Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
f69ccfa4
Commit
f69ccfa4
authored
Sep 16, 2013
by
peng xiao
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add opencl svm.
parent
178f0272
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
1427 additions
and
0 deletions
+1427
-0
ocl.hpp
modules/ocl/include/opencv2/ocl/ocl.hpp
+20
-0
svm.cl
modules/ocl/src/opencl/svm.cl
+210
-0
svm.cpp
modules/ocl/src/svm.cpp
+1197
-0
No files found.
modules/ocl/include/opencv2/ocl/ocl.hpp
View file @
f69ccfa4
...
...
@@ -1900,6 +1900,26 @@ namespace cv
private
:
oclMat
samples_ocl
;
};
/*!*************** SVM *************!*/
class
CV_EXPORTS
CvSVM_OCL
:
public
CvSVM
{
public
:
CvSVM_OCL
();
CvSVM_OCL
(
const
cv
::
Mat
&
trainData
,
const
cv
::
Mat
&
responses
,
const
cv
::
Mat
&
varIdx
=
cv
::
Mat
(),
const
cv
::
Mat
&
sampleIdx
=
cv
::
Mat
(),
CvSVMParams
params
=
CvSVMParams
());
CV_WRAP
float
predict
(
const
int
row_index
,
Mat
&
src
,
bool
returnDFVal
=
false
)
const
;
CV_WRAP
void
predict
(
cv
::
InputArray
samples
,
cv
::
OutputArray
results
)
const
;
CV_WRAP
float
predict
(
const
cv
::
Mat
&
sample
,
bool
returnDFVal
=
false
)
const
;
float
predict
(
const
CvMat
*
samples
,
CV_OUT
CvMat
*
results
)
const
;
protected
:
float
predict
(
const
int
row_index
,
int
row_len
,
Mat
&
src
,
bool
returnDFVal
=
false
)
const
;
void
create_kernel
();
void
create_solver
();
};
/*!*************** END *************!*/
}
}
#if defined _MSC_VER && _MSC_VER >= 1200
...
...
modules/ocl/src/opencl/svm.cl
0 → 100644
View file @
f69ccfa4
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
C
)
2010-2013,
Institute
Of
Software
Chinese
Academy
Of
Science,
all
rights
reserved.
//
Copyright
(
C
)
2010-2013,
Advanced
Micro
Devices,
Inc.,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
@Authors
//
Erping
Pang,
erping@multicorewareinc.com
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
oclMaterials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
as
is
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//
#
if
defined
(
DOUBLE_SUPPORT
)
#
ifdef
cl_khr_fp64
#
pragma
OPENCL
EXTENSION
cl_khr_fp64:enable
#
elif
defined
(
cl_amd_fp64
)
#
pragma
OPENCL
EXTENSION
cl_amd_fp64:enable
#
endif
#
define
TYPE
double
#
else
#
define
TYPE
float
#
endif
#
if
defined
ADDEXP
#
define
EXP
(
X
)
exp
(
X
)
#
else
#
define
EXP
(
X
)
X
#
endif
#
if
defined
ADDPOW
#
define
POW
(
X,Y
)
pow
(
fabs
(
X
)
,
(
Y
))
#
else
#
define
POW
(
X,Y
)
X
#
endif
#
define
FLT_MAX
3.402823466e+38F
#
define
MAX_VAL
(
FLT_MAX*1e-3
)
__kernel
void
svm_linear
(
__global
float*
src,
int
src_step,
__global
float*
src2,
int
src2_step,
__global
TYPE*
dst,
int
dst_step,
int
src_rows,
int
src2_cols,
int
width,
TYPE
alpha,
TYPE
beta
)
{
const
int
col
=
get_global_id
(
0
)
;
const
int
row
=
get_global_id
(
1
)
;
if
(
row
<
src_rows
&&
col
<
src2_cols
)
{
int
t
=
0
;
TYPE
temp
=
0.0
;
for
(
t
=
0
; t < width - 16; t += 16)
{
float16
t0
=
vload16
(
0
,
src
+
row
*
src_step
+
t
)
;
float16
t1
=
vload16
(
0
,
src2
+
col
*
src2_step
+
t
)
;
t0
*=
t1
;
temp
+=
t0.s0
+
t0.s1
+
t0.s2
+
t0.s3
+
t0.s4
+
t0.s5
+
t0.s6
+
t0.s7
+
t0.s8
+
t0.s9
+
t0.sa
+
t0.sb
+
t0.sc
+
t0.sd
+
t0.se
+
t0.sf
;
}
for
(
; t < width; t++)
{
temp
+=
src[row
*
src_step
+
t]
*
src2[col
*
src2_step
+
t]
;
}
TYPE
temp1
=
(
TYPE
)
(
temp
*
alpha
+
beta
)
;
if
(
temp1
>
MAX_VAL
)
{
dst[row
*
dst_step
+
col]
=
MAX_VAL
;
}
else
{
dst[row
*
dst_step
+
col]
=
temp1
;
}
}
}
__kernel
void
svm_sigmod
(
__global
float*
src,
int
src_step,
__global
float*
src2,
int
src2_step,
__global
TYPE*
dst,
int
dst_step,
int
src_rows,
int
src2_cols,
int
width,
TYPE
alpha,
TYPE
beta
)
{
const
int
col
=
get_global_id
(
0
)
;
const
int
row
=
get_global_id
(
1
)
;
if
(
row
<
src_rows
&&
col
<
src2_cols
)
{
int
t
=
0
;
TYPE
temp
=
0.0
;
for
(
t
=
0
; t < width - 16; t += 16)
{
float16
t0
=
vload16
(
0
,
src
+
row
*
src_step
+
t
)
;
float16
t1
=
vload16
(
0
,
src2
+
col
*
src2_step
+
t
)
;
t0
*=
t1
;
temp
+=
t0.s0
+
t0.s1
+
t0.s2
+
t0.s3
+
t0.s4
+
t0.s5
+
t0.s6
+
t0.s7
+
t0.s8
+
t0.s9
+
t0.sa
+
t0.sb
+
t0.sc
+
t0.sd
+
t0.se
+
t0.sf
;
}
for
(
; t < width; t++)
{
temp
+=
src[row
*
src_step
+
t]
*
src2[col
*
src2_step
+
t]
;
}
TYPE
tp
=
(
TYPE
)
(
temp
*
alpha
+
beta
)
;
TYPE
e
=
exp
(
-fabs
(
tp
))
;
TYPE
temp1
;
if
(
tp
>
0
)
{
temp1
=
(
TYPE
)((
1.
-
e
)
/
(
1.
+
e
))
;
}
else
{
temp1
=
(
TYPE
)((
e
-
1.
)
/
(
e
+
1.
))
;
}
if
(
temp1
>
MAX_VAL
)
{
dst[row
*
dst_step
+
col]
=
MAX_VAL
;
}
else
{
dst[row
*
dst_step
+
col]
=
temp1
;
}
}
}
__kernel
void
svm_poly
(
__global
float*
src,
int
src_step,
__global
float*
src2,
int
src2_step,
__global
TYPE*
dst,
int
dst_step,
int
src_rows,
int
src2_cols,
int
width,
TYPE
alpha,
TYPE
beta,
TYPE
degree
)
{
const
int
col
=
get_global_id
(
0
)
;
const
int
row
=
get_global_id
(
1
)
;
if
(
row
<
src_rows
&&
col
<
src2_cols
)
{
int
t
=
0
;
TYPE
temp
=
0.0
;
for
(
t
=
0
; t < width - 16; t += 16)
{
float16
t0
=
vload16
(
0
,
src
+
row
*
src_step
+
t
)
;
float16
t1
=
vload16
(
0
,
src2
+
col
*
src2_step
+
t
)
;
t0
*=
t1
;
temp
+=
t0.s0
+
t0.s1
+
t0.s2
+
t0.s3
+
t0.s4
+
t0.s5
+
t0.s6
+
t0.s7
+
t0.s8
+
t0.s9
+
t0.sa
+
t0.sb
+
t0.sc
+
t0.sd
+
t0.se
+
t0.sf
;
}
for
(
; t < width; t++)
{
temp
+=
src[row
*
src_step
+
t]
*
src2[col
*
src2_step
+
t]
;
}
TYPE
temp1
=
(
TYPE
)(
POW
((
temp
*
alpha
+
beta
)
,
degree
))
;
if
(
temp1
>
MAX_VAL
)
{
dst[row
*
dst_step
+
col]
=
MAX_VAL
;
}
else
{
dst[row
*
dst_step
+
col]
=
temp1
;
}
}
}
__kernel
void
svm_rbf
(
__global
float*
src,
int
src_step,
__global
float*
src2,
int
src2_step,
__global
TYPE*
dst,
int
dst_step,
int
src_rows,
int
src2_cols,
int
width,
TYPE
gamma
)
{
const
int
col
=
get_global_id
(
0
)
;
const
int
row
=
get_global_id
(
1
)
;
if
(
row
<
src_rows
&&
col
<
src2_cols
)
{
int
t
=
0
;
TYPE
temp
=
0.0
;
for
(
t
=
0
; t < width - 16; t += 16)
{
float16
t0
=
vload16
(
0
,
src
+
row
*
src_step
+
t
)
;
float16
t1
=
vload16
(
0
,
src2
+
col
*
src2_step
+
t
)
;
t0
=
(
t0
-
t1
)
*
(
t0
-
t1
)
;
temp
+=
t0.s0
+
t0.s1
+
t0.s2
+
t0.s3
+
t0.s4
+
t0.s5
+
t0.s6
+
t0.s7
+
t0.s8
+
t0.s9
+
t0.sa
+
t0.sb
+
t0.sc
+
t0.sd
+
t0.se
+
t0.sf
;
}
for
(
; t < width; t++)
{
temp
+=
(
src[row
*
src_step
+
t]
-
src2[col
*
src2_step
+
t]
)
*
(
src[row
*
src_step
+
t]
-
src2[col
*
src2_step
+
t]
)
;
}
TYPE
temp1
=
EXP
((
TYPE
)(
temp
*
gamma
))
;
if
(
temp1
>
MAX_VAL
)
{
dst[row
*
dst_step
+
col]
=
MAX_VAL
;
}
else
{
dst[row
*
dst_step
+
col]
=
temp1
;
}
}
}
\ No newline at end of file
modules/ocl/src/svm.cpp
0 → 100644
View file @
f69ccfa4
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Erping Pang, erping@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using
namespace
cv
;
using
namespace
ocl
;
#if 1
typedef
float
Qfloat
;
#define QFLOAT_TYPE CV_32F
#else
typedef
double
Qfloat
;
#define QFLOAT_TYPE CV_64F
#endif
namespace
cv
{
namespace
ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern
const
char
*
svm
;
}
}
class
CvSVMKernel_ocl
:
public
CvSVMKernel
{
public
:
typedef
void
(
CvSVMKernel_ocl
::*
Calc_ocl
)(
int
vec_count
,
const
int
row_idx
,
Qfloat
*
results
,
Mat
&
src
);
CvSVMKernel_ocl
(
const
CvSVMParams
*
params
,
Calc_ocl
_calc_func
,
Calc
_calc_func1
);
Calc_ocl
calc_func_ocl
;
bool
create
(
const
CvSVMParams
*
params
,
Calc_ocl
_calc_func
,
Calc
_calc_func1
);
void
calc
(
int
vcount
,
const
int
row_idx
,
Qfloat
*
results
,
Mat
&
src
);
void
calc_linear
(
int
vec_count
,
const
int
row_idx
,
Qfloat
*
results
,
Mat
&
src
);
void
calc_poly
(
int
vec_count
,
const
int
row_idx
,
Qfloat
*
results
,
Mat
&
src
);
void
calc_sigmoid
(
int
vec_count
,
const
int
row_idx
,
Qfloat
*
results
,
Mat
&
src
);
void
calc_non_rbf_base
(
int
vec_count
,
const
int
row_idx
,
Qfloat
*
results
,
Mat
&
src
);
void
calc_rbf
(
int
vec_count
,
const
int
row_idx
,
Qfloat
*
results
,
Mat
&
src
);
};
class
CvSVMSolver_ocl
:
public
CvSVMSolver
{
public
:
CvSVMSolver_ocl
();
CvSVMSolver_ocl
(
const
CvSVMParams
*
);
float
*
get_row_base
(
int
i
,
bool
*
_existed
,
Mat
&
src
);
bool
solve_generic
(
CvSVMSolutionInfo
&
si
);
float
*
get_row
(
int
i
,
float
*
dst
,
Mat
&
src
);
};
typedef
struct
CvSparseVecElem32f
{
int
idx
;
float
val
;
}
CvSparseVecElem32f
;
static
int
icvCmpSparseVecElems
(
const
void
*
a
,
const
void
*
b
)
{
return
((
CvSparseVecElem32f
*
)
a
)
->
idx
-
((
CvSparseVecElem32f
*
)
b
)
->
idx
;
}
void
cvPreparePredictData
(
const
CvArr
*
sample
,
int
dims_all
,
const
CvMat
*
comp_idx
,
int
class_count
,
const
CvMat
*
prob
,
float
**
row_sample
,
int
as_sparse
CV_DEFAULT
(
0
)
);
void
cvPreparePredictData
(
const
CvArr
*
_sample
,
int
dims_all
,
const
CvMat
*
comp_idx
,
int
class_count
,
const
CvMat
*
prob
,
float
**
_row_sample
,
int
as_sparse
)
{
float
*
row_sample
=
0
;
int
*
inverse_comp_idx
=
0
;
CV_FUNCNAME
(
"cvPreparePredictData"
);
__BEGIN__
;
const
CvMat
*
sample
=
(
const
CvMat
*
)
_sample
;
float
*
sample_data
;
int
sample_step
;
int
is_sparse
=
CV_IS_SPARSE_MAT
(
sample
);
int
d
,
sizes
[
CV_MAX_DIM
];
int
i
,
dims_selected
;
int
vec_size
;
if
(
!
is_sparse
&&
!
CV_IS_MAT
(
sample
)
)
{
CV_ERROR
(
!
sample
?
CV_StsNullPtr
:
CV_StsBadArg
,
"The sample is not a valid vector"
);
}
if
(
cvGetElemType
(
sample
)
!=
CV_32FC1
)
{
CV_ERROR
(
CV_StsUnsupportedFormat
,
"Input sample must have 32fC1 type"
);
}
CV_CALL
(
d
=
cvGetDims
(
sample
,
sizes
));
if
(
!
((
is_sparse
&&
d
==
1
)
||
(
!
is_sparse
&&
d
==
2
&&
(
sample
->
rows
==
1
||
sample
->
cols
==
1
)))
)
{
CV_ERROR
(
CV_StsBadSize
,
"Input sample must be 1-dimensional vector"
);
}
if
(
d
==
1
)
{
sizes
[
1
]
=
1
;
}
if
(
sizes
[
0
]
+
sizes
[
1
]
-
1
!=
dims_all
)
CV_ERROR
(
CV_StsUnmatchedSizes
,
"The sample size is different from what has been used for training"
);
if
(
!
_row_sample
)
{
CV_ERROR
(
CV_StsNullPtr
,
"INTERNAL ERROR: The row_sample pointer is NULL"
);
}
if
(
comp_idx
&&
(
!
CV_IS_MAT
(
comp_idx
)
||
comp_idx
->
rows
!=
1
||
CV_MAT_TYPE
(
comp_idx
->
type
)
!=
CV_32SC1
)
)
{
CV_ERROR
(
CV_StsBadArg
,
"INTERNAL ERROR: invalid comp_idx"
);
}
dims_selected
=
comp_idx
?
comp_idx
->
cols
:
dims_all
;
if
(
prob
)
{
if
(
!
CV_IS_MAT
(
prob
)
)
{
CV_ERROR
(
CV_StsBadArg
,
"The output matrix of probabilities is invalid"
);
}
if
(
(
prob
->
rows
!=
1
&&
prob
->
cols
!=
1
)
||
(
CV_MAT_TYPE
(
prob
->
type
)
!=
CV_32FC1
&&
CV_MAT_TYPE
(
prob
->
type
)
!=
CV_64FC1
)
)
CV_ERROR
(
CV_StsBadSize
,
"The matrix of probabilities must be 1-dimensional vector of 32fC1 type"
);
if
(
prob
->
rows
+
prob
->
cols
-
1
!=
class_count
)
CV_ERROR
(
CV_StsUnmatchedSizes
,
"The vector of probabilities must contain as many elements as "
"the number of classes in the training set"
);
}
vec_size
=
!
as_sparse
?
dims_selected
*
sizeof
(
row_sample
[
0
])
:
(
dims_selected
+
1
)
*
sizeof
(
CvSparseVecElem32f
);
if
(
CV_IS_MAT
(
sample
)
)
{
sample_data
=
sample
->
data
.
fl
;
sample_step
=
CV_IS_MAT_CONT
(
sample
->
type
)
?
1
:
sample
->
step
/
sizeof
(
row_sample
[
0
]);
if
(
!
comp_idx
&&
CV_IS_MAT_CONT
(
sample
->
type
)
&&
!
as_sparse
)
{
*
_row_sample
=
sample_data
;
}
else
{
CV_CALL
(
row_sample
=
(
float
*
)
cvAlloc
(
vec_size
));
if
(
!
comp_idx
)
for
(
i
=
0
;
i
<
dims_selected
;
i
++
)
{
row_sample
[
i
]
=
sample_data
[
sample_step
*
i
];
}
else
{
int
*
comp
=
comp_idx
->
data
.
i
;
for
(
i
=
0
;
i
<
dims_selected
;
i
++
)
{
row_sample
[
i
]
=
sample_data
[
sample_step
*
comp
[
i
]];
}
}
*
_row_sample
=
row_sample
;
}
if
(
as_sparse
)
{
const
float
*
src
=
(
const
float
*
)
row_sample
;
CvSparseVecElem32f
*
dst
=
(
CvSparseVecElem32f
*
)
row_sample
;
dst
[
dims_selected
].
idx
=
-
1
;
for
(
i
=
dims_selected
-
1
;
i
>=
0
;
i
--
)
{
dst
[
i
].
idx
=
i
;
dst
[
i
].
val
=
src
[
i
];
}
}
}
else
{
CvSparseNode
*
node
;
CvSparseMatIterator
mat_iterator
;
const
CvSparseMat
*
sparse
=
(
const
CvSparseMat
*
)
sample
;
assert
(
is_sparse
);
node
=
cvInitSparseMatIterator
(
sparse
,
&
mat_iterator
);
CV_CALL
(
row_sample
=
(
float
*
)
cvAlloc
(
vec_size
));
if
(
comp_idx
)
{
CV_CALL
(
inverse_comp_idx
=
(
int
*
)
cvAlloc
(
dims_all
*
sizeof
(
int
)
));
memset
(
inverse_comp_idx
,
-
1
,
dims_all
*
sizeof
(
int
)
);
for
(
i
=
0
;
i
<
dims_selected
;
i
++
)
{
inverse_comp_idx
[
comp_idx
->
data
.
i
[
i
]]
=
i
;
}
}
if
(
!
as_sparse
)
{
memset
(
row_sample
,
0
,
vec_size
);
for
(
;
node
!=
0
;
node
=
cvGetNextSparseNode
(
&
mat_iterator
)
)
{
int
idx
=
*
CV_NODE_IDX
(
sparse
,
node
);
if
(
inverse_comp_idx
)
{
idx
=
inverse_comp_idx
[
idx
];
if
(
idx
<
0
)
{
continue
;
}
}
row_sample
[
idx
]
=
*
(
float
*
)
CV_NODE_VAL
(
sparse
,
node
);
}
}
else
{
CvSparseVecElem32f
*
ptr
=
(
CvSparseVecElem32f
*
)
row_sample
;
for
(
;
node
!=
0
;
node
=
cvGetNextSparseNode
(
&
mat_iterator
)
)
{
int
idx
=
*
CV_NODE_IDX
(
sparse
,
node
);
if
(
inverse_comp_idx
)
{
idx
=
inverse_comp_idx
[
idx
];
if
(
idx
<
0
)
{
continue
;
}
}
ptr
->
idx
=
idx
;
ptr
->
val
=
*
(
float
*
)
CV_NODE_VAL
(
sparse
,
node
);
ptr
++
;
}
qsort
(
row_sample
,
ptr
-
(
CvSparseVecElem32f
*
)
row_sample
,
sizeof
(
ptr
[
0
]),
icvCmpSparseVecElems
);
ptr
->
idx
=
-
1
;
}
*
_row_sample
=
row_sample
;
}
__END__
;
if
(
inverse_comp_idx
)
{
cvFree
(
&
inverse_comp_idx
);
}
if
(
cvGetErrStatus
()
<
0
&&
_row_sample
)
{
cvFree
(
&
row_sample
);
*
_row_sample
=
0
;
}
}
float
CvSVM_OCL
::
predict
(
const
int
row_index
,
int
row_len
,
Mat
&
src
,
bool
returnDFVal
)
const
{
assert
(
kernel
);
(
void
)
row_len
;
int
class_count
=
class_labels
?
class_labels
->
cols
:
params
.
svm_type
==
ONE_CLASS
?
1
:
0
;
float
result
=
0
;
cv
::
AutoBuffer
<
float
>
_buffer
(
sv_total
+
(
class_count
+
1
)
*
2
);
float
*
buffer
=
_buffer
;
if
(
params
.
svm_type
==
EPS_SVR
||
params
.
svm_type
==
NU_SVR
||
params
.
svm_type
==
ONE_CLASS
)
{
CvSVMDecisionFunc
*
df
=
(
CvSVMDecisionFunc
*
)
decision_func
;
int
i
,
sv_count
=
df
->
sv_count
;
double
sum
=
-
df
->
rho
;
((
CvSVMKernel_ocl
*
)
kernel
)
->
calc
(
sv_count
,
row_index
,
buffer
,
src
);
for
(
i
=
0
;
i
<
sv_count
;
i
++
)
{
sum
+=
buffer
[
i
]
*
df
->
alpha
[
i
];
}
result
=
params
.
svm_type
==
ONE_CLASS
?
(
float
)(
sum
>
0
)
:
(
float
)
sum
;
}
else
if
(
params
.
svm_type
==
C_SVC
||
params
.
svm_type
==
NU_SVC
)
{
CvSVMDecisionFunc
*
df
=
(
CvSVMDecisionFunc
*
)
decision_func
;
int
*
vote
=
(
int
*
)(
buffer
+
sv_total
);
int
i
,
j
,
k
;
memset
(
vote
,
0
,
class_count
*
sizeof
(
vote
[
0
]));
((
CvSVMKernel_ocl
*
)
kernel
)
->
calc
(
sv_total
,
row_index
,
buffer
,
src
);
double
sum
=
0.
;
for
(
i
=
0
;
i
<
class_count
;
i
++
)
{
for
(
j
=
i
+
1
;
j
<
class_count
;
j
++
,
df
++
)
{
sum
=
-
df
->
rho
;
int
sv_count
=
df
->
sv_count
;
for
(
k
=
0
;
k
<
sv_count
;
k
++
)
{
sum
+=
df
->
alpha
[
k
]
*
buffer
[
df
->
sv_index
[
k
]];
}
vote
[
sum
>
0
?
i
:
j
]
++
;
}
}
for
(
i
=
1
,
k
=
0
;
i
<
class_count
;
i
++
)
{
if
(
vote
[
i
]
>
vote
[
k
]
)
{
k
=
i
;
}
}
result
=
returnDFVal
&&
class_count
==
2
?
(
float
)
sum
:
(
float
)(
class_labels
->
data
.
i
[
k
]);
}
else
CV_Error
(
CV_StsBadArg
,
"INTERNAL ERROR: Unknown SVM type, "
"the SVM structure is probably corrupted"
);
return
result
;
}
float
CvSVM_OCL
::
predict
(
const
Mat
&
_sample
,
bool
returnDFVal
)
const
{
CvMat
sample
=
_sample
;
return
CvSVM
::
predict
(
&
sample
,
returnDFVal
);
}
float
CvSVM_OCL
::
predict
(
const
int
row_index
,
Mat
&
src
,
bool
returnDFVal
)
const
{
float
result
=
0
;
result
=
predict
(
row_index
,
get_var_count
(),
src
,
returnDFVal
);
return
result
;
}
#undef get_C
#define get_C(i) (C[y[i]>0])
#undef is_upper_bound
#define is_upper_bound(i) (alpha_status[i] > 0)
#undef is_lower_bound
#define is_lower_bound(i) (alpha_status[i] < 0)
#undef update_alpha_status
#define update_alpha_status(i) \
alpha_status[i] = (schar)(alpha[i] >= get_C(i) ? 1 : alpha[i] <= 0 ? -1 : 0)
CvSVMSolver_ocl
::
CvSVMSolver_ocl
(
const
CvSVMParams
*
_params
)
{
params
=
_params
;
}
float
*
CvSVMSolver_ocl
::
get_row
(
int
i
,
float
*
dst
,
Mat
&
src
)
{
bool
existed
=
false
;
float
*
row
=
get_row_base
(
i
,
&
existed
,
src
);
return
(
this
->*
get_row_func
)(
i
,
row
,
dst
,
existed
);
}
float
*
CvSVMSolver_ocl
::
get_row_base
(
int
i
,
bool
*
_existed
,
Mat
&
src
)
{
int
i1
=
i
<
sample_count
?
i
:
i
-
sample_count
;
CvSVMKernelRow
*
row
=
rows
+
i1
;
bool
existed
=
row
->
data
!=
0
;
Qfloat
*
data
;
if
(
existed
||
cache_size
<=
0
)
{
CvSVMKernelRow
*
del_row
=
existed
?
row
:
lru_list
.
prev
;
data
=
del_row
->
data
;
assert
(
data
!=
0
);
// delete row from the LRU list
del_row
->
data
=
0
;
del_row
->
prev
->
next
=
del_row
->
next
;
del_row
->
next
->
prev
=
del_row
->
prev
;
}
else
{
data
=
(
Qfloat
*
)
cvMemStorageAlloc
(
storage
,
cache_line_size
);
cache_size
-=
cache_line_size
;
}
// insert row into the LRU list
row
->
data
=
data
;
row
->
prev
=
&
lru_list
;
row
->
next
=
lru_list
.
next
;
row
->
prev
->
next
=
row
->
next
->
prev
=
row
;
if
(
!
existed
)
{
((
CvSVMKernel_ocl
*
)
kernel
)
->
calc
(
sample_count
,
i1
,
row
->
data
,
src
);
}
if
(
_existed
)
{
*
_existed
=
existed
;
}
return
row
->
data
;
}
void
matmul_sigmod
(
oclMat
&
src
,
oclMat
&
src2
,
oclMat
&
dst
,
int
src_rows
,
int
src2_cols
,
int
var_count
,
double
alpha1
,
double
beta1
)
{
Context
*
clCxt
=
Context
::
getContext
();
string
kernelName
=
"svm_sigmod"
;
int
src_step
=
(
int
)
src
.
step
/
src
.
elemSize
();
int
src2_step
=
(
int
)
src2
.
step
/
src2
.
elemSize
();
int
dst_step
=
(
int
)
dst
.
step
/
dst
.
elemSize
();
int
x
=
MIN
(
16
,
src_rows
);
int
y
=
MIN
(
16
,
src2_cols
);
size_t
localThreads
[]
=
{
x
,
y
,
1
};
size_t
globalThreads
[]
=
{
src2_cols
,
src_rows
,
1
};
int
width
=
var_count
;
vector
<
pair
<
size_t
,
const
void
*>
>
args
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
src
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
src2
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src2_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
dst
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
dst_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src_rows
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src2_cols
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
width
));
float
alpha
=
0.0
f
,
beta
=
0.0
f
;
if
(
!
Context
::
getContext
()
->
supportsFeature
(
Context
::
CL_DOUBLE
))
{
alpha
=
(
float
)
alpha1
;
beta
=
(
float
)
beta1
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_float
),
(
void
*
)
&
alpha
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_float
),
(
void
*
)
&
beta
));
}
else
{
args
.
push_back
(
make_pair
(
sizeof
(
cl_double
),
(
void
*
)
&
alpha1
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_double
),
(
void
*
)
&
beta1
));
}
openCLExecuteKernel
(
clCxt
,
&
svm
,
kernelName
,
globalThreads
,
localThreads
,
args
,
-
1
,
-
1
);
}
void
matmul_poly
(
oclMat
&
src
,
oclMat
&
src2
,
oclMat
&
dst
,
int
src_rows
,
int
src2_cols
,
int
var_count
,
double
alpha1
,
double
beta1
,
double
degree1
,
bool
flag
)
{
Context
*
clCxt
=
Context
::
getContext
();
string
kernelName
=
"svm_poly"
;
int
src_step
=
(
int
)
src
.
step
/
src
.
elemSize
();
int
src2_step
=
(
int
)
src2
.
step
/
src2
.
elemSize
();
int
dst_step
=
(
int
)
dst
.
step
/
dst
.
elemSize
();
int
x
=
MIN
(
16
,
src_rows
);
int
y
=
MIN
(
16
,
src2_cols
);
size_t
localThreads
[]
=
{
x
,
y
,
1
};
size_t
globalThreads
[]
=
{
src2_cols
,
src_rows
,
1
};
int
width
=
var_count
;
char
build_options
[
50
];
if
(
flag
)
{
sprintf
(
build_options
,
"-D ADDPOW"
);
}
vector
<
pair
<
size_t
,
const
void
*>
>
args
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
src
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
src2
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src2_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
dst
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
dst_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src_rows
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src2_cols
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
width
));
float
alpha
=
0.0
f
,
beta
=
0.0
f
,
degree
=
0.0
f
;
if
(
!
Context
::
getContext
()
->
supportsFeature
(
Context
::
CL_DOUBLE
))
{
alpha
=
(
float
)
alpha1
;
beta
=
(
float
)
beta1
;
degree
=
(
float
)
degree1
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_float
),
(
void
*
)
&
alpha
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_float
),
(
void
*
)
&
beta
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_float
),
(
void
*
)
&
degree
));
}
else
{
args
.
push_back
(
make_pair
(
sizeof
(
cl_double
),
(
void
*
)
&
alpha1
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_double
),
(
void
*
)
&
beta1
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_double
),
(
void
*
)
&
degree1
));
}
openCLExecuteKernel
(
clCxt
,
&
svm
,
kernelName
,
globalThreads
,
localThreads
,
args
,
-
1
,
-
1
,
build_options
);
}
void
matmul_linear
(
oclMat
&
src
,
oclMat
&
src2
,
oclMat
&
dst
,
int
src_rows
,
int
src2_cols
,
int
var_count
,
double
alpha1
,
double
beta1
)
{
Context
*
clCxt
=
Context
::
getContext
();
string
kernelName
=
"svm_linear"
;
int
src_step
=
(
int
)
src
.
step
/
src
.
elemSize
();
int
src2_step
=
(
int
)
src2
.
step
/
src2
.
elemSize
();
int
dst_step
=
(
int
)
dst
.
step
/
dst
.
elemSize
();
int
x
=
MIN
(
16
,
src_rows
);
int
y
=
MIN
(
16
,
src2_cols
);
size_t
localThreads
[]
=
{
x
,
y
,
1
};
size_t
globalThreads
[]
=
{
src2_cols
,
src_rows
,
1
};
int
width
=
var_count
;
vector
<
pair
<
size_t
,
const
void
*>
>
args
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
src
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
src2
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src2_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
dst
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
dst_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src_rows
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src2_cols
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
width
));
float
alpha
=
0.0
f
,
beta
=
0.0
f
;
if
(
!
Context
::
getContext
()
->
supportsFeature
(
Context
::
CL_DOUBLE
))
{
alpha
=
(
float
)
alpha1
;
beta
=
(
float
)
beta1
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_float
),
(
void
*
)
&
alpha
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_float
),
(
void
*
)
&
beta
));
}
else
{
args
.
push_back
(
make_pair
(
sizeof
(
cl_double
),
(
void
*
)
&
alpha1
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_double
),
(
void
*
)
&
beta1
));
}
openCLExecuteKernel
(
clCxt
,
&
svm
,
kernelName
,
globalThreads
,
localThreads
,
args
,
-
1
,
-
1
);
}
void
matmul_rbf
(
oclMat
&
src
,
oclMat
&
src_e
,
oclMat
&
dst
,
int
src_rows
,
int
src2_cols
,
int
var_count
,
double
gamma1
,
bool
flag
)
{
Context
*
clCxt
=
Context
::
getContext
();
string
kernelName
=
"svm_rbf"
;
int
width
=
var_count
;
int
src_step
=
(
int
)
src
.
step
/
src
.
elemSize
();
int
src_e_step
=
(
int
)
src_e
.
step
/
src_e
.
elemSize
();
int
dst_step
=
(
int
)
dst
.
step
/
dst
.
elemSize
();
int
x
=
MIN
(
16
,
src_rows
);
int
y
=
MIN
(
16
,
src2_cols
);
size_t
localThreads
[]
=
{
x
,
y
,
1
};
size_t
globalThreads
[]
=
{
src2_cols
,
src_rows
,
1
};
char
build_options
[
50
];
if
(
flag
)
{
sprintf
(
build_options
,
"-D ADDEXP"
);
}
vector
<
pair
<
size_t
,
const
void
*>
>
args
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
src
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
src_e
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src_e_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
dst
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
dst_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src_rows
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src2_cols
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
width
));
float
gamma
=
0.0
f
;
if
(
!
Context
::
getContext
()
->
supportsFeature
(
Context
::
CL_DOUBLE
))
{
gamma
=
(
float
)
gamma1
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_float
),
(
void
*
)
&
gamma
));
}
else
{
args
.
push_back
(
make_pair
(
sizeof
(
cl_double
),
(
void
*
)
&
gamma1
));
}
openCLExecuteKernel
(
clCxt
,
&
svm
,
kernelName
,
globalThreads
,
localThreads
,
args
,
-
1
,
-
1
,
build_options
);
}
float
CvSVM_OCL
::
predict
(
const
CvMat
*
samples
,
CV_OUT
CvMat
*
results
)
const
{
int
var_count
=
get_var_count
();
int
sample_count
=
samples
->
rows
;
//float* row_sample = 0;
Mat
src_temp
=
Mat
(
sample_count
,
var_count
,
CV_32FC1
);
CV_FUNCNAME
(
"CvSVM::predict"
);
for
(
int
i
=
0
;
i
<
samples
->
rows
;
i
++
)
{
__BEGIN__
;
CvMat
sample
;
float
*
row_sample
=
0
;
cvGetRow
(
samples
,
&
sample
,
i
);
int
class_count
;
if
(
!
kernel
)
{
CV_ERROR
(
CV_StsBadArg
,
"The SVM should be trained first"
);
}
class_count
=
class_labels
?
class_labels
->
cols
:
params
.
svm_type
==
ONE_CLASS
?
1
:
0
;
CV_CALL
(
cvPreparePredictData
(
&
sample
,
var_all
,
var_idx
,
class_count
,
0
,
&
row_sample
));
for
(
int
j
=
0
;
j
<
var_count
;
++
j
)
{
src_temp
.
at
<
float
>
(
i
,
j
)
=
row_sample
[
j
];
}
__END__
;
}
Mat
dst1
;
double
alpha1
=
0.0
,
beta1
=
0.0
,
gamma1
=
0.0
,
degree1
=
0.0
;
if
(
params
.
kernel_type
==
CvSVM
::
LINEAR
)
{
alpha1
=
1
;
beta1
=
0
;
}
if
(
params
.
kernel_type
==
CvSVM
::
POLY
)
{
alpha1
=
params
.
gamma
;
beta1
=
params
.
coef0
;
degree1
=
params
.
degree
;
}
if
(
params
.
kernel_type
==
CvSVM
::
SIGMOID
)
{
alpha1
=
-
2
*
params
.
gamma
;
beta1
=
-
2
*
params
.
coef0
;
}
if
(
params
.
kernel_type
==
CvSVM
::
RBF
)
{
gamma1
=
-
params
.
gamma
;
}
Mat
sv_temp
=
Mat
(
sv_total
,
var_count
,
CV_32FC1
,
Scalar
::
all
(
0
));
for
(
int
i
=
0
;
i
<
sv_total
;
++
i
)
{
for
(
int
j
=
0
;
j
<
var_count
;
++
j
)
{
sv_temp
.
at
<
float
>
(
i
,
j
)
=
sv
[
i
][
j
];
}
}
oclMat
src
(
sample_count
,
var_count
,
CV_32FC1
,
Scalar
::
all
(
0
));
oclMat
sv_
;
src
.
upload
(
src_temp
);
oclMat
dst
;
#if defined HAVE_CLAMDBLAS
dst
=
oclMat
(
sample_count
,
sv_total
,
CV_32FC1
);
oclMat
src3
(
sample_count
,
sv_total
,
CV_32FC1
,
Scalar
::
all
(
1
));
if
(
params
.
kernel_type
!=
CvSVM
::
RBF
)
{
Mat
sv_temp1
;
transpose
(
sv_temp
,
sv_temp1
);
sv_
.
upload
(
sv_temp1
);
gemm
(
src
,
sv_
,
alpha1
,
src3
,
beta1
,
dst
);
}
#else
if
(
!
Context
::
getContext
()
->
supportsFeature
(
Context
::
CL_DOUBLE
))
{
dst
=
oclMat
(
sample_count
,
sv_total
,
CV_32FC1
);
}
else
{
dst
=
oclMat
(
sample_count
,
sv_total
,
CV_64FC1
);
}
if
(
params
.
kernel_type
==
CvSVM
::
LINEAR
)
{
sv_
.
upload
(
sv_temp
);
matmul_linear
(
src
,
sv_
,
dst
,
sample_count
,
sv_total
,
var_count
,
alpha1
,
beta1
);
}
if
(
params
.
kernel_type
==
CvSVM
::
SIGMOID
)
{
sv_
.
upload
(
sv_temp
);
matmul_sigmod
(
src
,
sv_
,
dst
,
sample_count
,
sv_total
,
var_count
,
alpha1
,
beta1
);
}
if
(
params
.
kernel_type
==
CvSVM
::
POLY
)
{
sv_
.
upload
(
sv_temp
);
if
(
sample_count
>
0
)
{
matmul_poly
(
src
,
sv_
,
dst
,
sample_count
,
sv_total
,
var_count
,
alpha1
,
beta1
,
degree1
,
true
);
}
else
{
matmul_poly
(
src
,
sv_
,
dst
,
sample_count
,
sv_total
,
var_count
,
alpha1
,
beta1
,
degree1
,
false
);
}
}
#endif
if
(
params
.
kernel_type
==
CvSVM
::
RBF
)
{
sv_
.
upload
(
sv_temp
);
if
(
!
Context
::
getContext
()
->
supportsFeature
(
Context
::
CL_DOUBLE
))
{
dst
=
oclMat
(
sample_count
,
sv_total
,
CV_32FC1
);
}
else
{
dst
=
oclMat
(
sample_count
,
sv_total
,
CV_64FC1
);
}
if
(
sample_count
>
0
)
{
matmul_rbf
(
src
,
sv_
,
dst
,
sample_count
,
sv_total
,
var_count
,
gamma1
,
true
);
}
else
{
matmul_rbf
(
src
,
sv_
,
dst
,
sample_count
,
sv_total
,
var_count
,
gamma1
,
false
);
}
}
dst
.
download
(
dst1
);
float
result
=
0
;
for
(
int
i
=
0
;
i
<
samples
->
rows
;
i
++
)
{
int
r
=
(
int
)
this
->
predict
(
i
,
dst1
);
if
(
results
)
{
results
->
data
.
fl
[
i
]
=
(
float
)
r
;
}
if
(
i
==
0
)
{
result
=
(
float
)
r
;
}
}
return
result
;
}
void
CvSVM_OCL
::
predict
(
cv
::
InputArray
_samples
,
cv
::
OutputArray
_results
)
const
{
_results
.
create
(
_samples
.
size
().
height
,
1
,
CV_32F
);
CvMat
samples
=
_samples
.
getMat
(),
results
=
_results
.
getMat
();
predict
(
&
samples
,
&
results
);
}
bool
CvSVMSolver_ocl
::
solve_generic
(
CvSVMSolutionInfo
&
si
)
{
int
iter
=
0
;
int
i
,
j
,
k
;
// 1. initialize gradient and alpha status
for
(
i
=
0
;
i
<
alpha_count
;
i
++
)
{
update_alpha_status
(
i
);
G
[
i
]
=
b
[
i
];
if
(
fabs
(
G
[
i
])
>
1e200
)
{
return
false
;
}
}
Mat
dst1
;
double
alpha1
=
0.0
,
beta1
=
0.0
,
gamma1
=
0.0
,
degree1
=
0.0
;
if
(
params
->
kernel_type
==
CvSVM
::
LINEAR
)
{
alpha1
=
1
;
beta1
=
0
;
}
if
(
params
->
kernel_type
==
CvSVM
::
POLY
)
{
alpha1
=
params
->
gamma
;
beta1
=
params
->
coef0
;
degree1
=
params
->
degree
;
}
if
(
params
->
kernel_type
==
CvSVM
::
SIGMOID
)
{
alpha1
=
-
2
*
params
->
gamma
;
beta1
=
-
2
*
params
->
coef0
;
}
if
(
params
->
kernel_type
==
CvSVM
::
RBF
)
{
gamma1
=
-
params
->
gamma
;
}
Mat
src1
=
Mat
(
sample_count
,
var_count
,
CV_32FC1
);
for
(
int
i
=
0
;
i
<
sample_count
;
++
i
)
{
for
(
int
j
=
0
;
j
<
var_count
;
++
j
)
{
src1
.
at
<
float
>
(
i
,
j
)
=
samples
[
i
][
j
];
}
}
oclMat
src
,
src_e
;
src
.
upload
(
src1
);
oclMat
dst
;
#if defined HAVE_CLAMDBLAS
dst
=
oclMat
(
sample_count
,
sample_count
,
CV_32FC1
);
oclMat
src3
(
sample_count
,
sample_count
,
CV_32FC1
,
Scalar
::
all
(
1
));
if
(
params
->
kernel_type
!=
CvSVM
::
RBF
)
{
ocl
::
transpose
(
src
,
src_e
);
gemm
(
src
,
src_e
,
alpha1
,
src3
,
beta1
,
dst
);
}
#else
if
(
!
Context
::
getContext
()
->
supportsFeature
(
Context
::
CL_DOUBLE
))
{
dst
=
oclMat
(
sample_count
,
sample_count
,
CV_32FC1
);
}
else
{
dst
=
oclMat
(
sample_count
,
sample_count
,
CV_64FC1
);
}
if
(
params
->
kernel_type
==
CvSVM
::
LINEAR
)
{
src_e
=
src
;
matmul_linear
(
src
,
src_e
,
dst
,
sample_count
,
sample_count
,
var_count
,
alpha1
,
beta1
);
}
if
(
params
->
kernel_type
==
CvSVM
::
SIGMOID
)
{
src_e
=
src
;
matmul_sigmod
(
src
,
src_e
,
dst
,
sample_count
,
sample_count
,
var_count
,
alpha1
,
beta1
);
}
if
(
params
->
kernel_type
==
CvSVM
::
POLY
)
{
src_e
=
src
;
if
(
sample_count
>
0
)
{
matmul_poly
(
src
,
src_e
,
dst
,
sample_count
,
sample_count
,
var_count
,
alpha1
,
beta1
,
degree1
,
true
);
}
else
{
matmul_poly
(
src
,
src_e
,
dst
,
sample_count
,
sample_count
,
var_count
,
alpha1
,
beta1
,
degree1
,
false
);
}
}
#endif
if
(
params
->
kernel_type
==
CvSVM
::
RBF
)
{
src_e
=
src
;
if
(
!
Context
::
getContext
()
->
supportsFeature
(
Context
::
CL_DOUBLE
))
{
dst
=
oclMat
(
sample_count
,
sample_count
,
CV_32FC1
);
}
else
{
dst
=
oclMat
(
sample_count
,
sample_count
,
CV_64FC1
);
}
if
(
sample_count
>
0
)
{
matmul_rbf
(
src
,
src_e
,
dst
,
sample_count
,
sample_count
,
var_count
,
gamma1
,
true
);
}
else
{
matmul_rbf
(
src
,
src_e
,
dst
,
sample_count
,
sample_count
,
var_count
,
gamma1
,
false
);
}
}
dst
.
download
(
dst1
);
for
(
i
=
0
;
i
<
alpha_count
;
i
++
)
{
if
(
!
is_lower_bound
(
i
)
)
{
const
Qfloat
*
Q_i
=
CvSVMSolver
::
get_row
(
i
,
buf
[
0
]);
double
alpha_i
=
alpha
[
i
];
for
(
j
=
0
;
j
<
alpha_count
;
j
++
)
{
G
[
j
]
+=
alpha_i
*
Q_i
[
j
];
}
}
}
// 2. optimization loop
for
(;;)
{
const
Qfloat
*
Q_i
,
*
Q_j
;
double
C_i
,
C_j
;
double
old_alpha_i
,
old_alpha_j
,
alpha_i
,
alpha_j
;
double
delta_alpha_i
,
delta_alpha_j
;
#ifdef _DEBUG
for
(
i
=
0
;
i
<
alpha_count
;
i
++
)
{
if
(
fabs
(
G
[
i
])
>
1e+300
)
{
return
false
;
}
if
(
fabs
(
alpha
[
i
])
>
1e16
)
{
return
false
;
}
}
#endif
if
(
(
this
->*
select_working_set_func
)(
i
,
j
)
!=
0
||
iter
++
>=
max_iter
)
{
break
;
}
Q_i
=
get_row
(
i
,
buf
[
0
],
dst1
);
Q_j
=
get_row
(
j
,
buf
[
1
],
dst1
);
C_i
=
get_C
(
i
);
C_j
=
get_C
(
j
);
alpha_i
=
old_alpha_i
=
alpha
[
i
];
alpha_j
=
old_alpha_j
=
alpha
[
j
];
if
(
y
[
i
]
!=
y
[
j
]
)
{
double
denom
=
Q_i
[
i
]
+
Q_j
[
j
]
+
2
*
Q_i
[
j
];
double
delta
=
(
-
G
[
i
]
-
G
[
j
])
/
MAX
(
fabs
(
denom
),
FLT_EPSILON
);
double
diff
=
alpha_i
-
alpha_j
;
alpha_i
+=
delta
;
alpha_j
+=
delta
;
if
(
diff
>
0
&&
alpha_j
<
0
)
{
alpha_j
=
0
;
alpha_i
=
diff
;
}
else
if
(
diff
<=
0
&&
alpha_i
<
0
)
{
alpha_i
=
0
;
alpha_j
=
-
diff
;
}
if
(
diff
>
C_i
-
C_j
&&
alpha_i
>
C_i
)
{
alpha_i
=
C_i
;
alpha_j
=
C_i
-
diff
;
}
else
if
(
diff
<=
C_i
-
C_j
&&
alpha_j
>
C_j
)
{
alpha_j
=
C_j
;
alpha_i
=
C_j
+
diff
;
}
}
else
{
double
denom
=
Q_i
[
i
]
+
Q_j
[
j
]
-
2
*
Q_i
[
j
];
double
delta
=
(
G
[
i
]
-
G
[
j
])
/
MAX
(
fabs
(
denom
),
FLT_EPSILON
);
double
sum
=
alpha_i
+
alpha_j
;
alpha_i
-=
delta
;
alpha_j
+=
delta
;
if
(
sum
>
C_i
&&
alpha_i
>
C_i
)
{
alpha_i
=
C_i
;
alpha_j
=
sum
-
C_i
;
}
else
if
(
sum
<=
C_i
&&
alpha_j
<
0
)
{
alpha_j
=
0
;
alpha_i
=
sum
;
}
if
(
sum
>
C_j
&&
alpha_j
>
C_j
)
{
alpha_j
=
C_j
;
alpha_i
=
sum
-
C_j
;
}
else
if
(
sum
<=
C_j
&&
alpha_i
<
0
)
{
alpha_i
=
0
;
alpha_j
=
sum
;
}
}
// update alpha
alpha
[
i
]
=
alpha_i
;
alpha
[
j
]
=
alpha_j
;
update_alpha_status
(
i
);
update_alpha_status
(
j
);
// update G
delta_alpha_i
=
alpha_i
-
old_alpha_i
;
delta_alpha_j
=
alpha_j
-
old_alpha_j
;
for
(
k
=
0
;
k
<
alpha_count
;
k
++
)
{
G
[
k
]
+=
Q_i
[
k
]
*
delta_alpha_i
+
Q_j
[
k
]
*
delta_alpha_j
;
}
}
// calculate rho
(
this
->*
calc_rho_func
)(
si
.
rho
,
si
.
r
);
// calculate objective value
for
(
i
=
0
,
si
.
obj
=
0
;
i
<
alpha_count
;
i
++
)
{
si
.
obj
+=
alpha
[
i
]
*
(
G
[
i
]
+
b
[
i
]);
}
si
.
obj
*=
0.5
;
si
.
upper_bound_p
=
C
[
1
];
si
.
upper_bound_n
=
C
[
0
];
return
true
;
}
void
CvSVMKernel_ocl
::
calc
(
int
vcount
,
const
int
row_idx
,
Qfloat
*
results
,
Mat
&
src
)
{
//const Qfloat max_val = (Qfloat)(FLT_MAX*1e-3);
//int j;
(
this
->*
calc_func_ocl
)(
vcount
,
row_idx
,
results
,
src
);
#if defined HAVE_CLAMDBLAS
const
Qfloat
max_val
=
(
Qfloat
)(
FLT_MAX
*
1e-3
);
int
j
;
for
(
j
=
0
;
j
<
vcount
;
j
++
)
{
if
(
results
[
j
]
>
max_val
)
{
results
[
j
]
=
max_val
;
}
}
#endif
}
bool
CvSVMKernel_ocl
::
create
(
const
CvSVMParams
*
_params
,
Calc_ocl
_calc_func
,
Calc
_calc_func1
)
{
clear
();
params
=
_params
;
calc_func_ocl
=
_calc_func
;
calc_func
=
_calc_func1
;
if
(
!
calc_func_ocl
)
calc_func_ocl
=
params
->
kernel_type
==
CvSVM
::
RBF
?
&
CvSVMKernel_ocl
::
calc_rbf
:
params
->
kernel_type
==
CvSVM
::
POLY
?
&
CvSVMKernel_ocl
::
calc_poly
:
params
->
kernel_type
==
CvSVM
::
SIGMOID
?
&
CvSVMKernel_ocl
::
calc_sigmoid
:
&
CvSVMKernel_ocl
::
calc_linear
;
if
(
!
calc_func
)
calc_func
=
params
->
kernel_type
==
CvSVM
::
RBF
?
&
CvSVMKernel
::
calc_rbf
:
params
->
kernel_type
==
CvSVM
::
POLY
?
&
CvSVMKernel
::
calc_poly
:
params
->
kernel_type
==
CvSVM
::
SIGMOID
?
&
CvSVMKernel
::
calc_sigmoid
:
&
CvSVMKernel
::
calc_linear
;
return
true
;
}
CvSVMKernel_ocl
::
CvSVMKernel_ocl
(
const
CvSVMParams
*
params
,
CvSVMKernel_ocl
::
Calc_ocl
_calc_func
,
CvSVMKernel
::
Calc
_calc_func1
)
{
CvSVMKernel
::
clear
();
CvSVMKernel_ocl
::
create
(
params
,
_calc_func
,
_calc_func1
);
}
void
CvSVMKernel_ocl
::
calc_non_rbf_base
(
int
vcount
,
const
int
row_idx
,
Qfloat
*
results
,
Mat
&
src
)
{
#if defined HAVE_CLAMDBLAS
for
(
int
i
=
0
;
i
<
vcount
;
i
++
)
{
results
[
i
]
=
(
Qfloat
)
*
src
.
ptr
<
float
>
(
row_idx
,
i
);
}
#else
if
(
!
Context
::
getContext
()
->
supportsFeature
(
Context
::
CL_DOUBLE
))
{
for
(
int
i
=
0
;
i
<
vcount
;
i
++
)
{
results
[
i
]
=
(
Qfloat
)
*
src
.
ptr
<
float
>
(
row_idx
,
i
);
}
}
else
{
for
(
int
i
=
0
;
i
<
vcount
;
i
++
)
{
results
[
i
]
=
(
Qfloat
)
*
src
.
ptr
<
double
>
(
row_idx
,
i
);
}
}
#endif
}
void
CvSVMKernel_ocl
::
calc_rbf
(
int
vcount
,
const
int
row_idx
,
Qfloat
*
results
,
Mat
&
src
)
{
if
(
!
Context
::
getContext
()
->
supportsFeature
(
Context
::
CL_DOUBLE
))
{
for
(
int
m
=
0
;
m
<
vcount
;
m
++
)
{
results
[
m
]
=
(
Qfloat
)
*
src
.
ptr
<
float
>
(
row_idx
,
m
);
}
}
else
{
for
(
int
m
=
0
;
m
<
vcount
;
m
++
)
{
results
[
m
]
=
(
Qfloat
)
*
src
.
ptr
<
double
>
(
row_idx
,
m
);
}
}
}
void
CvSVMKernel_ocl
::
calc_linear
(
int
vcount
,
const
int
row_idx
,
Qfloat
*
results
,
Mat
&
src
)
{
calc_non_rbf_base
(
vcount
,
row_idx
,
results
,
src
);
}
void
CvSVMKernel_ocl
::
calc_poly
(
int
vcount
,
const
int
row_idx
,
Qfloat
*
results
,
Mat
&
src
)
{
calc_non_rbf_base
(
vcount
,
row_idx
,
results
,
src
);
#if defined HAVE_CLAMDBLAS
CvMat
R
=
cvMat
(
1
,
vcount
,
QFLOAT_TYPE
,
results
);
if
(
vcount
>
0
)
{
cvPow
(
&
R
,
&
R
,
params
->
degree
);
}
#endif
}
void
CvSVMKernel_ocl
::
calc_sigmoid
(
int
vcount
,
const
int
row_idx
,
Qfloat
*
results
,
Mat
&
src
)
{
calc_non_rbf_base
(
vcount
,
row_idx
,
results
,
src
);
// TODO: speedup this
#if defined HAVE_CLAMDBLAS
for
(
int
j
=
0
;
j
<
vcount
;
j
++
)
{
Qfloat
t
=
results
[
j
];
double
e
=
exp
(
-
fabs
(
t
));
if
(
t
>
0
)
{
results
[
j
]
=
(
Qfloat
)((
1.
-
e
)
/
(
1.
+
e
));
}
else
{
results
[
j
]
=
(
Qfloat
)((
e
-
1.
)
/
(
e
+
1.
));
}
}
#endif
}
CvSVM_OCL
::
CvSVM_OCL
()
{
CvSVM
::
CvSVM
();
}
CvSVM_OCL
::
CvSVM_OCL
(
const
Mat
&
_train_data
,
const
Mat
&
_responses
,
const
Mat
&
_var_idx
,
const
Mat
&
_sample_idx
,
CvSVMParams
_params
)
{
decision_func
=
0
;
class_labels
=
0
;
class_weights
=
0
;
storage
=
0
;
var_idx
=
0
;
kernel
=
0
;
solver
=
0
;
default_model_name
=
"my_svm"
;
train
(
_train_data
,
_responses
,
_var_idx
,
_sample_idx
,
_params
);
}
void
CvSVM_OCL
::
create_kernel
()
{
kernel
=
new
CvSVMKernel_ocl
(
&
params
,
0
,
0
);
}
void
CvSVM_OCL
::
create_solver
(
)
{
solver
=
new
CvSVMSolver_ocl
(
&
params
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment