// if current GPU will be faster then CPU in this algorithm.
// It queries current active device.
static bool checkIfGpuCallReasonable();
int preset;
int ndisp;
int winSize;
// If avergeTexThreshold == 0 => post procesing is disabled
// If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
// SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
// i.e. input left image is low textured.
float avergeTexThreshold;
private:
/* hidden */
};
The class also performs pre- and post-filtering steps: Sobel pre-filtering (if ``PREFILTER_XSOBEL`` flag is set) and low textureness filtering (if ``averageTexThreshols > 0`` ). If ``avergeTexThreshold = 0`` , low textureness filtering is disabled. Otherwise, the disparity is set to 0 in each point ``(x, y)`` , where for the left image
.. math::
\sum HorizontalGradiensInWindow(x, y, winSize) < (winSize \cdot winSize) \cdot avergeTexThreshold
This means that the input left image is low textured.
The class implements algorithm described in [Felzenszwalb2006]_ . It can compute own data cost (using a truncated linear model) or use a user-provided data cost.
.. note::
``StereoBeliefPropagation`` requires a lot of memory for message storage:
Enables the :ocv:class:`ocl::StereoBeliefPropagation` constructors.
.. ocv:function:: ocl::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp = DEFAULT_NDISP, int iters = DEFAULT_ITERS, int levels = DEFAULT_LEVELS, int msg_type = CV_16S)
.. ocv:function:: ocl::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp, int iters, int levels, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int msg_type = CV_32F)
:param ndisp: Number of disparities.
:param iters: Number of BP iterations on each level.
:param levels: Number of levels.
:param max_data_term: Threshold for data cost truncation.
:param data_weight: Data weight.
:param max_disc_term: Threshold for discontinuity truncation.
:param disc_single_jump: Discontinuity single jump.
:param msg_type: Type for messages. ``CV_16SC1`` and ``CV_32FC1`` types are supported.
``StereoBeliefPropagation`` uses a truncated linear model for the data cost and discontinuity terms:
.. math::
DataCost = data \_ weight \cdot \min ( \lvert Img_Left(x,y)-Img_Right(x-d,y) \rvert , max \_ data \_ term)
.. math::
DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term)
For more details, see [Felzenszwalb2006]_.
By default, :ocv:class:`ocl::StereoBeliefPropagation` uses floating-point arithmetics and the ``CV_32FC1`` type for messages. But it can also use fixed-point arithmetics and the ``CV_16SC1`` message type for better performance. To avoid an overflow in this case, the parameters must satisfy the following requirement:
.. math::
10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX
Uses a heuristic method to compute the recommended parameters ( ``ndisp``, ``iters`` and ``levels`` ) for the specified image size ( ``width`` and ``height`` ).
The class implements algorithm described in [Yang2010]_. ``StereoConstantSpaceBP`` supports both local minimum and global minimum data cost initialization algorithms. For more details, see the paper mentioned above. By default, a local algorithm is used. To enable a global algorithm, set ``use_local_init_data_cost`` to ``false`` .
Enables the :ocv:class:`ocl::StereoConstantSpaceBP` constructors.
.. ocv:function:: ocl::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP, int iters = DEFAULT_ITERS, int levels = DEFAULT_LEVELS, int nr_plane = DEFAULT_NR_PLANE, int msg_type = CV_32F)
.. ocv:function:: ocl::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th = 0, int msg_type = CV_32F)
:param ndisp: Number of disparities.
:param iters: Number of BP iterations on each level.
:param levels: Number of levels.
:param nr_plane: Number of disparity levels on the first level.
:param max_data_term: Truncation of data cost.
:param data_weight: Data weight.
:param max_disc_term: Truncation of discontinuity.
:param disc_single_jump: Discontinuity single jump.
:param min_disp_th: Minimal disparity threshold.
:param msg_type: Type for messages. ``CV_16SC1`` and ``CV_32FC1`` types are supported.
``StereoConstantSpaceBP`` uses a truncated linear model for the data cost and discontinuity terms:
.. math::
DataCost = data \_ weight \cdot \min ( \lvert I_2-I_1 \rvert , max \_ data \_ term)
.. math::
DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term)
For more details, see [Yang2010]_.
By default, ``StereoConstantSpaceBP`` uses floating-point arithmetics and the ``CV_32FC1`` type for messages. But it can also use fixed-point arithmetics and the ``CV_16SC1`` message type for better performance. To avoid an overflow in this case, the parameters must satisfy the following requirement:
.. math::
10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX
:param left: Left image. ``CV_8UC1`` , ``CV_8UC3`` and ``CV_8UC4`` types are supported.
:param right: Right image with the same size and the same type as the left one.
:param disparity: Output disparity map. If ``disparity`` is empty, the output type is ``CV_16SC1`` . Otherwise, the output type is ``disparity.type()`` .
:param stream: Stream for the asynchronous version.
@@ -37,7 +37,7 @@ Finds edges in an image using the [Canny86]_ algorithm.
ocl::BruteForceMatcher_OCL_base
-------------------------------
-----------------------------------
.. ocv:class:: ocl::BruteForceMatcher_OCL_base
Brute-force descriptor matcher. For each descriptor in the first set, this matcher finds the closest descriptor in the second set by trying each one. This descriptor matcher supports masking permissible matches between descriptor sets. ::
...
...
@@ -153,7 +153,7 @@ The class ``BruteForceMatcher_OCL_base`` has an interface similar to the class :
ocl::BruteForceMatcher_OCL_base::match
--------------------------------------
------------------------------------------
Finds the best match for each descriptor from a query set with train descriptors.
Performs a GPU collection of train descriptors and masks in a suitable format for the :ocv:func:`ocl::BruteForceMatcher_OCL_base::matchCollection` function.
Downloads matrices obtained via :ocv:func:`ocl::BruteForceMatcher_OCL_base::matchSingle` or :ocv:func:`ocl::BruteForceMatcher_OCL_base::matchCollection` to vector with :ocv:class:`DMatch`.
@@ -185,7 +185,7 @@ Downloads matrices obtained via :ocv:func:`ocl::BruteForceMatcher_OCL_base::matc
ocl::BruteForceMatcher_OCL_base::matchConvert
---------------------------------------------
-------------------------------------------------
Converts matrices obtained via :ocv:func:`ocl::BruteForceMatcher_OCL_base::matchSingle` or :ocv:func:`ocl::BruteForceMatcher_OCL_base::matchCollection` to vector with :ocv:class:`DMatch`.
Downloads matrices obtained via :ocv:func:`ocl::BruteForceMatcher_OCL_base::knnMatchSingle` or :ocv:func:`ocl::BruteForceMatcher_OCL_base::knnMatch2Collection` to vector with :ocv:class:`DMatch`.
Converts matrices obtained via :ocv:func:`ocl::BruteForceMatcher_OCL_base::knnMatchSingle` or :ocv:func:`ocl::BruteForceMatcher_OCL_base::knnMatch2Collection` to CPU vector with :ocv:class:`DMatch`.
Downloads matrices obtained via :ocv:func:`ocl::BruteForceMatcher_OCL_base::radiusMatchSingle` or :ocv:func:`ocl::BruteForceMatcher_OCL_base::radiusMatchCollection` to vector with :ocv:class:`DMatch`.
Converts matrices obtained via :ocv:func:`ocl::BruteForceMatcher_OCL_base::radiusMatchSingle` or :ocv:func:`ocl::BruteForceMatcher_OCL_base::radiusMatchCollection` to vector with :ocv:class:`DMatch`.
Base class for linear or non-linear filters that processes rows of 2D arrays. Such filters are used for the "horizontal" filtering passes in separable filters. ::
class CV_EXPORTS BaseRowFilter_GPU
{
public:
BaseRowFilter_GPU(int ksize_, int anchor_, int bordertype_) : ksize(ksize_), anchor(anchor_), bordertype(bordertype_) {}
.. note:: This class does not allocate memory for a destination image. Usually this class is used inside :ocv:class:`ocl::FilterEngine_GPU`.
ocl::BaseColumnFilter_GPU
-----------------------------
.. ocv:class:: ocl::BaseColumnFilter_GPU
Base class for linear or non-linear filters that processes columns of 2D arrays. Such filters are used for the "vertical" filtering passes in separable filters. ::
class CV_EXPORTS BaseColumnFilter_GPU
{
public:
BaseColumnFilter_GPU(int ksize_, int anchor_, int bordertype_) : ksize(ksize_), anchor(anchor_), bordertype(bordertype_) {}
.. note:: This class does not allocate memory for a destination image. Usually this class is used inside :ocv:class:`ocl::FilterEngine_GPU`
ocl::FilterEngine_GPU
------------------------
.. ocv:class:: ocl::FilterEngine_GPU
Base class for the Filter Engine. ::
class CV_EXPORTS FilterEngine_GPU
{
public:
virtual ~FilterEngine_GPU() {}
virtual void apply(const oclMat &src, oclMat &dst, Rect roi = Rect(0, 0, -1, -1)) = 0;
};
The class can be used to apply an arbitrary filtering operation to an image. It contains all the necessary intermediate buffers. Pointers to the initialized ``FilterEngine_GPU`` instances are returned by various ``create*Filter_GPU`` functions (see below), and they are used inside high-level functions such as :ocv:func:`ocl::filter2D`, :ocv:func:`ocl::erode`, :ocv:func:`ocl::Sobel` , and others.
By using ``FilterEngine_GPU`` instead of functions you can avoid unnecessary memory allocation for intermediate buffers and get better performance: ::
while (...)
{
ocl::oclMat src = getImg();
ocl::oclMat dst;
// Allocate and release buffers at each iterations
``FilterEngine_GPU`` can process a rectangular sub-region of an image. By default, if ``roi == Rect(0,0,-1,-1)`` , ``FilterEngine_GPU`` processes the inner region of an image ( ``Rect(anchor.x, anchor.y, src_size.width - ksize.width, src_size.height - ksize.height)`` ) because some filters do not check whether indices are outside the image for better performance. See below to understand which filters support processing the whole image and which do not and identify image type limitations.
.. note:: The GPU filters do not support the in-place mode.
.. ocv:function:: Ptr<FilterEngine_GPU> ocl::createMorphologyFilter_GPU(int op, int type, const Mat &kernel, const Point &anchor = Point(-1, -1), int iterations = 1)
.. ocv:function:: Ptr<BaseFilter_GPU> ocl::getMorphologyFilter_GPU(int op, int type, const Mat &kernel, const Size &ksize, Point anchor = Point(-1, -1))
:param op: Morphology operation id. Only ``MORPH_ERODE`` and ``MORPH_DILATE`` are supported.
:param type: Input/output image type. Only ``CV_8UC1`` and ``CV_8UC4`` are supported.
:param kernel: 2D 8-bit structuring element for the morphological operation.
:param ksize: Size of a horizontal or vertical structuring element used for separable morphological operations.
:param anchor: Anchor position within the structuring element. Negative values mean that the anchor is at the center.
.. note:: This filter does not check out-of-border accesses, so only a proper sub-matrix of a bigger matrix has to be passed to it.
.. seealso:: :ocv:func:`createMorphologyFilter`
ocl::createLinearFilter_GPU
-------------------------------
Creates a non-separable linear filter.
.. ocv:function:: Ptr<FilterEngine_GPU> ocl::createLinearFilter_GPU(int srcType, int dstType, const Mat &kernel, const Point &anchor = Point(-1, -1), int borderType = BORDER_DEFAULT)
:param srcType: Input image type. Supports ``CV_8U`` , ``CV_16U`` and ``CV_32F`` one and four channel image.
:param dstType: Output image type. The same type as ``src`` is supported.
:param kernel: 2D array of filter coefficients. Floating-point coefficients will be converted to fixed-point representation before the actual processing. Supports size up to 16. For larger kernels use :ocv:func:`ocl::convolve`.
:param anchor: Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel center.
:param borderType: Pixel extrapolation method. For details, see :ocv:func:`borderInterpolate` .
.. seealso:: :ocv:func:`createLinearFilter`
ocl::filter2D
-----------------
Applies the non-separable 2D linear filter to an image.
.. ocv:function:: void ocl::filter2D(const oclMat &src, oclMat &dst, int ddepth, const Mat &kernel, Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT)
:param src: Source image. Supports ``CV_8U`` , ``CV_16U`` and ``CV_32F`` one and four channel image.
:param dst: Destination image. The size and the number of channels is the same as ``src`` .
:param ddepth: Desired depth of the destination image. If it is negative, it is the same as ``src.depth()`` . It supports only the same depth as the source image depth.
:param kernel: 2D array of filter coefficients.
:param anchor: Anchor of the kernel that indicates the relative position of a filtered point within the kernel. The anchor resides within the kernel. The special default value (-1,-1) means that the anchor is at the kernel center.
:param borderType: Pixel extrapolation method. For details, see :ocv:func:`borderInterpolate` .
:param stream: Stream for the asynchronous version.
ocl::getLinearRowFilter_GPU
-------------------------------
Creates a primitive row filter with the specified kernel.
.. ocv:function:: Ptr<BaseRowFilter_GPU> ocl::getLinearRowFilter_GPU(int srcType, int bufType, const Mat &rowKernel, int anchor = -1, int bordertype = BORDER_DEFAULT)
Creates a filter engine for the generalized Sobel operator.
.. ocv:function:: Ptr<FilterEngine_GPU> ocl::createDerivFilter_GPU( int srcType, int dstType, int dx, int dy, int ksize, int borderType = BORDER_DEFAULT )
:param dstType: Destination image type with as many channels as ``srcType`` , ``CV_8U`` , ``CV_16S`` , ``CV_32S`` , and ``CV_32F`` depths are supported.
:param dx: Derivative order in respect of x.
:param dy: Derivative order in respect of y.
:param ksize: Aperture size. See :ocv:func:`getDerivKernels` for details.
:param borderType: Pixel extrapolation method. For details, see :ocv:func:`borderInterpolate`.
:param dst: The destination image; It will have the same size and the same type as src
:param ksize: Aperture size. See :ocv:func:`getGaussianKernel` for details.
:param ksize: The Gaussian kernel size; ksize.width and ksize.height can differ, but they both must be positive and odd. Or, they can be zero's, then they are computed from sigma
:param sigma1: Gaussian sigma in the horizontal direction. See :ocv:func:`getGaussianKernel` for details.
:param sigma1sigma2: The Gaussian kernel standard deviations in X and Y direction. If sigmaY is zero, it is set to be equal to sigmaX. If they are both zeros, they are computed from ksize.width and ksize.height. To fully control the result regardless of possible future modification of all this semantics, it is recommended to specify all of ksize, sigmaX and sigmaY
:param sigma2: Gaussian sigma in the vertical direction. If 0, then :math:`\texttt{sigma2}\leftarrow\texttt{sigma1}` .
:param bordertype: Pixel extrapolation method.
:param bordertype: Pixel extrapolation method. For details, see :ocv:func:`borderInterpolate`.
The function convolves the source image with the specified Gaussian kernel. In-place filtering is supported. Surpport 8UC1 8UC4 32SC1 32SC4 32FC1 32FC4 data type.
:param dst: The destination image; It will have the same size and the same type as src
:param ddepth: The desired depth of the destination image
:param ksize: The smoothing kernel size. It must be positive and odd
:param ksize: The Gaussian kernel size; ksize.width and ksize.height can differ, but they both must be positive and odd. Or, they can be zero's, then they are computed from sigma
:param anchor: The anchor point. The default value Point(-1,-1) means that the anchor is at the kernel center.
:param sigma1sigma2: The Gaussian kernel standard deviations in X and Y direction. If sigmaY is zero, it is set to be equal to sigmaX. If they are both zeros, they are computed from ksize.width and ksize.height. To fully control the result regardless of possible future modification of all this semantics, it is recommended to specify all of ksize, sigmaX and sigmaY
:param bordertype: Pixel extrapolation method.
Smoothes image using box filter.Supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4.
The function convolves the source image with the specified Gaussian kernel. In-place filtering is supported. Surpport 8UC1 8UC4 32SC1 32SC4 32FC1 32FC4 data type.
:param image: The source image. Only ``CV_32FC1`` images are supported for now.
:param temp1: Convolution kernel, a single-channel floating point matrix.
:param temp1: Convolution kernel, a single-channel floating point matrix. The size is not greater than the ``image`` size. The type is the same as ``image``.
:param result: The destination image
Convolves an image with the kernel. Supports only CV_32FC1 data types and do not support ROI.
ocl::bilateralFilter
--------------------
------------------------
Returns void
.. ocv:function:: void ocl::bilateralFilter(const oclMat &src, oclMat &dst, int d, double sigmaColor, double sigmaSpace, int borderType=BORDER_DEFAULT)
...
...
@@ -143,8 +495,42 @@ Returns void
Applies bilateral filter to the image. Supports 8UC1 8UC4 data types.
ocl::adaptiveBilateralFilter
--------------------------------
Returns void
.. ocv:function:: void ocl::adaptiveBilateralFilter(const oclMat& src, oclMat& dst, Size ksize, double sigmaSpace, Point anchor = Point(-1, -1), int borderType=BORDER_DEFAULT)
:param src: The source image
:param dst: The destination image; will have the same size and the same type as src
:param ksize: The kernel size
:param sigmaSpace: Filter sigma in the coordinate space. Larger value of the parameter means that farther pixels will influence each other (as long as their colors are close enough; see sigmaColor). Then d>0, it specifies the neighborhood size regardless of sigmaSpace, otherwise d is proportional to sigmaSpace.
:param borderType: Pixel extrapolation method.
A main part of our strategy will be to load each raw pixel once, and reuse it to calculate all pixels in the output (filtered) image that need this pixel value.
.. note:: We partition the image to non-overlapping blocks of size (Ux, Uy). Each such block will correspond to the pixel locations where we will calculate the filter result in one workgroup. Considering neighbourhoods of sizes (kx, ky), where kx = 2 dx + 1, and ky = 2 dy + 1 (in image ML, dx = dy = 1, and kx = ky = 3), it is clear that we need to load data of size Wx = Ux + 2 dx, Wy = Uy + 2 dy. Furthermore, if (Sx, Sy) is the top left pixel coordinates for a particular block, and (Sx + Ux - 1, Sy + Uy -1) is to botom right coordinate of the block, we need to load data starting at top left coordinate (PSx, PSy) = (Sx - dx, Sy - dy), and ending at bottom right coordinate (Sx + Ux - 1 + dx, Sy + Uy - 1 + dy). The workgroup layout is (Wx,1). However, to take advantage of the natural hardware properties (preferred wavefront sizes), we restrict Wx to be a multiple of that preferred wavefront size (for current AMD hardware this is typically 64). Each thread in the workgroup will load Wy elements (under the constraint that Wx*Wy*pixel width <= max local memory).
Applies bilateral filter to the image. Supports 8UC1 8UC3 data types.
ocl::copyMakeBorder
--------------------
-----------------------
Returns void
.. ocv:function:: void ocl::copyMakeBorder(const oclMat &src, oclMat &dst, int top, int bottom, int left, int right, int boardtype, const Scalar &value = Scalar())
...
...
@@ -206,7 +592,7 @@ Returns void
The function erodes the source image using the specified structuring element that determines the shape of a pixel neighborhood over which the minimum is taken. Supports 8UC1 8UC4 data types.
ocl::morphologyEx
------------------
---------------------
Returns void
.. ocv:function:: void ocl::morphologyEx( const oclMat &src, oclMat &dst, int op, const Mat &kernel, Point anchor = Point(-1, -1), int iterations = 1, int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue())
...
...
@@ -242,7 +628,6 @@ Smoothes an image and downsamples it.
.. seealso:: :ocv:func:`pyrDown`
ocl::pyrUp
-------------------
Upsamples an image and then smoothes it.
...
...
@@ -267,7 +652,7 @@ Computes a vertical (column) sum.
:param prevImg: First 8-bit input image (supports both grayscale and color images).
:param nextImg: Second input image of the same size and the same type as ``prevImg`` .
:param prevPts: Vector of 2D points for which the flow needs to be found. It must be one row matrix with CV_32FC2 type.
:param nextPts: Output vector of 2D points (with single-precision floating-point coordinates) containing the calculated new positions of input features in the second image. When ``useInitialFlow`` is true, the vector must have the same size as in the input.
:param status: Output status vector (CV_8UC1 type). Each element of the vector is set to 1 if the flow for the corresponding features has been found. Otherwise, it is set to 0.
:param err: Output vector (CV_32FC1 type) that contains the difference between patches around the original and moved points or min eigen value if ``getMinEigenVals`` is checked. It can be NULL, if not needed.
:param prevImg: First 8-bit grayscale input image.
:param nextImg: Second input image of the same size and the same type as ``prevImg`` .
:param u: Horizontal component of the optical flow of the same size as input images, 32-bit floating-point, single-channel
:param v: Vertical component of the optical flow of the same size as input images, 32-bit floating-point, single-channel
:param err: Output vector (CV_32FC1 type) that contains the difference between patches around the original and moved points or min eigen value if ``getMinEigenVals`` is checked. It can be NULL, if not needed.
:param isRegression: Type of the problem: ``true`` for regression and ``false`` for classification.
:param maxK: Number of maximum neighbors that may be passed to the method :ocv:func:`CvKNearest::find_nearest`.
:param updateBase: Specifies whether the model is trained from scratch (``update_base=false``), or it is updated using the new training data (``update_base=true``). In the latter case, the parameter ``maxK`` must not be larger than the original value.
The method trains the K-Nearest model. It follows the conventions of the generic :ocv:func:`CvStatModel::train` approach with the following limitations:
* Only ``CV_ROW_SAMPLE`` data layout is supported.
* Input variables are all ordered.
* Output variables can be either categorical ( ``is_regression=false`` ) or ordered ( ``is_regression=true`` ).
* Variable subsets (``var_idx``) and missing measurements are not supported.
ocl::KNearestNeighbour::find_nearest
----------------------------------------
Finds the neighbors and predicts responses for input vectors.
:param samples: Input samples stored by rows. It is a single-precision floating-point matrix of :math:`number\_of\_samples \times number\_of\_features` size.
:param k: Number of used nearest neighbors. It must satisfy constraint: :math:`k \le` :ocv:func:`CvKNearest::get_max_k`.
:param labels: Vector with results of prediction (regression or classification) for each input sample. It is a single-precision floating-point vector with ``number_of_samples`` elements.
ocl::kmeans
---------------
Finds centers of clusters and groups input samples around the clusters.
.. ocv:function:: double ocl::kmeans(const oclMat &src, int K, oclMat &bestLabels, TermCriteria criteria, int attemps, int flags, oclMat ¢ers)
:param src: Floating-point matrix of input samples, one row per sample.
:param K: Number of clusters to split the set by.
:param bestLabels: Input/output integer array that stores the cluster indices for every sample.
:param criteria: The algorithm termination criteria, that is, the maximum number of iterations and/or the desired accuracy. The accuracy is specified as ``criteria.epsilon``. As soon as each of the cluster centers moves by less than ``criteria.epsilon`` on some iteration, the algorithm stops.
:param attempts: Flag to specify the number of times the algorithm is executed using different initial labellings. The algorithm returns the labels that yield the best compactness (see the last function parameter).
:param flags: Flag that can take the following values:
* **KMEANS_RANDOM_CENTERS** Select random initial centers in each attempt.
* **KMEANS_PP_CENTERS** Use ``kmeans++`` center initialization by Arthur and Vassilvitskii [Arthur2007].
* **KMEANS_USE_INITIAL_LABELS** During the first (and possibly the only) attempt, use the user-supplied labels instead of computing them from the initial centers. For the second and further attempts, use the random or semi-random centers. Use one of ``KMEANS_*_CENTERS`` flag to specify the exact method.
:param centers: Output matrix of the cluster centers, one row per each cluster center.
:param imageobjectsBuff: Buffer to store detected objects (rectangles). If it is empty, it is allocated with the defaultsize. If not empty, the function searches not more than N objects, where N = sizeof(objectsBufers data)/sizeof(cv::Rect).
:param gimage: Matrix of type CV_8U containing an image where objects should be detected.
:param scaleFactor: Parameter specifying how much the image size is reduced at each image scale.
:param minNeighbors: Parameter specifying how many neighbors each candidate rectangle should have to retain it.
:param flags: Parameter with the same meaning for an old cascade as in the function ``cvHaarDetectObjects``. It is not used for a new cascade.
:param minSize: Minimum possible object size. Objects smaller than that are ignored.
Detects objects of different sizes in the input image,only tested for face detection now. The function returns the number of detected objects.
:param maxSize: Maximum possible object size. Objects larger than that are ignored.
The function provides a very similar interface with that in CascadeClassifier class, except using oclMat as input image.
ocl::MatchTemplateBuf
---------------------
-------------------------
.. ocv:struct:: ocl::MatchTemplateBuf
Class providing memory buffers for :ocv:func:`ocl::matchTemplate` function, plus it allows to adjust some specific parameters. ::
...
...
@@ -60,7 +61,7 @@ Class providing memory buffers for :ocv:func:`ocl::matchTemplate` function, plus
You can use field `user_block_size` to set specific block size for :ocv:func:`ocl::matchTemplate` function. If you leave its default value `Size(0,0)` then automatic estimation of block size will be used (which is optimized for speed). By varying `user_block_size` you can reduce memory requirements at the cost of speed.
ocl::matchTemplate
------------------
----------------------
Computes a proximity map for a raster template and an image where the template is searched for.
The method converts source pixel values to the target datatype. saturate cast is applied in the end to avoid possible overflows. Supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32SC4, CV_32FC1, CV_32FC4.
where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
.. seealso:: :ocv:func:`addWeighted`
ocl::subtract
------------------
Returns void
...
...
@@ -319,6 +347,22 @@ Returns void
The function magnitude calculates magnitude of 2D vectors formed from the corresponding elements of x and y arrays. Supports only CV_32F and CV_64F data type.
ocl::magnitudeSqr
---------------------
Computes squared magnitudes of complex matrix elements.
:param x: The floating-point array of x-coordinates of the vectors
:param y: he floating-point array of y-coordinates of the vectors; must have the same size as x
:param magnitude: The destination array; will have the same size and same type as x
The function magnitude calculates magnitude of 2D vectors formed from the corresponding elements of x and y arrays. Supports only CV_32F and CV_64F data type.
@@ -4,7 +4,7 @@ Data Structures and Utility Functions
.. highlight:: cpp
ocl::Info
---------
-------------
.. ocv:class:: ocl::Info
this class should be maintained by the user and be passed to getDevice
...
...
@@ -42,7 +42,7 @@ Returns void
If you call this function and set a valid path, the OCL module will save the compiled kernel to the address in the first time and reload the binary since that. It can save compilation time at the runtime.
:param maxCorners: Maximum number of corners to return. If there are more corners than are found, the strongest of them is returned.
:param qualityLevel: Parameter characterizing the minimal accepted quality of image corners. The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue (see :ocv:func:`ocl::cornerMinEigenVal` ) or the Harris function response (see :ocv:func:`ocl::cornerHarris` ). The corners with the quality measure less than the product are rejected. For example, if the best corner has the quality measure = 1500, and the ``qualityLevel=0.01`` , then all the corners with the quality measure less than 15 are rejected.
:param minDistance: Minimum possible Euclidean distance between the returned corners.
:param blockSize: Size of an average block for computing a derivative covariation matrix over each pixel neighborhood. See :ocv:func:`cornerEigenValsAndVecs` .
:param useHarrisDetector: Parameter indicating whether to use a Harris detector (see :ocv:func:`ocl::cornerHarris`) or :ocv:func:`ocl::cornerMinEigenVal`.
:param harrisK: Free parameter of the Harris detector.
:param corners: Output vector of detected corners (it will be one row matrix with CV_32FC2 type).
:param mask: Optional region of interest. If the image is not empty (it needs to have the type ``CV_8UC1`` and the same size as ``image`` ), it specifies the region in which the corners are detected.
:param prevImg: First 8-bit input image (supports both grayscale and color images).
:param nextImg: Second input image of the same size and the same type as ``prevImg`` .
:param prevPts: Vector of 2D points for which the flow needs to be found. It must be one row matrix with CV_32FC2 type.
:param nextPts: Output vector of 2D points (with single-precision floating-point coordinates) containing the calculated new positions of input features in the second image. When ``useInitialFlow`` is true, the vector must have the same size as in the input.
:param status: Output status vector (CV_8UC1 type). Each element of the vector is set to 1 if the flow for the corresponding features has been found. Otherwise, it is set to 0.
:param err: Output vector (CV_32FC1 type) that contains the difference between patches around the original and moved points or min eigen value if ``getMinEigenVals`` is checked. It can be NULL, if not needed.
:param prevImg: First 8-bit grayscale input image.
:param nextImg: Second input image of the same size and the same type as ``prevImg`` .
:param u: Horizontal component of the optical flow of the same size as input images, 32-bit floating-point, single-channel
:param v: Vertical component of the optical flow of the same size as input images, 32-bit floating-point, single-channel
:param err: Output vector (CV_32FC1 type) that contains the difference between patches around the original and moved points or min eigen value if ``getMinEigenVals`` is checked. It can be NULL, if not needed.
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [MOG2001]_.
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [MOG2004]_.
Here are important members of the class that control the algorithm, which you can set after constructing the class instance:
.. ocv:member:: float backgroundRatio
Threshold defining whether the component is significant enough to be included into the background model. ``cf=0.1 => TB=0.9`` is default. For ``alpha=0.001``, it means that the mode should exist for approximately 105 frames before it is considered foreground.
.. ocv:member:: float varThreshold
Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the existing components (corresponds to ``Tg``). If it is not close to any component, a new component is generated. ``3 sigma => Tg=3*3=9`` is default. A smaller ``Tg`` value generates more components. A higher ``Tg`` value may result in a small number of components but they can grow too large.
.. ocv:member:: float fVarInit
Initial variance for the newly generated components. It affects the speed of adaptation. The parameter value is based on your estimate of the typical standard deviation from the images. OpenCV uses 15 as a reasonable value.
.. ocv:member:: float fVarMin
Parameter used to further control the variance.
.. ocv:member:: float fVarMax
Parameter used to further control the variance.
.. ocv:member:: float fCT
Complexity reduction parameter. This parameter defines the number of samples needed to accept to prove the component exists. ``CT=0.05`` is a default value for all the samples. By setting ``CT=0`` you get an algorithm very similar to the standard Stauffer&Grimson algorithm.
.. ocv:member:: uchar nShadowDetection
The value for marking shadow pixels in the output foreground mask. Default value is 127.
.. ocv:member:: float fTau
Shadow threshold. The shadow is detected if the pixel is a darker version of the background. ``Tau`` is a threshold defining how much darker the shadow can be. ``Tau= 0.5`` means that if a pixel is more than twice darker then it is not shadow. See [ShadowDetect2003]_.
.. ocv:member:: bool bShadowDetection
Parameter defining whether shadow detection should be enabled.