
<<
", PM="
<<
((
std
::
string
)
p
.
padMode
);
if
(
p
.
hasBias
)
*
os
<<
", BIAS"
;
}
typedef
tuple
<
Conv3DParamID
,
tuple
<
Backend
,
Target
>
>
Conv3DTestParam_t
;
typedef
TestBaseWithParam
<
Conv3DTestParam_t
>
Conv3D
;
PERF_TEST_P_
(
Conv3D
,
conv3d
)
{
int
test_id
=
(
int
)
get
<
0
>
(
GetParam
());
ASSERT_GE
(
test_id
,
0
);
ASSERT_LT
(
test_id
,
Conv3DParamID
::
CONV_LAST
);
const
Conv3DParam_t
&
params
=
testConvolution3DConfigs
[
test_id
];
double
declared_flops
=
params
.
declared_flops
;
DictValue
kernel
=
DictValue
::
arrayInt
(
&
params
.
kernel
[
0
],
3
);
DictValue
stride
=
DictValue
::
arrayInt
(
&
params
.
stride
[
0
],
3
);
DictValue
pad
=
DictValue
::
arrayInt
(
&
params
.
pad
[
0
],
6
);
DictValue
dilation
=
DictValue
::
arrayInt
(
&
params
.
dilation
[
0
],
3
);
MatShape
inputShape
=
MatShape
(
params
.
shapeIn
.
dims
,
params
.
shapeIn
.
dims
+
5
);
int
outChannels
=
params
.
outCN
;
int
groups
=
params
.
groups
;
std
::
string
padMode
(
params
.
padMode
);
bool
hasBias
=
params
.
hasBias
;
Backend
backendId
=
get
<
0
>
(
get
<
1
>
(
GetParam
()));
Target
targetId
=
get
<
1
>
(
get
<
1
>
(
GetParam
()));
if
(
targetId
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
int
inChannels
=
inputShape
[
1
];
int
sz
[]
=
{
outChannels
,
inChannels
/
groups
,
params
.
kernel
[
0
],
params
.
kernel
[
1
],
params
.
kernel
[
2
]};
Mat
weights
(
5
,
&
sz
[
0
],
CV_32F
);
randu
(
weights
,
-
1.0
f
,
1.0
f
);
LayerParams
lp
;
lp
.
set
(
"kernel_size"
,
kernel
);
lp
.
set
(
"pad"
,
pad
);
if
(
!
padMode
.
empty
())
lp
.
set
(
"pad_mode"
,
padMode
);
lp
.
set
(
"stride"
,
stride
);
lp
.
set
(
"dilation"
,
dilation
);
lp
.
set
(
"num_output"
,
outChannels
);
lp
.
set
(
"group"
,
groups
);
lp
.
set
(
"bias_term"
,
hasBias
);
lp
.
type
=
"Convolution"
;
lp
.
name
=
"testLayer"
;
lp
.
blobs
.
push_back
(
weights
);
if
(
hasBias
)
{
Mat
bias
(
1
,
outChannels
,
CV_32F
);
randu
(
bias
,
-
1.0
f
,
1.0
f
);
lp
.
blobs
.
push_back
(
bias
);
}
int
inpSz
[]
=
{
1
,
inChannels
,
inputShape
[
2
],
inputShape
[
3
],
inputShape
[
4
]};
Mat
input
(
5
,
&
inpSz
[
0
],
CV_32F
);
randu
(
input
,
-
1.0
f
,
1.0
f
);
Net
net
;
net
.
addLayerToPrev
(
lp
.
name
,
lp
.
type
,
lp
);
net
.
setInput
(
input
);
net
.
setPreferableBackend
(
backendId
);
net
.
setPreferableTarget
(
targetId
);
Mat
output
=
net
.
forward
();
MatShape
netInputShape
=
shape
(
input
);
size_t
weightsMemory
=
0
,
blobsMemory
=
0
;
net
.
getMemoryConsumption
(
netInputShape
,
weightsMemory
,
blobsMemory
);
int64
flops
=
net
.
getFLOPS
(
netInputShape
);
CV_Assert
(
flops
>
0
);
std
::
cout
<<
"IN="
<<
divUp
(
input
.
total
()
*
input
.
elemSize
(),
1u
<<
10
)
<<
" Kb "
<<
netInputShape
<<
" OUT="
<<
divUp
(
output
.
total
()
*
output
.
elemSize
(),
1u
<<
10
)
<<
" Kb "
<<
shape
(
output
)
<<
" Weights(parameters): "
<<
divUp
(
weightsMemory
,
1u
<<
10
)
<<
" Kb"
<<
" MFLOPS="
<<
flops
*
1e-6
<<
std
::
endl
;
TEST_CYCLE
()
{
Mat
res
=
net
.
forward
();
}
EXPECT_NEAR
(
flops
,
declared_flops
,
declared_flops
*
1e-6
);
SANITY_CHECK_NOTHING
();
}
INSTANTIATE_TEST_CASE_P
(
/**/
,
Conv3D
,
Combine
(
Conv3DParamID
::
all
(),
dnnBackendsAndTargets
(
false
,
false
)
// defined in ../test/test_common.hpp
));
}
// namespace
modules/dnn/src/layers/convolution_layer.cpp
View file @
f6c57388
This diff is collapsed.
Click to expand it.
modules/dnn/src/layers/layers_common.cpp
View file @
f6c57388
...
...
@@ -175,11 +175,13 @@ void getPoolingKernelParams(const LayerParams ¶ms, std::vector<size_t>& kern
}
void
getConvolutionKernelParams
(
const
LayerParams
&
params
,
std
::
vector
<
size_t
>&
kernel
,
std
::
vector
<
size_t
>&
pads_begin
,
std
::
vector
<
size_t
>&
pads_end
,
std
::
vector
<
size_t
>&
strides
,
std
::
vector
<
size_t
>&
dilations
,
cv
::
String
&
padMode
)
std
::
vector
<
size_t
>&
pads_end
,
std
::
vector
<
size_t
>&
strides
,
std
::
vector
<
size_t
>&
dilations
,
cv
::
String
&
padMode
,
std
::
vector
<
size_t
>&
adjust_pads
)
{
util
::
getKernelSize
(
params
,
kernel
);
util
::
getStrideAndPadding
(
params
,
pads_begin
,
pads_end
,
strides
,
padMode
,
kernel
.
size
());
util
::
getParameter
(
params
,
"dilation"
,
"dilation"
,
dilations
,
true
,
std
::
vector
<
size_t
>
(
kernel
.
size
(),
1
));
util
::
getParameter
(
params
,
"adj"
,
"adj"
,
adjust_pads
,
true
,
std
::
vector
<
size_t
>
(
kernel
.
size
(),
0
));
for
(
int
i
=
0
;
i
<
dilations
.
size
();
i
++
)
CV_Assert
(
dilations
[
i
]
>
0
);
...
...
modules/dnn/src/layers/layers_common.hpp
View file @
f6c57388
...
...
@@ -60,7 +60,8 @@ namespace cv
namespace
dnn
{
void
getConvolutionKernelParams
(
const
LayerParams
&
params
,
std
::
vector
<
size_t
>&
kernel
,
std
::
vector
<
size_t
>&
pads_begin
,
std
::
vector
<
size_t
>&
pads_end
,
std
::
vector
<
size_t
>&
strides
,
std
::
vector
<
size_t
>&
dilations
,
cv
::
String
&
padMode
);
std
::
vector
<
size_t
>&
pads_end
,
std
::
vector
<
size_t
>&
strides
,
std
::
vector
<
size_t
>&
dilations
,
cv
::
String
&
padMode
,
std
::
vector
<
size_t
>&
adjust_pads
);
void
getPoolingKernelParams
(
const
LayerParams
&
params
,
std
::
vector
<
size_t
>&
kernel
,
bool
&
globalPooling
,
std
::
vector
<
size_t
>&
pads_begin
,
std
::
vector
<
size_t
>&
pads_end
,
std
::
vector
<
size_t
>&
strides
,
cv
::
String
&
padMode
);
...
...
modules/dnn/src/layers/pooling_layer.cpp
View file @
f6c57388
This diff is collapsed.
Click to expand it.
modules/dnn/src/onnx/onnx_importer.cpp
View file @
f6c57388
...
...
@@ -682,42 +682,37 @@ void ONNXImporter::populateNet(Net dstNet)
layerParams
.
set
(
"num_output"
,
layerParams
.
blobs
[
0
].
size
[
1
]
*
layerParams
.
get
<
int
>
(
"group"
,
1
));
layerParams
.
set
(
"bias_term"
,
node_proto
.
input_size
()
==
3
);
if
(
!
layerParams
.
has
(
"kernel_size"
))
CV_Error
(
Error
::
StsNotImplemented
,
"Required attribute 'kernel_size' is not present."
);
if
(
layerParams
.
has
(
"output_shape"
))
{
const
DictValue
&
outShape
=
layerParams
.
get
(
"output_shape"
);
DictValue
strides
=
layerParams
.
get
(
"stride"
);
DictValue
kernel
=
layerParams
.
get
(
"kernel_size"
);
if
(
outShape
.
size
()
!=
4
)
CV_Error
(
Error
::
StsNotImplemented
,
"Output shape must have 4 elements."
);
DictValue
stride
=
layerParams
.
get
(
"stride"
);
const
int
strideY
=
stride
.
getIntValue
(
0
);
const
int
strideX
=
stride
.
getIntValue
(
1
);
const
int
outH
=
outShape
.
getIntValue
(
2
);
const
int
outW
=
outShape
.
getIntValue
(
3
);
if
(
layerParams
.
get
<
String
>
(
"pad_mode"
)
==
"SAME"
)
String
padMode
;
std
::
vector
<
int
>
adjust_pads
;
if
(
layerParams
.
has
(
"pad_mode"
))
{
layerParams
.
set
(
"adj_w"
,
(
outW
-
1
)
%
strideX
);
layerParams
.
set
(
"adj_h"
,
(
outH
-
1
)
%
strideY
);
}
else
if
(
layerParams
.
get
<
String
>
(
"pad_mode"
)
==
"VALID"
)
{
if
(
!
layerParams
.
has
(
"kernel_size"
))
CV_Error
(
Error
::
StsNotImplemented
,
"Required attribute 'kernel_size' is not present."
);
DictValue
kernel
=
layerParams
.
get
(
"kernel_size"
);
layerParams
.
set
(
"adj_h"
,
(
outH
-
kernel
.
getIntValue
(
0
))
%
strideY
);
layerParams
.
set
(
"adj
_w"
,
(
outW
-
kernel
.
getIntValue
(
1
))
%
strideX
);
padMode
=
toUpperCase
(
layerParams
.
get
<
String
>
(
"pad_mode"
)
);
if
(
padMode
!=
"SAME"
&&
padMode
!=
"VALID"
)
CV_Error
(
Error
::
StsError
,
"Unsupported padding mode "
+
padMode
);
for
(
int
i
=
0
;
i
<
strides
.
size
();
i
++
)
{
int
sz
=
outShape
.
get
<
int
>
(
2
+
i
);
int
stride
=
strides
.
get
<
int
>
(
i
);
adjust_pads
.
push_back
(
padMode
==
"SAME"
?
(
sz
-
1
)
%
stride
:
(
sz
-
kernel
.
get
<
int
>
(
i
))
%
stride
);
}
layerParams
.
set
(
"adj
"
,
DictValue
::
arrayInt
(
&
adjust_pads
[
0
],
adjust_pads
.
size
())
);
}
}
else
if
(
layerParams
.
has
(
"output_padding"
))
{
const
DictValue
&
adj_pad
=
layerParams
.
get
(
"output_padding"
);
if
(
adj_pad
.
size
()
!=
2
)
CV_Error
(
Error
::
StsNotImplemented
,
"Deconvolution3D layer is not supported"
);
layerParams
.
set
(
"adj_w"
,
adj_pad
.
get
<
int
>
(
1
));
layerParams
.
set
(
"adj_h"
,
adj_pad
.
get
<
int
>
(
0
));
replaceLayerParam
(
layerParams
,
"output_padding"
,
"adj"
);
}
}
else
if
(
layer_type
==
"Transpose"
)
...
...
modules/dnn/test/test_onnx_importer.cpp
View file @
f6c57388
...
...
@@ -100,8 +100,8 @@ TEST_P(Test_ONNX_layers, Convolution3D)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only
DLIE backend on
CPU is supported"
);
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
testONNXModels
(
"conv3d"
);
testONNXModels
(
"conv3d_bias"
);
}
...
...
@@ -127,6 +127,19 @@ TEST_P(Test_ONNX_layers, Deconvolution)
testONNXModels
(
"deconv_adjpad_2d"
,
npy
,
0
,
0
,
false
,
false
);
}
TEST_P
(
Test_ONNX_layers
,
Deconvolution3D
)
{
#if defined(INF_ENGINE_RELEASE)
applyTestTag
(
CV_TEST_TAG_DNN_SKIP_IE_2018R5
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only DLIE backend on CPU is supported"
);
testONNXModels
(
"deconv3d"
);
testONNXModels
(
"deconv3d_bias"
);
testONNXModels
(
"deconv3d_pad"
);
testONNXModels
(
"deconv3d_adjpad"
);
}
TEST_P
(
Test_ONNX_layers
,
Dropout
)
{
testONNXModels
(
"dropout"
);
...
...
@@ -185,8 +198,8 @@ TEST_P(Test_ONNX_layers, MaxPooling3D)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only
DLIE backend on
CPU is supported"
);
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
testONNXModels
(
"max_pool3d"
);
}
...
...
@@ -195,11 +208,21 @@ TEST_P(Test_ONNX_layers, AvePooling3D)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only
DLIE backend on
CPU is supported"
);
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
testONNXModels
(
"ave_pool3d"
);
}
TEST_P
(
Test_ONNX_layers
,
PoolConv3D
)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
testONNXModels
(
"pool_conv_3d"
);
}
TEST_P
(
Test_ONNX_layers
,
BatchNormalization
)
{
testONNXModels
(
"batch_norm"
);
...
...
@@ -579,10 +602,10 @@ TEST_P(Test_ONNX_nets, Resnet34_kinetics)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only
DLIE backend on
CPU is supported"
);
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
String
onnxmodel
=
findDataFile
(
"dnn/resnet-34_kinetics.onnx"
,
false
);
String
onnxmodel
=
findDataFile
(
"dnn/resnet-34_kinetics.onnx"
);
Mat
image0
=
imread
(
findDataFile
(
"dnn/dog416.png"
));
Mat
image1
=
imread
(
findDataFile
(
"dnn/street.png"
));
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
f6c57388
...
...
@@ -136,8 +136,8 @@ TEST_P(Test_TensorFlow_layers, Convolution3D)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only DLIE backend on
CPU is supported"
);
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only
CPU is supported"
);
runTensorFlowNet
(
"conv3d"
);
}
...
...
@@ -243,8 +243,8 @@ TEST_P(Test_TensorFlow_layers, MaxPooling3D)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only
DLIE backend on
CPU is supported"
);
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
runTensorFlowNet
(
"max_pool3d"
);
}
...
...
@@ -253,8 +253,8 @@ TEST_P(Test_TensorFlow_layers, AvePooling3D)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only
DLIE backend on
CPU is supported"
);
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
runTensorFlowNet
(
"ave_pool3d"
);
}
...
...
modules/imgproc/src/filter.simd.hpp
View file @
f6c57388
...
...
@@ -84,6 +84,7 @@ Ptr<BaseFilter> getLinearFilter(
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
typedef
int
CV_DECL_ALIGNED
(
1
)
unaligned_int
;
#define VEC_ALIGN CV_MALLOC_ALIGN
int
FilterEngine__start
(
FilterEngine
&
this_
,
const
Size
&
_wholeSize
,
const
Size
&
sz
,
const
Point
&
ofs
)
...
...
@@ -1049,7 +1050,7 @@ struct SymmColumnVec_32s8u
s0
=
v_muladd
(
v_cvt_f32
(
v_load
(
src
[
k
]
+
i
)
+
v_load
(
src
[
-
k
]
+
i
)),
v_setall_f32
(
ky
[
k
]),
s0
);
v_int32x4
s32
=
v_round
(
s0
);
v_int16x8
s16
=
v_pack
(
s32
,
s32
);
*
(
int
*
)(
dst
+
i
)
=
v_reinterpret_as_s32
(
v_pack_u
(
s16
,
s16
)).
get0
();
*
(
unaligned_
int
*
)(
dst
+
i
)
=
v_reinterpret_as_s32
(
v_pack_u
(
s16
,
s16
)).
get0
();
i
+=
v_int32x4
::
nlanes
;
}
}
...
...
@@ -1104,7 +1105,7 @@ struct SymmColumnVec_32s8u
s0
=
v_muladd
(
v_cvt_f32
(
v_load
(
src
[
k
]
+
i
)
-
v_load
(
src
[
-
k
]
+
i
)),
v_setall_f32
(
ky
[
k
]),
s0
);
v_int32x4
s32
=
v_round
(
s0
);
v_int16x8
s16
=
v_pack
(
s32
,
s32
);
*
(
int
*
)(
dst
+
i
)
=
v_reinterpret_as_s32
(
v_pack_u
(
s16
,
s16
)).
get0
();
*
(
unaligned_
int
*
)(
dst
+
i
)
=
v_reinterpret_as_s32
(
v_pack_u
(
s16
,
s16
)).
get0
();
i
+=
v_int32x4
::
nlanes
;
}
}
...
...
@@ -2129,7 +2130,7 @@ struct FilterVec_8u
s0
=
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
v_load_expand_q
(
src
[
k
]
+
i
))),
v_setall_f32
(
kf
[
k
]),
s0
);
v_int32x4
s32
=
v_round
(
s0
);
v_int16x8
s16
=
v_pack
(
s32
,
s32
);
*
(
int
*
)(
dst
+
i
)
=
v_reinterpret_as_s32
(
v_pack_u
(
s16
,
s16
)).
get0
();
*
(
unaligned_
int
*
)(
dst
+
i
)
=
v_reinterpret_as_s32
(
v_pack_u
(
s16
,
s16
)).
get0
();
i
+=
v_int32x4
::
nlanes
;
}
return
i
;
...
...
modules/imgproc/src/smooth.simd.hpp
View file @
f6c57388
...
...
@@ -334,7 +334,7 @@ void hlineSmooth3Naba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const
{
int
src_idx
=
borderInterpolate
(
-
1
,
len
,
borderType
);
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
((
uint16_t
*
)
dst
)[
k
]
=
((
uint16_t
*
)
m
)[
1
]
*
src
[
k
]
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
cn
+
k
])
+
(
uint16_t
)(
src
[
src_idx
*
cn
+
k
]
));
((
uint16_t
*
)
dst
)[
k
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
1
]
*
(
uint32_t
)(
src
[
k
])
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
cn
+
k
])
+
(
uint32_t
)(
src
[
src_idx
*
cn
+
k
])
));
}
else
{
...
...
@@ -354,14 +354,14 @@ void hlineSmooth3Naba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const
v_mul_wrap
(
vx_load_expand
(
src
),
v_mul1
));
#endif
for
(;
i
<
lencn
;
i
++
,
src
++
,
dst
++
)
*
((
uint16_t
*
)
dst
)
=
((
uint16_t
*
)
m
)[
1
]
*
src
[
0
]
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
-
cn
])
+
(
uint16_t
)(
src
[
cn
]
));
*
((
uint16_t
*
)
dst
)
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
1
]
*
(
uint32_t
)(
src
[
0
])
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
-
cn
])
+
(
uint32_t
)(
src
[
cn
])
));
// Point that fall right from border
if
(
borderType
!=
BORDER_CONSTANT
)
// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
{
int
src_idx
=
(
borderInterpolate
(
len
,
len
,
borderType
)
-
(
len
-
1
))
*
cn
;
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
((
uint16_t
*
)
dst
)[
k
]
=
((
uint16_t
*
)
m
)[
1
]
*
src
[
k
]
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
-
cn
])
+
(
uint16_t
)(
src
[
src_idx
+
k
]
));
((
uint16_t
*
)
dst
)[
k
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
1
]
*
(
uint32_t
)(
src
[
k
])
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
-
cn
])
+
(
uint32_t
)(
src
[
src_idx
+
k
])
));
}
else
{
...
...
@@ -896,8 +896,8 @@ void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
int
idxp2
=
borderInterpolate
(
3
,
len
,
borderType
)
*
cn
;
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
{
((
uint16_t
*
)
dst
)[
k
]
=
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
+
idxm1
])
+
(
uint16_t
)(
src
[
k
+
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
]
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
+
idxp1
])
+
(
uint16_t
)(
src
[
k
+
idxm2
]
));
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
+
idxm1
])
+
(
uint16_t
)(
src
[
k
+
idxp2
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
])
+
(
uint16_t
)(
src
[
k
+
idxp1
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
+
cn
]
;
((
uint16_t
*
)
dst
)[
k
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
+
idxm1
])
+
(
uint32_t
)(
src
[
k
+
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
])
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
+
idxp1
])
+
(
uint32_t
)(
src
[
k
+
idxm2
])
));
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
+
idxm1
])
+
(
uint32_t
)(
src
[
k
+
idxp2
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
])
+
(
uint32_t
)(
src
[
k
+
idxp1
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
+
cn
]))
;
}
}
}
...
...
@@ -907,7 +907,7 @@ void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
{
dst
[
k
]
=
m
[
2
]
*
src
[
k
]
+
m
[
1
]
*
src
[
k
+
cn
]
+
m
[
0
]
*
src
[
k
+
2
*
cn
];
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
])
+
(
uint16_t
)(
src
[
k
+
2
*
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
+
cn
]
;
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
])
+
(
uint32_t
)(
src
[
k
+
2
*
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
+
cn
]))
;
dst
[
k
+
2
*
cn
]
=
m
[
0
]
*
src
[
k
]
+
m
[
1
]
*
src
[
k
+
cn
]
+
m
[
2
]
*
src
[
k
+
2
*
cn
];
}
else
...
...
@@ -918,9 +918,9 @@ void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
int
idxp2
=
borderInterpolate
(
4
,
len
,
borderType
)
*
cn
;
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
{
((
uint16_t
*
)
dst
)[
k
]
=
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
]
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
+
cn
])
+
(
uint16_t
)(
src
[
k
+
idxm1
]))
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
+
2
*
cn
])
+
(
uint16_t
)(
src
[
k
+
idxm2
]
));
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
+
cn
]
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
])
+
(
uint16_t
)(
src
[
k
+
2
*
cn
]))
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
+
idxm1
])
+
(
uint16_t
)(
src
[
k
+
idxp1
]
));
((
uint16_t
*
)
dst
)[
k
+
2
*
cn
]
=
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
])
+
(
uint16_t
)(
src
[
k
+
idxp2
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
+
cn
])
+
(
uint16_t
)(
src
[
k
+
idxp1
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
+
2
*
cn
]
;
((
uint16_t
*
)
dst
)[
k
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
])
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
+
cn
])
+
(
uint32_t
)(
src
[
k
+
idxm1
]))
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
+
2
*
cn
])
+
(
uint32_t
)(
src
[
k
+
idxm2
])
));
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
+
cn
])
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
])
+
(
uint32_t
)(
src
[
k
+
2
*
cn
]))
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
+
idxm1
])
+
(
uint32_t
)(
src
[
k
+
idxp1
])
));
((
uint16_t
*
)
dst
)[
k
+
2
*
cn
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
])
+
(
uint32_t
)(
src
[
k
+
idxp2
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
+
cn
])
+
(
uint32_t
)(
src
[
k
+
idxp1
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
+
2
*
cn
]))
;
}
}
}
...
...
@@ -933,8 +933,8 @@ void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
int
idxm1
=
borderInterpolate
(
-
1
,
len
,
borderType
)
*
cn
;
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
{
((
uint16_t
*
)
dst
)[
k
]
=
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
]
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
cn
+
k
])
+
(
uint16_t
)(
src
[
idxm1
+
k
]))
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
2
*
cn
+
k
])
+
(
uint16_t
)(
src
[
idxm2
+
k
]
));
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
])
+
(
uint16_t
)(
src
[
2
*
cn
+
k
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
cn
+
k
]
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
3
*
cn
+
k
])
+
(
uint16_t
)(
src
[
idxm1
+
k
]
));
((
uint16_t
*
)
dst
)[
k
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
])
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
cn
+
k
])
+
(
uint32_t
)(
src
[
idxm1
+
k
]))
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
2
*
cn
+
k
])
+
(
uint32_t
)(
src
[
idxm2
+
k
])
));
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
])
+
(
uint32_t
)(
src
[
2
*
cn
+
k
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
cn
+
k
])
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
3
*
cn
+
k
])
+
(
uint32_t
)(
src
[
idxm1
+
k
])
));
}
}
else
...
...
@@ -942,7 +942,7 @@ void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
{
dst
[
k
]
=
m
[
2
]
*
src
[
k
]
+
m
[
1
]
*
src
[
cn
+
k
]
+
m
[
0
]
*
src
[
2
*
cn
+
k
];
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
])
+
(
uint16_t
)(
src
[
2
*
cn
+
k
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
cn
+
k
]
+
((
uint16_t
*
)
m
)[
0
]
*
src
[
3
*
cn
+
k
]
;
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
])
+
(
uint32_t
)(
src
[
2
*
cn
+
k
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
cn
+
k
])
+
((
uint16_t
*
)
m
)[
0
]
*
(
uint32_t
)(
src
[
3
*
cn
+
k
]))
;
}
}
...
...
@@ -960,7 +960,7 @@ void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
v_mul_wrap
(
vx_load_expand
(
src
),
v_mul2
));
#endif
for
(;
i
<
lencn
;
i
++
,
src
++
,
dst
++
)
*
((
uint16_t
*
)
dst
)
=
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
-
2
*
cn
])
+
(
uint16_t
)(
src
[
2
*
cn
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
-
cn
])
+
(
uint16_t
)(
src
[
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
0
]
;
*
((
uint16_t
*
)
dst
)
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
-
2
*
cn
])
+
(
uint32_t
)(
src
[
2
*
cn
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
-
cn
])
+
(
uint32_t
)(
src
[
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
0
]))
;
// Points that fall right from border
if
(
borderType
!=
BORDER_CONSTANT
)
// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
...
...
@@ -969,15 +969,15 @@ void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
int
idxp2
=
(
borderInterpolate
(
len
+
1
,
len
,
borderType
)
-
(
len
-
2
))
*
cn
;
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
{
((
uint16_t
*
)
dst
)[
k
]
=
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
-
2
*
cn
])
+
(
uint16_t
)(
src
[
idxp1
+
k
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
-
cn
])
+
(
uint16_t
)(
src
[
k
+
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
]
;
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
-
cn
])
+
(
uint16_t
)(
src
[
idxp2
+
k
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
])
+
(
uint16_t
)(
src
[
idxp1
+
k
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
+
cn
]
;
((
uint16_t
*
)
dst
)[
k
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
-
2
*
cn
])
+
(
uint32_t
)(
src
[
idxp1
+
k
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
-
cn
])
+
(
uint32_t
)(
src
[
k
+
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
]))
;
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
-
cn
])
+
(
uint32_t
)(
src
[
idxp2
+
k
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
])
+
(
uint32_t
)(
src
[
idxp1
+
k
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
+
cn
]))
;
}
}
else
{
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
{
((
uint16_t
*
)
dst
)[
k
]
=
((
uint16_t
*
)
m
)[
0
]
*
src
[
k
-
2
*
cn
]
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
-
cn
])
+
(
uint16_t
)(
src
[
k
+
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
]
;
((
uint16_t
*
)
dst
)[
k
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
0
]
*
(
uint32_t
)(
src
[
k
-
2
*
cn
])
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
-
cn
])
+
(
uint32_t
)(
src
[
k
+
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
]))
;
dst
[
k
+
cn
]
=
m
[
0
]
*
src
[
k
-
cn
]
+
m
[
1
]
*
src
[
k
]
+
m
[
2
]
*
src
[
k
+
cn
];
}
}
...
...
modules/imgproc/test/test_smooth_bitexact.cpp
View file @
f6c57388
...
...
@@ -158,4 +158,12 @@ TEST(GaussianBlur_Bitexact, Linear8U)
}
}
TEST
(
GaussianBlur_Bitexact
,
regression_15015
)
{
Mat
src
(
100
,
100
,
CV_8UC3
,
Scalar
(
255
,
255
,
255
));
Mat
dst
;
GaussianBlur
(
src
,
dst
,
Size
(
5
,
5
),
9
);
ASSERT_EQ
(
0.0
,
cvtest
::
norm
(
dst
,
src
,
NORM_INF
));
}
}}
// namespace
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment