Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
f6c57388
Commit
f6c57388
authored
5 years ago
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
parents
f663e8f9
054c7962
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
275 additions
and
63 deletions
+275
-63
perf_convolution3d.cpp
modules/dnn/perf/perf_convolution3d.cpp
+182
-0
convolution_layer.cpp
modules/dnn/src/layers/convolution_layer.cpp
+0
-0
layers_common.cpp
modules/dnn/src/layers/layers_common.cpp
+3
-1
layers_common.hpp
modules/dnn/src/layers/layers_common.hpp
+2
-1
pooling_layer.cpp
modules/dnn/src/layers/pooling_layer.cpp
+0
-0
onnx_importer.cpp
modules/dnn/src/onnx/onnx_importer.cpp
+22
-27
test_onnx_importer.cpp
modules/dnn/test/test_onnx_importer.cpp
+32
-9
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+6
-6
filter.simd.hpp
modules/imgproc/src/filter.simd.hpp
+4
-3
smooth.simd.hpp
modules/imgproc/src/smooth.simd.hpp
+16
-16
test_smooth_bitexact.cpp
modules/imgproc/test/test_smooth_bitexact.cpp
+8
-0
No files found.
modules/dnn/perf/perf_convolution3d.cpp
0 → 100644
View file @
f6c57388
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "perf_precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace
opencv_test
{
struct
Conv3DParam_t
{
int
kernel
[
3
];
struct
BlobShape
{
int
dims
[
5
];
}
shapeIn
;
int
outCN
;
int
groups
;
int
stride
[
3
];
int
dilation
[
3
];
int
pad
[
6
];
const
char
*
padMode
;
bool
hasBias
;
double
declared_flops
;
};
// Details: #12142
static
const
Conv3DParam_t
testConvolution3DConfigs
[]
=
{
{{
3
,
3
,
3
},
{{
1
,
6
,
10
,
38
,
50
}},
6
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
"VALID"
,
true
,
26956800.
},
{{
3
,
3
,
3
},
{{
1
,
2
,
19
,
19
,
19
}},
2
,
2
,
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
,
1
},
""
,
true
,
218000.
},
{{
3
,
3
,
3
},
{{
1
,
2
,
25
,
19
,
19
}},
2
,
2
,
{
1
,
2
,
2
},
{
1
,
1
,
1
},
{
2
,
2
,
2
,
2
,
2
,
2
},
"SAME"
,
false
,
545000.
},
{{
3
,
3
,
3
},
{{
1
,
11
,
9
,
150
,
200
}},
11
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
"VALID"
,
true
,
1342562760.
},
{{
3
,
3
,
3
},
{{
1
,
10
,
98
,
10
,
10
}},
10
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
0
,
1
,
1
,
0
,
1
},
"SAME"
,
false
,
53018000.
},
{{
5
,
5
,
5
},
{{
1
,
6
,
19
,
19
,
19
}},
6
,
2
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
""
,
false
,
30395250.
},
{{
5
,
5
,
5
},
{{
1
,
4
,
50
,
19
,
19
}},
4
,
1
,
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
,
1
},
"VALID"
,
false
,
5893888.
},
{{
5
,
5
,
5
},
{{
1
,
3
,
75
,
75
,
100
}},
3
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
"SAME"
,
true
,
1267312500.
},
{{
5
,
5
,
5
},
{{
1
,
2
,
21
,
75
,
100
}},
2
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
""
,
true
,
116103744.
},
{{
5
,
5
,
5
},
{{
1
,
4
,
40
,
75
,
75
}},
4
,
1
,
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
""
,
false
,
93405312.
},
{{
7
,
7
,
7
},
{{
1
,
6
,
15
,
19
,
19
}},
6
,
1
,
{
2
,
1
,
1
},
{
1
,
1
,
1
},
{
3
,
3
,
3
,
3
,
3
,
3
},
"SAME"
,
true
,
71339376.
},
{{
7
,
7
,
7
},
{{
1
,
2
,
38
,
38
,
38
}},
2
,
1
,
{
1
,
2
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
""
,
false
,
44990464.
},
{{
1
,
1
,
1
},
{{
1
,
4
,
9
,
10
,
10
}},
4
,
1
,
{
1
,
1
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
,
1
},
"VALID"
,
false
,
16200.
},
{{
3
,
1
,
4
},
{{
1
,
14
,
5
,
10
,
10
}},
14
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
"SAME"
,
false
,
2359000.
},
{{
1
,
1
,
1
},
{{
1
,
8
,
1
,
10
,
10
}},
8
,
8
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
,
1
},
""
,
true
,
58752.
},
{{
3
,
4
,
2
},
{{
1
,
4
,
8
,
10
,
10
}},
4
,
4
,
{
1
,
2
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
,
0
},
""
,
true
,
166752.
}
};
struct
Conv3DParamID
{
enum
{
CONV_0
=
0
,
CONV_100
=
16
,
CONV_LAST
=
sizeof
(
testConvolution3DConfigs
)
/
sizeof
(
testConvolution3DConfigs
[
0
])
};
int
val_
;
\
Conv3DParamID
(
int
val
=
0
)
:
val_
(
val
)
{}
operator
int
()
const
{
return
val_
;
}
static
::
testing
::
internal
::
ParamGenerator
<
Conv3DParamID
>
all
()
{
#if 0
enum { NUM = (int)CONV_LAST };
#else
enum
{
NUM
=
(
int
)
CONV_100
};
#endif
Conv3DParamID
v_
[
NUM
];
for
(
int
i
=
0
;
i
<
NUM
;
++
i
)
{
v_
[
i
]
=
Conv3DParamID
(
i
);
}
// reduce generated code size
return
::
testing
::
ValuesIn
(
v_
,
v_
+
NUM
);
}
};
\
static
inline
void
PrintTo
(
const
Conv3DParamID
&
v
,
std
::
ostream
*
os
)
{
CV_Assert
((
int
)
v
>=
0
);
CV_Assert
((
int
)
v
<
Conv3DParamID
::
CONV_LAST
);
const
Conv3DParam_t
&
p
=
testConvolution3DConfigs
[(
int
)
v
];
*
os
<<
"GFLOPS="
<<
cv
::
format
(
"%.3f"
,
p
.
declared_flops
*
1e-9
)
<<
", K=["
<<
p
.
kernel
[
0
]
<<
" x "
<<
p
.
kernel
[
1
]
<<
" x "
<<
p
.
kernel
[
2
]
<<
"]"
<<
", IN={"
<<
p
.
shapeIn
.
dims
[
0
]
<<
", "
<<
p
.
shapeIn
.
dims
[
1
]
<<
", "
<<
p
.
shapeIn
.
dims
[
2
]
<<
", "
<<
p
.
shapeIn
.
dims
[
3
]
<<
", "
<<
p
.
shapeIn
.
dims
[
4
]
<<
"}"
<<
", OCN="
<<
p
.
outCN
;
if
(
p
.
groups
>
1
)
*
os
<<
", G="
<<
p
.
groups
;
if
(
p
.
stride
[
0
]
*
p
.
stride
[
1
]
*
p
.
stride
[
2
]
!=
1
)
*
os
<<
", S=["
<<
p
.
stride
[
0
]
<<
" x "
<<
p
.
stride
[
1
]
<<
" x "
<<
p
.
stride
[
2
]
<<
"]"
;
if
(
p
.
dilation
[
0
]
*
p
.
dilation
[
1
]
*
p
.
dilation
[
2
]
!=
1
)
*
os
<<
", D=["
<<
p
.
dilation
[
0
]
<<
" x "
<<
p
.
dilation
[
1
]
<<
" x "
<<
p
.
dilation
[
2
]
<<
"]"
;
if
(
p
.
pad
[
0
]
!=
0
&&
p
.
pad
[
1
]
!=
0
&&
p
.
pad
[
2
]
!=
0
&&
p
.
pad
[
3
]
!=
0
&&
p
.
pad
[
4
]
!=
0
&&
p
.
pad
[
5
]
!=
0
)
*
os
<<
", P=("
<<
p
.
pad
[
0
]
<<
", "
<<
p
.
pad
[
3
]
<<
") x ("
<<
p
.
pad
[
1
]
<<
", "
<<
p
.
pad
[
4
]
<<
") x ("
<<
p
.
pad
[
2
]
<<
", "
<<
p
.
pad
[
5
]
<<
")"
;
if
(
!
((
std
::
string
)
p
.
padMode
).
empty
())
*
os
<<
", PM="
<<
((
std
::
string
)
p
.
padMode
);
if
(
p
.
hasBias
)
*
os
<<
", BIAS"
;
}
typedef
tuple
<
Conv3DParamID
,
tuple
<
Backend
,
Target
>
>
Conv3DTestParam_t
;
typedef
TestBaseWithParam
<
Conv3DTestParam_t
>
Conv3D
;
PERF_TEST_P_
(
Conv3D
,
conv3d
)
{
int
test_id
=
(
int
)
get
<
0
>
(
GetParam
());
ASSERT_GE
(
test_id
,
0
);
ASSERT_LT
(
test_id
,
Conv3DParamID
::
CONV_LAST
);
const
Conv3DParam_t
&
params
=
testConvolution3DConfigs
[
test_id
];
double
declared_flops
=
params
.
declared_flops
;
DictValue
kernel
=
DictValue
::
arrayInt
(
&
params
.
kernel
[
0
],
3
);
DictValue
stride
=
DictValue
::
arrayInt
(
&
params
.
stride
[
0
],
3
);
DictValue
pad
=
DictValue
::
arrayInt
(
&
params
.
pad
[
0
],
6
);
DictValue
dilation
=
DictValue
::
arrayInt
(
&
params
.
dilation
[
0
],
3
);
MatShape
inputShape
=
MatShape
(
params
.
shapeIn
.
dims
,
params
.
shapeIn
.
dims
+
5
);
int
outChannels
=
params
.
outCN
;
int
groups
=
params
.
groups
;
std
::
string
padMode
(
params
.
padMode
);
bool
hasBias
=
params
.
hasBias
;
Backend
backendId
=
get
<
0
>
(
get
<
1
>
(
GetParam
()));
Target
targetId
=
get
<
1
>
(
get
<
1
>
(
GetParam
()));
if
(
targetId
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
int
inChannels
=
inputShape
[
1
];
int
sz
[]
=
{
outChannels
,
inChannels
/
groups
,
params
.
kernel
[
0
],
params
.
kernel
[
1
],
params
.
kernel
[
2
]};
Mat
weights
(
5
,
&
sz
[
0
],
CV_32F
);
randu
(
weights
,
-
1.0
f
,
1.0
f
);
LayerParams
lp
;
lp
.
set
(
"kernel_size"
,
kernel
);
lp
.
set
(
"pad"
,
pad
);
if
(
!
padMode
.
empty
())
lp
.
set
(
"pad_mode"
,
padMode
);
lp
.
set
(
"stride"
,
stride
);
lp
.
set
(
"dilation"
,
dilation
);
lp
.
set
(
"num_output"
,
outChannels
);
lp
.
set
(
"group"
,
groups
);
lp
.
set
(
"bias_term"
,
hasBias
);
lp
.
type
=
"Convolution"
;
lp
.
name
=
"testLayer"
;
lp
.
blobs
.
push_back
(
weights
);
if
(
hasBias
)
{
Mat
bias
(
1
,
outChannels
,
CV_32F
);
randu
(
bias
,
-
1.0
f
,
1.0
f
);
lp
.
blobs
.
push_back
(
bias
);
}
int
inpSz
[]
=
{
1
,
inChannels
,
inputShape
[
2
],
inputShape
[
3
],
inputShape
[
4
]};
Mat
input
(
5
,
&
inpSz
[
0
],
CV_32F
);
randu
(
input
,
-
1.0
f
,
1.0
f
);
Net
net
;
net
.
addLayerToPrev
(
lp
.
name
,
lp
.
type
,
lp
);
net
.
setInput
(
input
);
net
.
setPreferableBackend
(
backendId
);
net
.
setPreferableTarget
(
targetId
);
Mat
output
=
net
.
forward
();
MatShape
netInputShape
=
shape
(
input
);
size_t
weightsMemory
=
0
,
blobsMemory
=
0
;
net
.
getMemoryConsumption
(
netInputShape
,
weightsMemory
,
blobsMemory
);
int64
flops
=
net
.
getFLOPS
(
netInputShape
);
CV_Assert
(
flops
>
0
);
std
::
cout
<<
"IN="
<<
divUp
(
input
.
total
()
*
input
.
elemSize
(),
1u
<<
10
)
<<
" Kb "
<<
netInputShape
<<
" OUT="
<<
divUp
(
output
.
total
()
*
output
.
elemSize
(),
1u
<<
10
)
<<
" Kb "
<<
shape
(
output
)
<<
" Weights(parameters): "
<<
divUp
(
weightsMemory
,
1u
<<
10
)
<<
" Kb"
<<
" MFLOPS="
<<
flops
*
1e-6
<<
std
::
endl
;
TEST_CYCLE
()
{
Mat
res
=
net
.
forward
();
}
EXPECT_NEAR
(
flops
,
declared_flops
,
declared_flops
*
1e-6
);
SANITY_CHECK_NOTHING
();
}
INSTANTIATE_TEST_CASE_P
(
/**/
,
Conv3D
,
Combine
(
Conv3DParamID
::
all
(),
dnnBackendsAndTargets
(
false
,
false
)
// defined in ../test/test_common.hpp
));
}
// namespace
This diff is collapsed.
Click to expand it.
modules/dnn/src/layers/convolution_layer.cpp
View file @
f6c57388
This diff is collapsed.
Click to expand it.
modules/dnn/src/layers/layers_common.cpp
View file @
f6c57388
...
...
@@ -175,11 +175,13 @@ void getPoolingKernelParams(const LayerParams ¶ms, std::vector<size_t>& kern
}
void
getConvolutionKernelParams
(
const
LayerParams
&
params
,
std
::
vector
<
size_t
>&
kernel
,
std
::
vector
<
size_t
>&
pads_begin
,
std
::
vector
<
size_t
>&
pads_end
,
std
::
vector
<
size_t
>&
strides
,
std
::
vector
<
size_t
>&
dilations
,
cv
::
String
&
padMode
)
std
::
vector
<
size_t
>&
pads_end
,
std
::
vector
<
size_t
>&
strides
,
std
::
vector
<
size_t
>&
dilations
,
cv
::
String
&
padMode
,
std
::
vector
<
size_t
>&
adjust_pads
)
{
util
::
getKernelSize
(
params
,
kernel
);
util
::
getStrideAndPadding
(
params
,
pads_begin
,
pads_end
,
strides
,
padMode
,
kernel
.
size
());
util
::
getParameter
(
params
,
"dilation"
,
"dilation"
,
dilations
,
true
,
std
::
vector
<
size_t
>
(
kernel
.
size
(),
1
));
util
::
getParameter
(
params
,
"adj"
,
"adj"
,
adjust_pads
,
true
,
std
::
vector
<
size_t
>
(
kernel
.
size
(),
0
));
for
(
int
i
=
0
;
i
<
dilations
.
size
();
i
++
)
CV_Assert
(
dilations
[
i
]
>
0
);
...
...
This diff is collapsed.
Click to expand it.
modules/dnn/src/layers/layers_common.hpp
View file @
f6c57388
...
...
@@ -60,7 +60,8 @@ namespace cv
namespace
dnn
{
void
getConvolutionKernelParams
(
const
LayerParams
&
params
,
std
::
vector
<
size_t
>&
kernel
,
std
::
vector
<
size_t
>&
pads_begin
,
std
::
vector
<
size_t
>&
pads_end
,
std
::
vector
<
size_t
>&
strides
,
std
::
vector
<
size_t
>&
dilations
,
cv
::
String
&
padMode
);
std
::
vector
<
size_t
>&
pads_end
,
std
::
vector
<
size_t
>&
strides
,
std
::
vector
<
size_t
>&
dilations
,
cv
::
String
&
padMode
,
std
::
vector
<
size_t
>&
adjust_pads
);
void
getPoolingKernelParams
(
const
LayerParams
&
params
,
std
::
vector
<
size_t
>&
kernel
,
bool
&
globalPooling
,
std
::
vector
<
size_t
>&
pads_begin
,
std
::
vector
<
size_t
>&
pads_end
,
std
::
vector
<
size_t
>&
strides
,
cv
::
String
&
padMode
);
...
...
This diff is collapsed.
Click to expand it.
modules/dnn/src/layers/pooling_layer.cpp
View file @
f6c57388
This diff is collapsed.
Click to expand it.
modules/dnn/src/onnx/onnx_importer.cpp
View file @
f6c57388
...
...
@@ -682,42 +682,37 @@ void ONNXImporter::populateNet(Net dstNet)
layerParams
.
set
(
"num_output"
,
layerParams
.
blobs
[
0
].
size
[
1
]
*
layerParams
.
get
<
int
>
(
"group"
,
1
));
layerParams
.
set
(
"bias_term"
,
node_proto
.
input_size
()
==
3
);
if
(
!
layerParams
.
has
(
"kernel_size"
))
CV_Error
(
Error
::
StsNotImplemented
,
"Required attribute 'kernel_size' is not present."
);
if
(
layerParams
.
has
(
"output_shape"
))
{
const
DictValue
&
outShape
=
layerParams
.
get
(
"output_shape"
);
DictValue
strides
=
layerParams
.
get
(
"stride"
);
DictValue
kernel
=
layerParams
.
get
(
"kernel_size"
);
if
(
outShape
.
size
()
!=
4
)
CV_Error
(
Error
::
StsNotImplemented
,
"Output shape must have 4 elements."
);
DictValue
stride
=
layerParams
.
get
(
"stride"
);
const
int
strideY
=
stride
.
getIntValue
(
0
);
const
int
strideX
=
stride
.
getIntValue
(
1
);
const
int
outH
=
outShape
.
getIntValue
(
2
);
const
int
outW
=
outShape
.
getIntValue
(
3
);
if
(
layerParams
.
get
<
String
>
(
"pad_mode"
)
==
"SAME"
)
String
padMode
;
std
::
vector
<
int
>
adjust_pads
;
if
(
layerParams
.
has
(
"pad_mode"
))
{
layerParams
.
set
(
"adj_w"
,
(
outW
-
1
)
%
strideX
);
layerParams
.
set
(
"adj_h"
,
(
outH
-
1
)
%
strideY
);
}
else
if
(
layerParams
.
get
<
String
>
(
"pad_mode"
)
==
"VALID"
)
{
if
(
!
layerParams
.
has
(
"kernel_size"
))
CV_Error
(
Error
::
StsNotImplemented
,
"Required attribute 'kernel_size' is not present."
);
DictValue
kernel
=
layerParams
.
get
(
"kernel_size"
);
layerParams
.
set
(
"adj_h"
,
(
outH
-
kernel
.
getIntValue
(
0
))
%
strideY
);
layerParams
.
set
(
"adj
_w"
,
(
outW
-
kernel
.
getIntValue
(
1
))
%
strideX
);
padMode
=
toUpperCase
(
layerParams
.
get
<
String
>
(
"pad_mode"
)
);
if
(
padMode
!=
"SAME"
&&
padMode
!=
"VALID"
)
CV_Error
(
Error
::
StsError
,
"Unsupported padding mode "
+
padMode
);
for
(
int
i
=
0
;
i
<
strides
.
size
();
i
++
)
{
int
sz
=
outShape
.
get
<
int
>
(
2
+
i
);
int
stride
=
strides
.
get
<
int
>
(
i
);
adjust_pads
.
push_back
(
padMode
==
"SAME"
?
(
sz
-
1
)
%
stride
:
(
sz
-
kernel
.
get
<
int
>
(
i
))
%
stride
);
}
layerParams
.
set
(
"adj
"
,
DictValue
::
arrayInt
(
&
adjust_pads
[
0
],
adjust_pads
.
size
())
);
}
}
else
if
(
layerParams
.
has
(
"output_padding"
))
{
const
DictValue
&
adj_pad
=
layerParams
.
get
(
"output_padding"
);
if
(
adj_pad
.
size
()
!=
2
)
CV_Error
(
Error
::
StsNotImplemented
,
"Deconvolution3D layer is not supported"
);
layerParams
.
set
(
"adj_w"
,
adj_pad
.
get
<
int
>
(
1
));
layerParams
.
set
(
"adj_h"
,
adj_pad
.
get
<
int
>
(
0
));
replaceLayerParam
(
layerParams
,
"output_padding"
,
"adj"
);
}
}
else
if
(
layer_type
==
"Transpose"
)
...
...
This diff is collapsed.
Click to expand it.
modules/dnn/test/test_onnx_importer.cpp
View file @
f6c57388
...
...
@@ -100,8 +100,8 @@ TEST_P(Test_ONNX_layers, Convolution3D)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only
DLIE backend on
CPU is supported"
);
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
testONNXModels
(
"conv3d"
);
testONNXModels
(
"conv3d_bias"
);
}
...
...
@@ -127,6 +127,19 @@ TEST_P(Test_ONNX_layers, Deconvolution)
testONNXModels
(
"deconv_adjpad_2d"
,
npy
,
0
,
0
,
false
,
false
);
}
TEST_P
(
Test_ONNX_layers
,
Deconvolution3D
)
{
#if defined(INF_ENGINE_RELEASE)
applyTestTag
(
CV_TEST_TAG_DNN_SKIP_IE_2018R5
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only DLIE backend on CPU is supported"
);
testONNXModels
(
"deconv3d"
);
testONNXModels
(
"deconv3d_bias"
);
testONNXModels
(
"deconv3d_pad"
);
testONNXModels
(
"deconv3d_adjpad"
);
}
TEST_P
(
Test_ONNX_layers
,
Dropout
)
{
testONNXModels
(
"dropout"
);
...
...
@@ -185,8 +198,8 @@ TEST_P(Test_ONNX_layers, MaxPooling3D)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only
DLIE backend on
CPU is supported"
);
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
testONNXModels
(
"max_pool3d"
);
}
...
...
@@ -195,11 +208,21 @@ TEST_P(Test_ONNX_layers, AvePooling3D)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only
DLIE backend on
CPU is supported"
);
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
testONNXModels
(
"ave_pool3d"
);
}
TEST_P
(
Test_ONNX_layers
,
PoolConv3D
)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
testONNXModels
(
"pool_conv_3d"
);
}
TEST_P
(
Test_ONNX_layers
,
BatchNormalization
)
{
testONNXModels
(
"batch_norm"
);
...
...
@@ -579,10 +602,10 @@ TEST_P(Test_ONNX_nets, Resnet34_kinetics)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only
DLIE backend on
CPU is supported"
);
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
String
onnxmodel
=
findDataFile
(
"dnn/resnet-34_kinetics.onnx"
,
false
);
String
onnxmodel
=
findDataFile
(
"dnn/resnet-34_kinetics.onnx"
);
Mat
image0
=
imread
(
findDataFile
(
"dnn/dog416.png"
));
Mat
image1
=
imread
(
findDataFile
(
"dnn/street.png"
));
...
...
This diff is collapsed.
Click to expand it.
modules/dnn/test/test_tf_importer.cpp
View file @
f6c57388
...
...
@@ -136,8 +136,8 @@ TEST_P(Test_TensorFlow_layers, Convolution3D)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only DLIE backend on
CPU is supported"
);
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only
CPU is supported"
);
runTensorFlowNet
(
"conv3d"
);
}
...
...
@@ -243,8 +243,8 @@ TEST_P(Test_TensorFlow_layers, MaxPooling3D)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only
DLIE backend on
CPU is supported"
);
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
runTensorFlowNet
(
"max_pool3d"
);
}
...
...
@@ -253,8 +253,8 @@ TEST_P(Test_TensorFlow_layers, AvePooling3D)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
throw
SkipTestException
(
"Test is enabled starts from 2019R1"
);
#endif
if
(
backend
!=
DNN_BACKEND_INFERENCE_ENGINE
||
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only
DLIE backend on
CPU is supported"
);
if
(
target
!=
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Only CPU is supported"
);
runTensorFlowNet
(
"ave_pool3d"
);
}
...
...
This diff is collapsed.
Click to expand it.
modules/imgproc/src/filter.simd.hpp
View file @
f6c57388
...
...
@@ -84,6 +84,7 @@ Ptr<BaseFilter> getLinearFilter(
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
typedef
int
CV_DECL_ALIGNED
(
1
)
unaligned_int
;
#define VEC_ALIGN CV_MALLOC_ALIGN
int
FilterEngine__start
(
FilterEngine
&
this_
,
const
Size
&
_wholeSize
,
const
Size
&
sz
,
const
Point
&
ofs
)
...
...
@@ -1049,7 +1050,7 @@ struct SymmColumnVec_32s8u
s0
=
v_muladd
(
v_cvt_f32
(
v_load
(
src
[
k
]
+
i
)
+
v_load
(
src
[
-
k
]
+
i
)),
v_setall_f32
(
ky
[
k
]),
s0
);
v_int32x4
s32
=
v_round
(
s0
);
v_int16x8
s16
=
v_pack
(
s32
,
s32
);
*
(
int
*
)(
dst
+
i
)
=
v_reinterpret_as_s32
(
v_pack_u
(
s16
,
s16
)).
get0
();
*
(
unaligned_
int
*
)(
dst
+
i
)
=
v_reinterpret_as_s32
(
v_pack_u
(
s16
,
s16
)).
get0
();
i
+=
v_int32x4
::
nlanes
;
}
}
...
...
@@ -1104,7 +1105,7 @@ struct SymmColumnVec_32s8u
s0
=
v_muladd
(
v_cvt_f32
(
v_load
(
src
[
k
]
+
i
)
-
v_load
(
src
[
-
k
]
+
i
)),
v_setall_f32
(
ky
[
k
]),
s0
);
v_int32x4
s32
=
v_round
(
s0
);
v_int16x8
s16
=
v_pack
(
s32
,
s32
);
*
(
int
*
)(
dst
+
i
)
=
v_reinterpret_as_s32
(
v_pack_u
(
s16
,
s16
)).
get0
();
*
(
unaligned_
int
*
)(
dst
+
i
)
=
v_reinterpret_as_s32
(
v_pack_u
(
s16
,
s16
)).
get0
();
i
+=
v_int32x4
::
nlanes
;
}
}
...
...
@@ -2129,7 +2130,7 @@ struct FilterVec_8u
s0
=
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
v_load_expand_q
(
src
[
k
]
+
i
))),
v_setall_f32
(
kf
[
k
]),
s0
);
v_int32x4
s32
=
v_round
(
s0
);
v_int16x8
s16
=
v_pack
(
s32
,
s32
);
*
(
int
*
)(
dst
+
i
)
=
v_reinterpret_as_s32
(
v_pack_u
(
s16
,
s16
)).
get0
();
*
(
unaligned_
int
*
)(
dst
+
i
)
=
v_reinterpret_as_s32
(
v_pack_u
(
s16
,
s16
)).
get0
();
i
+=
v_int32x4
::
nlanes
;
}
return
i
;
...
...
This diff is collapsed.
Click to expand it.
modules/imgproc/src/smooth.simd.hpp
View file @
f6c57388
...
...
@@ -334,7 +334,7 @@ void hlineSmooth3Naba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const
{
int
src_idx
=
borderInterpolate
(
-
1
,
len
,
borderType
);
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
((
uint16_t
*
)
dst
)[
k
]
=
((
uint16_t
*
)
m
)[
1
]
*
src
[
k
]
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
cn
+
k
])
+
(
uint16_t
)(
src
[
src_idx
*
cn
+
k
]
));
((
uint16_t
*
)
dst
)[
k
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
1
]
*
(
uint32_t
)(
src
[
k
])
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
cn
+
k
])
+
(
uint32_t
)(
src
[
src_idx
*
cn
+
k
])
));
}
else
{
...
...
@@ -354,14 +354,14 @@ void hlineSmooth3Naba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const
v_mul_wrap
(
vx_load_expand
(
src
),
v_mul1
));
#endif
for
(;
i
<
lencn
;
i
++
,
src
++
,
dst
++
)
*
((
uint16_t
*
)
dst
)
=
((
uint16_t
*
)
m
)[
1
]
*
src
[
0
]
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
-
cn
])
+
(
uint16_t
)(
src
[
cn
]
));
*
((
uint16_t
*
)
dst
)
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
1
]
*
(
uint32_t
)(
src
[
0
])
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
-
cn
])
+
(
uint32_t
)(
src
[
cn
])
));
// Point that fall right from border
if
(
borderType
!=
BORDER_CONSTANT
)
// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
{
int
src_idx
=
(
borderInterpolate
(
len
,
len
,
borderType
)
-
(
len
-
1
))
*
cn
;
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
((
uint16_t
*
)
dst
)[
k
]
=
((
uint16_t
*
)
m
)[
1
]
*
src
[
k
]
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
-
cn
])
+
(
uint16_t
)(
src
[
src_idx
+
k
]
));
((
uint16_t
*
)
dst
)[
k
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
1
]
*
(
uint32_t
)(
src
[
k
])
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
-
cn
])
+
(
uint32_t
)(
src
[
src_idx
+
k
])
));
}
else
{
...
...
@@ -896,8 +896,8 @@ void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
int
idxp2
=
borderInterpolate
(
3
,
len
,
borderType
)
*
cn
;
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
{
((
uint16_t
*
)
dst
)[
k
]
=
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
+
idxm1
])
+
(
uint16_t
)(
src
[
k
+
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
]
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
+
idxp1
])
+
(
uint16_t
)(
src
[
k
+
idxm2
]
));
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
+
idxm1
])
+
(
uint16_t
)(
src
[
k
+
idxp2
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
])
+
(
uint16_t
)(
src
[
k
+
idxp1
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
+
cn
]
;
((
uint16_t
*
)
dst
)[
k
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
+
idxm1
])
+
(
uint32_t
)(
src
[
k
+
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
])
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
+
idxp1
])
+
(
uint32_t
)(
src
[
k
+
idxm2
])
));
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
+
idxm1
])
+
(
uint32_t
)(
src
[
k
+
idxp2
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
])
+
(
uint32_t
)(
src
[
k
+
idxp1
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
+
cn
]))
;
}
}
}
...
...
@@ -907,7 +907,7 @@ void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
{
dst
[
k
]
=
m
[
2
]
*
src
[
k
]
+
m
[
1
]
*
src
[
k
+
cn
]
+
m
[
0
]
*
src
[
k
+
2
*
cn
];
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
])
+
(
uint16_t
)(
src
[
k
+
2
*
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
+
cn
]
;
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
])
+
(
uint32_t
)(
src
[
k
+
2
*
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
+
cn
]))
;
dst
[
k
+
2
*
cn
]
=
m
[
0
]
*
src
[
k
]
+
m
[
1
]
*
src
[
k
+
cn
]
+
m
[
2
]
*
src
[
k
+
2
*
cn
];
}
else
...
...
@@ -918,9 +918,9 @@ void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
int
idxp2
=
borderInterpolate
(
4
,
len
,
borderType
)
*
cn
;
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
{
((
uint16_t
*
)
dst
)[
k
]
=
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
]
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
+
cn
])
+
(
uint16_t
)(
src
[
k
+
idxm1
]))
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
+
2
*
cn
])
+
(
uint16_t
)(
src
[
k
+
idxm2
]
));
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
+
cn
]
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
])
+
(
uint16_t
)(
src
[
k
+
2
*
cn
]))
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
+
idxm1
])
+
(
uint16_t
)(
src
[
k
+
idxp1
]
));
((
uint16_t
*
)
dst
)[
k
+
2
*
cn
]
=
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
])
+
(
uint16_t
)(
src
[
k
+
idxp2
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
+
cn
])
+
(
uint16_t
)(
src
[
k
+
idxp1
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
+
2
*
cn
]
;
((
uint16_t
*
)
dst
)[
k
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
])
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
+
cn
])
+
(
uint32_t
)(
src
[
k
+
idxm1
]))
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
+
2
*
cn
])
+
(
uint32_t
)(
src
[
k
+
idxm2
])
));
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
+
cn
])
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
])
+
(
uint32_t
)(
src
[
k
+
2
*
cn
]))
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
+
idxm1
])
+
(
uint32_t
)(
src
[
k
+
idxp1
])
));
((
uint16_t
*
)
dst
)[
k
+
2
*
cn
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
])
+
(
uint32_t
)(
src
[
k
+
idxp2
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
+
cn
])
+
(
uint32_t
)(
src
[
k
+
idxp1
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
+
2
*
cn
]))
;
}
}
}
...
...
@@ -933,8 +933,8 @@ void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
int
idxm1
=
borderInterpolate
(
-
1
,
len
,
borderType
)
*
cn
;
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
{
((
uint16_t
*
)
dst
)[
k
]
=
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
]
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
cn
+
k
])
+
(
uint16_t
)(
src
[
idxm1
+
k
]))
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
2
*
cn
+
k
])
+
(
uint16_t
)(
src
[
idxm2
+
k
]
));
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
])
+
(
uint16_t
)(
src
[
2
*
cn
+
k
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
cn
+
k
]
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
3
*
cn
+
k
])
+
(
uint16_t
)(
src
[
idxm1
+
k
]
));
((
uint16_t
*
)
dst
)[
k
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
])
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
cn
+
k
])
+
(
uint32_t
)(
src
[
idxm1
+
k
]))
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
2
*
cn
+
k
])
+
(
uint32_t
)(
src
[
idxm2
+
k
])
));
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
])
+
(
uint32_t
)(
src
[
2
*
cn
+
k
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
cn
+
k
])
+
((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
3
*
cn
+
k
])
+
(
uint32_t
)(
src
[
idxm1
+
k
])
));
}
}
else
...
...
@@ -942,7 +942,7 @@ void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
{
dst
[
k
]
=
m
[
2
]
*
src
[
k
]
+
m
[
1
]
*
src
[
cn
+
k
]
+
m
[
0
]
*
src
[
2
*
cn
+
k
];
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
])
+
(
uint16_t
)(
src
[
2
*
cn
+
k
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
cn
+
k
]
+
((
uint16_t
*
)
m
)[
0
]
*
src
[
3
*
cn
+
k
]
;
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
])
+
(
uint32_t
)(
src
[
2
*
cn
+
k
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
cn
+
k
])
+
((
uint16_t
*
)
m
)[
0
]
*
(
uint32_t
)(
src
[
3
*
cn
+
k
]))
;
}
}
...
...
@@ -960,7 +960,7 @@ void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
v_mul_wrap
(
vx_load_expand
(
src
),
v_mul2
));
#endif
for
(;
i
<
lencn
;
i
++
,
src
++
,
dst
++
)
*
((
uint16_t
*
)
dst
)
=
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
-
2
*
cn
])
+
(
uint16_t
)(
src
[
2
*
cn
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
-
cn
])
+
(
uint16_t
)(
src
[
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
0
]
;
*
((
uint16_t
*
)
dst
)
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
-
2
*
cn
])
+
(
uint32_t
)(
src
[
2
*
cn
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
-
cn
])
+
(
uint32_t
)(
src
[
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
0
]))
;
// Points that fall right from border
if
(
borderType
!=
BORDER_CONSTANT
)
// If BORDER_CONSTANT out of border values are equal to zero and could be skipped
...
...
@@ -969,15 +969,15 @@ void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, cons
int
idxp2
=
(
borderInterpolate
(
len
+
1
,
len
,
borderType
)
-
(
len
-
2
))
*
cn
;
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
{
((
uint16_t
*
)
dst
)[
k
]
=
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
-
2
*
cn
])
+
(
uint16_t
)(
src
[
idxp1
+
k
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
-
cn
])
+
(
uint16_t
)(
src
[
k
+
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
]
;
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
((
uint16_t
*
)
m
)[
0
]
*
((
uint16_t
)(
src
[
k
-
cn
])
+
(
uint16_t
)(
src
[
idxp2
+
k
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
])
+
(
uint16_t
)(
src
[
idxp1
+
k
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
+
cn
]
;
((
uint16_t
*
)
dst
)[
k
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
-
2
*
cn
])
+
(
uint32_t
)(
src
[
idxp1
+
k
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
-
cn
])
+
(
uint32_t
)(
src
[
k
+
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
]))
;
((
uint16_t
*
)
dst
)[
k
+
cn
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
0
]
*
((
uint32_t
)(
src
[
k
-
cn
])
+
(
uint32_t
)(
src
[
idxp2
+
k
]))
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
])
+
(
uint32_t
)(
src
[
idxp1
+
k
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
+
cn
]))
;
}
}
else
{
for
(
int
k
=
0
;
k
<
cn
;
k
++
)
{
((
uint16_t
*
)
dst
)[
k
]
=
((
uint16_t
*
)
m
)[
0
]
*
src
[
k
-
2
*
cn
]
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint16_t
)(
src
[
k
-
cn
])
+
(
uint16_t
)(
src
[
k
+
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
src
[
k
]
;
((
uint16_t
*
)
dst
)[
k
]
=
saturate_cast
<
uint16_t
>
(((
uint16_t
*
)
m
)[
0
]
*
(
uint32_t
)(
src
[
k
-
2
*
cn
])
+
((
uint16_t
*
)
m
)[
1
]
*
((
uint32_t
)(
src
[
k
-
cn
])
+
(
uint32_t
)(
src
[
k
+
cn
]))
+
((
uint16_t
*
)
m
)[
2
]
*
(
uint32_t
)(
src
[
k
]))
;
dst
[
k
+
cn
]
=
m
[
0
]
*
src
[
k
-
cn
]
+
m
[
1
]
*
src
[
k
]
+
m
[
2
]
*
src
[
k
+
cn
];
}
}
...
...
This diff is collapsed.
Click to expand it.
modules/imgproc/test/test_smooth_bitexact.cpp
View file @
f6c57388
...
...
@@ -158,4 +158,12 @@ TEST(GaussianBlur_Bitexact, Linear8U)
}
}
TEST
(
GaussianBlur_Bitexact
,
regression_15015
)
{
Mat
src
(
100
,
100
,
CV_8UC3
,
Scalar
(
255
,
255
,
255
));
Mat
dst
;
GaussianBlur
(
src
,
dst
,
Size
(
5
,
5
),
9
);
ASSERT_EQ
(
0.0
,
cvtest
::
norm
(
dst
,
src
,
NORM_INF
));
}
}}
// namespace
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment