Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
f6b08189
Commit
f6b08189
authored
Nov 23, 2010
by
Ethan Rublee
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
refactoring dynamic detectors
parent
c6e43c38
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
247 additions
and
148 deletions
+247
-148
features2d.hpp
modules/features2d/include/opencv2/features2d/features2d.hpp
+71
-144
brief.cpp
modules/features2d/src/brief.cpp
+24
-1
detectors.cpp
modules/features2d/src/detectors.cpp
+3
-3
dynamic.cpp
modules/features2d/src/dynamic.cpp
+149
-0
No files found.
modules/features2d/include/opencv2/features2d/features2d.hpp
View file @
f6b08189
...
...
@@ -1451,148 +1451,97 @@ protected:
/*
* Dynamic Feature Detectors
*/
/** \brief A feature detector parameter adjuster, this is used by the DynamicDetector
* and is a wrapper for FeatureDetector that allow them to be adjusted after a detection
*/
class
CV_EXPORTS
AdjusterAdapter
:
public
FeatureDetector
{
public
:
/** pure virtual interface
*/
virtual
~
AdjusterAdapter
()
{
}
/** too few features were detected so, adjust the detector params accordingly
* \param min the minimum number of desired features
* \param n_detected the number previously detected
*/
virtual
void
tooFew
(
int
min
,
int
n_detected
)
=
0
;
/** too many features were detected so, adjust the detector params accordingly
* \param max the maximum number of desired features
* \param n_detected the number previously detected
*/
virtual
void
tooMany
(
int
max
,
int
n_detected
)
=
0
;
/** are params maxed out or still valid?
* \return false if the parameters can't be adjusted any more
*/
virtual
bool
good
()
const
=
0
;
};
/** \brief an adaptively adjusting detector that iteratively detects until the desired number
* of features are detected.
* Beware that this is not thread safe - as the adjustment of parameters breaks the const
* of the detection routine...
* /TODO Make this const correct and thread safe
*/
template
<
typename
Adjuster
>
class
DynamicDetectorAdaptor
:
public
FeatureDetector
{
class
CV_EXPORTS
DynamicDetector
:
public
FeatureDetector
{
public
:
/** \param min_features the minimum desired features
* \param max_features the maximum desired number of features
* \param max_iters the maximum number of times to try to adjust the feature detector params
* for the FastAdjuster this can be high, but with Star or Surf this can get time consuming
* \param a a
copy of an Adjus
ter that will do the detection and parameter adjustment
* \param a a
n AdjusterAdap
ter that will do the detection and parameter adjustment
*/
DynamicDetectorAdaptor
(
int
min_features
,
int
max_features
,
int
max_iters
,
const
Adjuster
&
a
=
Adjuster
())
:
escape_iters_
(
max_iters
),
min_features_
(
min_features
),
max_features_
(
max_features
),
adjuster_
(
a
)
{
}
DynamicDetector
(
int
min_features
,
int
max_features
,
int
max_iters
,
const
Ptr
<
AdjusterAdapter
>&
a
);
protected
:
virtual
void
detectImpl
(
const
cv
::
Mat
&
image
,
std
::
vector
<
cv
::
KeyPoint
>&
keypoints
,
const
cv
::
Mat
&
mask
=
cv
::
Mat
())
const
{
//for oscillation testing
bool
down
=
false
;
bool
up
=
false
;
//flag for whether the correct threshhold has been reached
bool
thresh_good
=
false
;
//this is bad but adjuster should persist from detection to detection
Adjuster
&
adjuster
=
const_cast
<
Adjuster
&>
(
adjuster_
);
//break if the desired number hasn't been reached.
int
iter_count
=
escape_iters_
;
do
{
keypoints
.
clear
();
//the adjuster takes care of calling the detector with updated parameters
adjuster
.
detect
(
image
,
mask
,
keypoints
);
if
(
int
(
keypoints
.
size
())
<
min_features_
)
{
down
=
true
;
adjuster
.
tooFew
(
min_features_
,
keypoints
.
size
());
}
else
if
(
int
(
keypoints
.
size
())
>
max_features_
)
{
up
=
true
;
adjuster
.
tooMany
(
max_features_
,
keypoints
.
size
());
}
else
thresh_good
=
true
;
}
while
(
--
iter_count
>=
0
&&
!
(
down
&&
up
)
&&
!
thresh_good
&&
adjuster
.
good
());
}
virtual
void
detectImpl
(
const
cv
::
Mat
&
image
,
std
::
vector
<
cv
::
KeyPoint
>&
keypoints
,
const
cv
::
Mat
&
mask
=
cv
::
Mat
())
const
;
private
:
int
escape_iters_
;
int
min_features_
,
max_features_
;
Adjuster
adjuster_
;
Ptr
<
AdjusterAdapter
>
adjuster_
;
};
struct
FastAdjuster
{
FastAdjuster
()
:
thresh_
(
20
)
{
}
void
detect
(
const
Mat
&
img
,
const
Mat
&
mask
,
std
::
vector
<
KeyPoint
>&
keypoints
)
const
{
FastFeatureDetector
(
thresh_
,
true
).
detect
(
img
,
keypoints
,
mask
);
}
void
tooFew
(
int
min
,
int
n_detected
)
{
//fast is easy to adjust
thresh_
--
;
}
void
tooMany
(
int
max
,
int
n_detected
)
{
//fast is easy to adjust
thresh_
++
;
}
//return whether or not the threshhold is beyond
//a useful point
bool
good
()
const
{
return
(
thresh_
>
1
)
&&
(
thresh_
<
200
);
}
class
FastAdjuster
:
public
AdjusterAdapter
{
public
:
FastAdjuster
(
int
init_thresh
=
20
,
bool
nonmax
=
true
);
virtual
void
tooFew
(
int
min
,
int
n_detected
);
virtual
void
tooMany
(
int
max
,
int
n_detected
);
virtual
bool
good
()
const
;
protected
:
virtual
void
detectImpl
(
const
cv
::
Mat
&
image
,
std
::
vector
<
cv
::
KeyPoint
>&
keypoints
,
const
cv
::
Mat
&
mask
=
cv
::
Mat
())
const
;
int
thresh_
;
}
;
bool
nonmax_
;
struct
StarAdjuster
{
StarAdjuster
()
:
thresh_
(
30
)
{
}
void
detect
(
const
Mat
&
img
,
const
Mat
&
mask
,
std
::
vector
<
KeyPoint
>&
keypoints
)
const
{
StarFeatureDetector
detector_tmp
(
16
,
thresh_
,
10
,
8
,
3
);
detector_tmp
.
detect
(
img
,
keypoints
,
mask
);
}
void
tooFew
(
int
min
,
int
n_detected
)
{
thresh_
*=
0.9
;
if
(
thresh_
<
1.1
)
thresh_
=
1.1
;
}
void
tooMany
(
int
max
,
int
n_detected
)
{
thresh_
*=
1.1
;
}
};
//return whether or not the threshhold is beyond
//a useful point
bool
good
()
const
{
return
(
thresh_
>
2
)
&&
(
thresh_
<
200
);
}
struct
StarAdjuster
:
public
AdjusterAdapter
{
StarAdjuster
(
double
initial_thresh
=
30.0
);
virtual
void
tooFew
(
int
min
,
int
n_detected
);
virtual
void
tooMany
(
int
max
,
int
n_detected
);
virtual
bool
good
()
const
;
protected
:
virtual
void
detectImpl
(
const
cv
::
Mat
&
image
,
std
::
vector
<
cv
::
KeyPoint
>&
keypoints
,
const
cv
::
Mat
&
mask
=
cv
::
Mat
())
const
;
double
thresh_
;
};
struct
SurfAdjuster
{
SurfAdjuster
()
:
thresh_
(
400.0
)
{
}
void
detect
(
const
Mat
&
img
,
const
Mat
&
mask
,
std
::
vector
<
KeyPoint
>&
keypoints
)
const
{
SurfFeatureDetector
detector_tmp
(
thresh_
);
detector_tmp
.
detect
(
img
,
keypoints
,
mask
);
}
void
tooFew
(
int
min
,
int
n_detected
)
{
thresh_
*=
0.9
;
if
(
thresh_
<
1.1
)
thresh_
=
1.1
;
}
void
tooMany
(
int
max
,
int
n_detected
)
{
thresh_
*=
1.1
;
}
//return whether or not the threshhold is beyond
//a useful point
bool
good
()
const
{
return
(
thresh_
>
2
)
&&
(
thresh_
<
1000
);
}
struct
SurfAdjuster
:
public
AdjusterAdapter
{
SurfAdjuster
();
virtual
void
tooFew
(
int
min
,
int
n_detected
);
virtual
void
tooMany
(
int
max
,
int
n_detected
);
virtual
bool
good
()
const
;
protected
:
virtual
void
detectImpl
(
const
cv
::
Mat
&
image
,
std
::
vector
<
cv
::
KeyPoint
>&
keypoints
,
const
cv
::
Mat
&
mask
=
cv
::
Mat
())
const
;
double
thresh_
;
};
typedef
DynamicDetectorAdaptor
<
FastAdjuster
>
FASTDynamicDetector
;
typedef
DynamicDetectorAdaptor
<
StarAdjuster
>
StarDynamicDetector
;
typedef
DynamicDetectorAdaptor
<
SurfAdjuster
>
SurfDynamicDetector
;
CV_EXPORTS
Mat
windowedMatchingMask
(
const
vector
<
KeyPoint
>&
keypoints1
,
const
vector
<
KeyPoint
>&
keypoints2
,
float
maxDeltaX
,
float
maxDeltaY
);
...
...
@@ -1865,22 +1814,15 @@ struct CV_EXPORTS L1
/*
* Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
* bit count of A exclusive
or
ed with B
* bit count of A exclusive
XOR'
ed with B
*/
struct
CV_EXPORTS
HammingLUT
{
typedef
unsigned
char
ValueType
;
typedef
int
ResultType
;
ResultType
operator
()(
const
unsigned
char
*
a
,
const
unsigned
char
*
b
,
int
size
)
const
{
ResultType
result
=
0
;
for
(
int
i
=
0
;
i
<
size
;
i
++
)
{
result
+=
byteBitsLookUp
(
a
[
i
]
^
b
[
i
]);
}
return
result
;
}
ResultType
operator
()(
const
unsigned
char
*
a
,
const
unsigned
char
*
b
,
int
size
)
const
;
/** \brief given a byte, count the bits using a compile time generated look up table
* \param b the byte to count bits. The look up table has an entry for all
* values of b, where that entry is the number of bits.
...
...
@@ -1889,32 +1831,17 @@ struct CV_EXPORTS HammingLUT
static
unsigned
char
byteBitsLookUp
(
unsigned
char
b
);
};
#if __GNUC__
/// Hamming distance functor
/// @todo Variable-length version, maybe default size=0 and specialize
/// @todo Need to choose C/SSE4 at runtime, but amortize this at matcher level for efficiency...
/// Hamming distance functor, this one will try to use gcc's __builtin_popcountl
/// but will fall back on HammingLUT if not available
/// bit count of A exclusive XOR'ed with B
struct
CV_EXPORTS
Hamming
{
typedef
unsigned
char
ValueType
;
typedef
int
ResultType
;
ResultType
operator
()(
const
unsigned
char
*
a
,
const
unsigned
char
*
b
,
int
size
)
const
{
/// @todo Non-GCC-specific version
ResultType
result
=
0
;
for
(
int
i
=
0
;
i
<
size
;
i
+=
sizeof
(
unsigned
long
))
{
unsigned
long
a2
=
*
reinterpret_cast
<
const
unsigned
long
*>
(
a
+
i
);
unsigned
long
b2
=
*
reinterpret_cast
<
const
unsigned
long
*>
(
b
+
i
);
result
+=
__builtin_popcountl
(
a2
^
b2
);
}
return
result
;
}
ResultType
operator
()(
const
unsigned
char
*
a
,
const
unsigned
char
*
b
,
int
size
)
const
;
};
#else
typedef
HammingLUT
Hamming
;
#endif
/****************************************************************************************\
* DMatch *
...
...
modules/features2d/src/brief.cpp
View file @
f6b08189
...
...
@@ -92,7 +92,30 @@ void pixelTests64(const Mat& sum, const std::vector<KeyPoint>& keypoints, Mat& d
namespace
cv
{
ResultType
HammingLUT
::
operator
()(
const
unsigned
char
*
a
,
const
unsigned
char
*
b
,
int
size
)
const
{
ResultType
result
=
0
;
for
(
int
i
=
0
;
i
<
size
;
i
++
)
{
result
+=
byteBitsLookUp
(
a
[
i
]
^
b
[
i
]);
}
return
result
;
}
ResultType
Hamming
::
operator
()(
const
unsigned
char
*
a
,
const
unsigned
char
*
b
,
int
size
)
const
{
#if __GNUC__
ResultType
result
=
0
;
for
(
int
i
=
0
;
i
<
size
;
i
+=
sizeof
(
unsigned
long
))
{
unsigned
long
a2
=
*
reinterpret_cast
<
const
unsigned
long
*>
(
a
+
i
);
unsigned
long
b2
=
*
reinterpret_cast
<
const
unsigned
long
*>
(
b
+
i
);
result
+=
__builtin_popcountl
(
a2
^
b2
);
}
return
result
;
#else
return
HammingLUT
()(
a
,
b
,
size
);
#endif
}
BriefDescriptorExtractor
::
BriefDescriptorExtractor
(
int
bytes
)
:
bytes_
(
bytes
),
test_fn_
(
NULL
)
{
...
...
modules/features2d/src/detectors.cpp
View file @
f6b08189
...
...
@@ -528,7 +528,7 @@ Ptr<FeatureDetector> createFeatureDetector( const string& detectorType )
}
else
if
(
!
detectorType
.
compare
(
"DynamicFAST"
)
)
{
fd
=
new
FASTDynamicDetector
(
400
,
500
,
5
);
fd
=
new
DynamicDetector
(
400
,
500
,
5
,
new
FastAdjuster
()
);
}
else
if
(
!
detectorType
.
compare
(
"STAR"
)
)
{
...
...
@@ -536,7 +536,7 @@ Ptr<FeatureDetector> createFeatureDetector( const string& detectorType )
}
else
if
(
!
detectorType
.
compare
(
"DynamicSTAR"
)
)
{
fd
=
new
StarDynamicDetector
(
400
,
500
,
5
);
fd
=
new
DynamicDetector
(
400
,
500
,
5
,
new
StarAdjuster
()
);
}
else
if
(
!
detectorType
.
compare
(
"SIFT"
)
)
{
...
...
@@ -549,7 +549,7 @@ Ptr<FeatureDetector> createFeatureDetector( const string& detectorType )
}
else
if
(
!
detectorType
.
compare
(
"DynamicSURF"
)
)
{
fd
=
new
SurfDynamicDetector
(
400
,
500
,
5
);
fd
=
new
DynamicDetector
(
400
,
500
,
5
,
new
SurfAdjuster
()
);
}
else
if
(
!
detectorType
.
compare
(
"MSER"
)
)
{
...
...
modules/features2d/src/dynamic.cpp
0 → 100644
View file @
f6b08189
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2010, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace
cv
{
DynamicDetector
::
DynamicDetector
(
int
min_features
,
int
max_features
,
int
max_iters
,
const
Ptr
<
AdjusterAdapter
>&
a
)
:
escape_iters_
(
max_iters
),
min_features_
(
min_features
),
max_features_
(
max_features
),
adjuster_
(
a
)
{
}
void
DynamicDetector
::
detectImpl
(
const
cv
::
Mat
&
image
,
std
::
vector
<
cv
::
KeyPoint
>&
keypoints
,
const
cv
::
Mat
&
mask
)
const
{
//for oscillation testing
bool
down
=
false
;
bool
up
=
false
;
//flag for whether the correct threshhold has been reached
bool
thresh_good
=
false
;
//this is bad but adjuster should persist from detection to detection
AdjusterAdapter
&
adjuster
=
const_cast
<
AdjusterAdapter
&>
(
*
adjuster_
);
//break if the desired number hasn't been reached.
int
iter_count
=
escape_iters_
;
do
{
keypoints
.
clear
();
//the adjuster takes care of calling the detector with updated parameters
adjuster
.
detect
(
image
,
keypoints
,
mask
);
if
(
int
(
keypoints
.
size
())
<
min_features_
)
{
down
=
true
;
adjuster
.
tooFew
(
min_features_
,
keypoints
.
size
());
}
else
if
(
int
(
keypoints
.
size
())
>
max_features_
)
{
up
=
true
;
adjuster
.
tooMany
(
max_features_
,
keypoints
.
size
());
}
else
thresh_good
=
true
;
}
while
(
--
iter_count
>=
0
&&
!
(
down
&&
up
)
&&
!
thresh_good
&&
adjuster
.
good
());
}
FastAdjuster
::
FastAdjuster
(
int
init_thresh
,
bool
nonmax
)
:
thresh_
(
init_thresh
),
nonmax_
(
nonmax
)
{
}
void
FastAdjuster
::
detectImpl
(
const
cv
::
Mat
&
image
,
std
::
vector
<
cv
::
KeyPoint
>&
keypoints
,
const
cv
::
Mat
&
mask
)
const
{
FastFeatureDetector
(
thresh_
,
nonmax_
).
detect
(
image
,
keypoints
,
mask
);
}
void
FastAdjuster
::
tooFew
(
int
min
,
int
n_detected
)
{
//fast is easy to adjust
thresh_
--
;
}
void
FastAdjuster
::
tooMany
(
int
max
,
int
n_detected
)
{
//fast is easy to adjust
thresh_
++
;
}
//return whether or not the threshhold is beyond
//a useful point
bool
FastAdjuster
::
good
()
const
{
return
(
thresh_
>
1
)
&&
(
thresh_
<
200
);
}
StarAdjuster
::
StarAdjuster
(
double
initial_thresh
)
:
thresh_
(
initial_thresh
)
{
}
void
StarAdjuster
::
detectImpl
(
const
cv
::
Mat
&
image
,
std
::
vector
<
cv
::
KeyPoint
>&
keypoints
,
const
cv
::
Mat
&
mask
)
const
{
StarFeatureDetector
detector_tmp
(
16
,
thresh_
,
10
,
8
,
3
);
detector_tmp
.
detect
(
image
,
keypoints
,
mask
);
}
void
StarAdjuster
::
tooFew
(
int
min
,
int
n_detected
)
{
thresh_
*=
0.9
;
if
(
thresh_
<
1.1
)
thresh_
=
1.1
;
}
void
StarAdjuster
::
tooMany
(
int
max
,
int
n_detected
)
{
thresh_
*=
1.1
;
}
bool
StarAdjuster
::
good
()
const
{
return
(
thresh_
>
2
)
&&
(
thresh_
<
200
);
}
SurfAdjuster
::
SurfAdjuster
()
:
thresh_
(
400.0
)
{
}
void
SurfAdjuster
::
detectImpl
(
const
cv
::
Mat
&
image
,
std
::
vector
<
cv
::
KeyPoint
>&
keypoints
,
const
cv
::
Mat
&
mask
)
const
{
SurfFeatureDetector
detector_tmp
(
thresh_
);
detector_tmp
.
detect
(
image
,
keypoints
,
mask
);
}
void
SurfAdjuster
::
tooFew
(
int
min
,
int
n_detected
)
{
thresh_
*=
0.9
;
if
(
thresh_
<
1.1
)
thresh_
=
1.1
;
}
void
SurfAdjuster
::
tooMany
(
int
max
,
int
n_detected
)
{
thresh_
*=
1.1
;
}
//return whether or not the threshhold is beyond
//a useful point
bool
SurfAdjuster
::
good
()
const
{
return
(
thresh_
>
2
)
&&
(
thresh_
<
1000
);
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment