Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
f6191cc5
Commit
f6191cc5
authored
Jul 29, 2012
by
Alexander Mordvintesv
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added MOSSE sample
parent
0f9bbf85
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
185 additions
and
0 deletions
+185
-0
mosse.py
samples/python2/mosse.py
+185
-0
No files found.
samples/python2/mosse.py
0 → 100644
View file @
f6191cc5
'''
MOSSE tracking sample
This sample implements correlation-based tracking approach, described in [1].
Usage:
mosse.py [--pause] [<video source>]
--pause - Start with playback paused at the first video frame.
Useful for tracking target selection.
Draw rectangles around objects with a mouse to track them.
Keys:
SPACE - pause video
c - clear targets
[1] David S. Bolme et al. "Visual Object Tracking using Adaptive Correlation Filters"
http://www.cs.colostate.edu/~bolme/publications/Bolme2010Tracking.pdf
'''
import
numpy
as
np
import
cv2
from
common
import
draw_str
,
RectSelector
import
video
def
rnd_warp
(
a
):
h
,
w
=
a
.
shape
[:
2
]
T
=
np
.
zeros
((
2
,
3
))
coef
=
0.2
ang
=
(
np
.
random
.
rand
()
-
0.5
)
*
coef
c
,
s
=
np
.
cos
(
ang
),
np
.
sin
(
ang
)
T
[:
2
,
:
2
]
=
[[
c
,
-
s
],
[
s
,
c
]]
T
[:
2
,
:
2
]
+=
(
np
.
random
.
rand
(
2
,
2
)
-
0.5
)
*
coef
c
=
(
w
/
2
,
h
/
2
)
T
[:,
2
]
=
c
-
np
.
dot
(
T
[:
2
,
:
2
],
c
)
return
cv2
.
warpAffine
(
a
,
T
,
(
w
,
h
),
borderMode
=
cv2
.
BORDER_REFLECT
)
def
divSpec
(
A
,
B
):
Ar
,
Ai
=
A
[
...
,
0
],
A
[
...
,
1
]
Br
,
Bi
=
B
[
...
,
0
],
B
[
...
,
1
]
C
=
(
Ar
+
1
j
*
Ai
)
/
(
Br
+
1
j
*
Bi
)
C
=
np
.
dstack
([
np
.
real
(
C
),
np
.
imag
(
C
)])
.
copy
()
return
C
eps
=
1e-5
class
MOSSE
:
def
__init__
(
self
,
frame
,
rect
):
x1
,
y1
,
x2
,
y2
=
rect
w
,
h
=
map
(
cv2
.
getOptimalDFTSize
,
[
x2
-
x1
,
y2
-
y1
])
x1
,
y1
=
(
x1
+
x2
-
w
)
//
2
,
(
y1
+
y2
-
h
)
//
2
self
.
pos
=
x
,
y
=
x1
+
0.5
*
(
w
-
1
),
y1
+
0.5
*
(
h
-
1
)
self
.
size
=
w
,
h
img
=
cv2
.
getRectSubPix
(
frame
,
(
w
,
h
),
(
x
,
y
))
self
.
win
=
cv2
.
createHanningWindow
((
w
,
h
),
cv2
.
CV_32F
)
g
=
np
.
zeros
((
h
,
w
),
np
.
float32
)
g
[
h
//
2
,
w
//
2
]
=
1
g
=
cv2
.
GaussianBlur
(
g
,
(
-
1
,
-
1
),
2.0
)
g
/=
g
.
max
()
self
.
G
=
cv2
.
dft
(
g
,
flags
=
cv2
.
DFT_COMPLEX_OUTPUT
)
self
.
H1
=
np
.
zeros_like
(
self
.
G
)
self
.
H2
=
np
.
zeros_like
(
self
.
G
)
for
i
in
xrange
(
128
):
a
=
self
.
preprocess
(
rnd_warp
(
img
))
A
=
cv2
.
dft
(
a
,
flags
=
cv2
.
DFT_COMPLEX_OUTPUT
)
self
.
H1
+=
cv2
.
mulSpectrums
(
self
.
G
,
A
,
0
,
conjB
=
True
)
self
.
H2
+=
cv2
.
mulSpectrums
(
A
,
A
,
0
,
conjB
=
True
)
self
.
update_kernel
()
self
.
update
(
frame
)
def
update
(
self
,
frame
,
rate
=
0.125
):
(
x
,
y
),
(
w
,
h
)
=
self
.
pos
,
self
.
size
self
.
last_img
=
img
=
cv2
.
getRectSubPix
(
frame
,
(
w
,
h
),
(
x
,
y
))
img
=
self
.
preprocess
(
img
)
self
.
last_resp
,
(
dx
,
dy
),
self
.
psr
=
self
.
correlate
(
img
)
self
.
good
=
self
.
psr
>
8.0
if
not
self
.
good
:
return
self
.
pos
=
x
+
dx
,
y
+
dy
self
.
last_img
=
img
=
cv2
.
getRectSubPix
(
frame
,
(
w
,
h
),
self
.
pos
)
img
=
self
.
preprocess
(
img
)
A
=
cv2
.
dft
(
img
,
flags
=
cv2
.
DFT_COMPLEX_OUTPUT
)
H1
=
cv2
.
mulSpectrums
(
self
.
G
,
A
,
0
,
conjB
=
True
)
H2
=
cv2
.
mulSpectrums
(
A
,
A
,
0
,
conjB
=
True
)
self
.
H1
=
self
.
H1
*
(
1.0
-
rate
)
+
H1
*
rate
self
.
H2
=
self
.
H2
*
(
1.0
-
rate
)
+
H2
*
rate
self
.
update_kernel
()
@property
def
state_vis
(
self
):
f
=
cv2
.
idft
(
self
.
H
,
flags
=
cv2
.
DFT_SCALE
|
cv2
.
DFT_REAL_OUTPUT
)
h
,
w
=
f
.
shape
f
=
np
.
roll
(
f
,
-
h
//
2
,
0
)
f
=
np
.
roll
(
f
,
-
w
//
2
,
1
)
kernel
=
np
.
uint8
(
(
f
-
f
.
min
())
/
f
.
ptp
()
*
255
)
resp
=
self
.
last_resp
resp
=
np
.
uint8
(
np
.
clip
(
resp
/
resp
.
max
(),
0
,
1
)
*
255
)
vis
=
np
.
hstack
([
self
.
last_img
,
kernel
,
resp
])
return
vis
def
draw_state
(
self
,
vis
):
(
x
,
y
),
(
w
,
h
)
=
self
.
pos
,
self
.
size
x1
,
y1
,
x2
,
y2
=
int
(
x
-
0.5
*
w
),
int
(
y
-
0.5
*
h
),
int
(
x
+
0.5
*
w
),
int
(
y
+
0.5
*
h
)
cv2
.
rectangle
(
vis
,
(
x1
,
y1
),
(
x2
,
y2
),
(
0
,
0
,
255
))
if
self
.
good
:
cv2
.
circle
(
vis
,
(
int
(
x
),
int
(
y
)),
2
,
(
0
,
0
,
255
),
-
1
)
else
:
cv2
.
line
(
vis
,
(
x1
,
y1
),
(
x2
,
y2
),
(
0
,
0
,
255
))
cv2
.
line
(
vis
,
(
x2
,
y1
),
(
x1
,
y2
),
(
0
,
0
,
255
))
draw_str
(
vis
,
(
x1
,
y2
+
16
),
'PSR:
%.2
f'
%
self
.
psr
)
def
preprocess
(
self
,
img
):
img
=
np
.
log
(
np
.
float32
(
img
)
+
1.0
)
img
=
(
img
-
img
.
mean
())
/
(
img
.
std
()
+
eps
)
return
img
*
self
.
win
def
correlate
(
self
,
img
):
C
=
cv2
.
mulSpectrums
(
cv2
.
dft
(
img
,
flags
=
cv2
.
DFT_COMPLEX_OUTPUT
),
self
.
H
,
0
,
conjB
=
True
)
resp
=
cv2
.
idft
(
C
,
flags
=
cv2
.
DFT_SCALE
|
cv2
.
DFT_REAL_OUTPUT
)
h
,
w
=
resp
.
shape
_
,
mval
,
_
,
(
mx
,
my
)
=
cv2
.
minMaxLoc
(
resp
)
side_resp
=
resp
.
copy
()
cv2
.
rectangle
(
side_resp
,
(
mx
-
5
,
my
-
5
),
(
mx
+
5
,
my
+
5
),
0
,
-
1
)
smean
,
sstd
=
side_resp
.
mean
(),
side_resp
.
std
()
psr
=
(
mval
-
smean
)
/
(
sstd
+
eps
)
return
resp
,
(
mx
-
w
//
2
,
my
-
h
//
2
),
psr
def
update_kernel
(
self
):
self
.
H
=
divSpec
(
self
.
H1
,
self
.
H2
)
self
.
H
[
...
,
1
]
*=
-
1
class
App
:
def
__init__
(
self
,
video_src
,
paused
=
False
):
self
.
cap
=
video
.
create_capture
(
video_src
)
_
,
self
.
frame
=
self
.
cap
.
read
()
cv2
.
imshow
(
'frame'
,
self
.
frame
)
self
.
rect_sel
=
RectSelector
(
'frame'
,
self
.
onrect
)
self
.
trackers
=
[]
self
.
paused
=
paused
def
onrect
(
self
,
rect
):
frame_gray
=
cv2
.
cvtColor
(
self
.
frame
,
cv2
.
COLOR_BGR2GRAY
)
tracker
=
MOSSE
(
frame_gray
,
rect
)
self
.
trackers
.
append
(
tracker
)
def
run
(
self
):
while
True
:
if
not
self
.
paused
:
ret
,
self
.
frame
=
self
.
cap
.
read
()
if
not
ret
:
break
frame_gray
=
cv2
.
cvtColor
(
self
.
frame
,
cv2
.
COLOR_BGR2GRAY
)
for
tracker
in
self
.
trackers
:
tracker
.
update
(
frame_gray
)
vis
=
self
.
frame
.
copy
()
for
tracker
in
self
.
trackers
:
tracker
.
draw_state
(
vis
)
if
len
(
self
.
trackers
)
>
0
:
cv2
.
imshow
(
'tracker state'
,
self
.
trackers
[
-
1
]
.
state_vis
)
self
.
rect_sel
.
draw
(
vis
)
cv2
.
imshow
(
'frame'
,
vis
)
ch
=
cv2
.
waitKey
(
10
)
if
ch
==
27
:
break
if
ch
==
ord
(
' '
):
self
.
paused
=
not
self
.
paused
if
ch
==
ord
(
'c'
):
self
.
trackers
=
[]
if
__name__
==
'__main__'
:
import
sys
,
getopt
opts
,
args
=
getopt
.
getopt
(
sys
.
argv
[
1
:],
''
,
[
'pause'
])
opts
=
dict
(
opts
)
try
:
video_src
=
args
[
0
]
except
:
video_src
=
'0'
App
(
video_src
,
paused
=
'--pause'
in
opts
)
.
run
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment