Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
f48befc6
Commit
f48befc6
authored
Jan 15, 2015
by
Vladislav Vinogradov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
refactor CUDA part of photo module
parent
df57d038
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
97 additions
and
88 deletions
+97
-88
cuda.hpp
modules/photo/include/opencv2/photo/cuda.hpp
+58
-56
perf_cuda.cpp
modules/photo/perf/perf_cuda.cpp
+2
-6
denoising.cuda.cpp
modules/photo/src/denoising.cuda.cpp
+35
-23
test_denoising.cuda.cpp
modules/photo/test/test_denoising.cuda.cpp
+2
-3
No files found.
modules/photo/include/opencv2/photo/cuda.hpp
View file @
f48befc6
...
...
@@ -64,64 +64,66 @@ BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supporte
@sa
fastNlMeansDenoising
*/
CV_EXPORTS
void
nonLocalMeans
(
const
GpuMat
&
src
,
GpuMat
&
dst
,
float
h
,
int
search_window
=
21
,
int
block_size
=
7
,
int
borderMode
=
BORDER_DEFAULT
,
Stream
&
s
=
Stream
::
Null
());
CV_EXPORTS
void
nonLocalMeans
(
InputArray
src
,
OutputArray
dst
,
float
h
,
int
search_window
=
21
,
int
block_size
=
7
,
int
borderMode
=
BORDER_DEFAULT
,
Stream
&
stream
=
Stream
::
Null
());
/** @brief Perform image denoising using Non-local Means Denoising algorithm
<http://www.ipol.im/pub/algo/bcm_non_local_means_denoising> with several computational
optimizations. Noise expected to be a gaussian white noise
@param src Input 8-bit 1-channel, 2-channel or 3-channel image.
@param dst Output image with the same size and type as src .
@param h Parameter regulating filter strength. Big h value perfectly removes noise but also
removes image details, smaller h value preserves details but also preserves some noise
@param search_window Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater search_window - greater
denoising time. Recommended value 21 pixels
@param block_size Size in pixels of the template patch that is used to compute weights. Should be
odd. Recommended value 7 pixels
@param s Stream for the asynchronous invocations.
This function expected to be applied to grayscale images. For colored images look at
FastNonLocalMeansDenoising::labMethod.
/** @brief The class implements fast approximate Non Local Means Denoising algorithm.
@sa
fastNlMeansDenoising
*/
CV_EXPORTS
void
fastNlMeansDenoising
(
InputArray
src
,
OutputArray
dst
,
float
h
,
int
search_window
=
21
,
int
block_size
=
7
,
Stream
&
stream
=
Stream
::
Null
());
/** @brief Modification of fastNlMeansDenoising function for colored images
@param src Input 8-bit 3-channel image.
@param dst Output image with the same size and type as src .
@param h_luminance Parameter regulating filter strength. Big h value perfectly removes noise but
also removes image details, smaller h value preserves details but also preserves some noise
@param photo_render float The same as h but for color components. For most images value equals 10 will be
enought to remove colored noise and do not distort colors
@param search_window Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater search_window - greater
denoising time. Recommended value 21 pixels
@param block_size Size in pixels of the template patch that is used to compute weights. Should be
odd. Recommended value 7 pixels
@param s Stream for the asynchronous invocations.
The function converts image to CIELAB colorspace and then separately denoise L and AB components
with given h parameters using FastNonLocalMeansDenoising::simpleMethod function.
@sa
fastNlMeansDenoisingColored
*/
class
CV_EXPORTS
FastNonLocalMeansDenoising
{
public
:
/** @brief Perform image denoising using Non-local Means Denoising algorithm
<http://www.ipol.im/pub/algo/bcm_non_local_means_denoising> with several computational
optimizations. Noise expected to be a gaussian white noise
@param src Input 8-bit 1-channel, 2-channel or 3-channel image.
@param dst Output image with the same size and type as src .
@param h Parameter regulating filter strength. Big h value perfectly removes noise but also
removes image details, smaller h value preserves details but also preserves some noise
@param search_window Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater search_window - greater
denoising time. Recommended value 21 pixels
@param block_size Size in pixels of the template patch that is used to compute weights. Should be
odd. Recommended value 7 pixels
@param s Stream for the asynchronous invocations.
This function expected to be applied to grayscale images. For colored images look at
FastNonLocalMeansDenoising::labMethod.
@sa
fastNlMeansDenoising
*/
void
simpleMethod
(
const
GpuMat
&
src
,
GpuMat
&
dst
,
float
h
,
int
search_window
=
21
,
int
block_size
=
7
,
Stream
&
s
=
Stream
::
Null
());
/** @brief Modification of FastNonLocalMeansDenoising::simpleMethod for color images
@param src Input 8-bit 3-channel image.
@param dst Output image with the same size and type as src .
@param h_luminance Parameter regulating filter strength. Big h value perfectly removes noise but
also removes image details, smaller h value preserves details but also preserves some noise
@param photo_render float The same as h but for color components. For most images value equals 10 will be
enought to remove colored noise and do not distort colors
@param search_window Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater search_window - greater
denoising time. Recommended value 21 pixels
@param block_size Size in pixels of the template patch that is used to compute weights. Should be
odd. Recommended value 7 pixels
@param s Stream for the asynchronous invocations.
The function converts image to CIELAB colorspace and then separately denoise L and AB components
with given h parameters using FastNonLocalMeansDenoising::simpleMethod function.
@sa
fastNlMeansDenoisingColored
*/
void
labMethod
(
const
GpuMat
&
src
,
GpuMat
&
dst
,
float
h_luminance
,
float
photo_render
,
int
search_window
=
21
,
int
block_size
=
7
,
Stream
&
s
=
Stream
::
Null
());
private
:
GpuMat
buffer
,
extended_src_buffer
;
GpuMat
lab
,
l
,
ab
;
};
CV_EXPORTS
void
fastNlMeansDenoisingColored
(
InputArray
src
,
OutputArray
dst
,
float
h_luminance
,
float
photo_render
,
int
search_window
=
21
,
int
block_size
=
7
,
Stream
&
stream
=
Stream
::
Null
());
//! @} photo
...
...
modules/photo/perf/perf_cuda.cpp
View file @
f48befc6
...
...
@@ -126,12 +126,10 @@ PERF_TEST_P(Sz_Depth_Cn_WinSz_BlockSz, CUDA_FastNonLocalMeans,
if
(
PERF_RUN_CUDA
())
{
cv
::
cuda
::
FastNonLocalMeansDenoising
fnlmd
;
const
cv
::
cuda
::
GpuMat
d_src
(
src
);
cv
::
cuda
::
GpuMat
dst
;
TEST_CYCLE
()
fnlmd
.
simpleMethod
(
d_src
,
dst
,
h
,
search_widow_size
,
block_size
);
TEST_CYCLE
()
cv
::
cuda
::
fastNlMeansDenoising
(
d_src
,
dst
,
h
,
search_widow_size
,
block_size
);
CUDA_SANITY_CHECK
(
dst
);
}
...
...
@@ -171,12 +169,10 @@ PERF_TEST_P(Sz_Depth_WinSz_BlockSz, CUDA_FastNonLocalMeansColored,
if
(
PERF_RUN_CUDA
())
{
cv
::
cuda
::
FastNonLocalMeansDenoising
fnlmd
;
const
cv
::
cuda
::
GpuMat
d_src
(
src
);
cv
::
cuda
::
GpuMat
dst
;
TEST_CYCLE
()
fnlmd
.
labMetho
d
(
d_src
,
dst
,
h
,
h
,
search_widow_size
,
block_size
);
TEST_CYCLE
()
cv
::
cuda
::
fastNlMeansDenoisingColore
d
(
d_src
,
dst
,
h
,
h
,
search_widow_size
,
block_size
);
CUDA_SANITY_CHECK
(
dst
);
}
...
...
modules/photo/src/denoising.cuda.cpp
View file @
f48befc6
...
...
@@ -60,9 +60,9 @@ using namespace cv::cuda;
#if !defined (HAVE_CUDA) || !defined(HAVE_OPENCV_CUDAARITHM) || !defined(HAVE_OPENCV_CUDAIMGPROC)
void
cv
::
cuda
::
nonLocalMeans
(
const
GpuMat
&
,
GpuMat
&
,
float
,
int
,
int
,
int
,
Stream
&
)
{
throw_no_cuda
();
}
void
cv
::
cuda
::
FastNonLocalMeansDenoising
::
simpleMethod
(
const
GpuMat
&
,
GpuMat
&
,
float
,
int
,
int
,
Stream
&
)
{
throw_no_cuda
();
}
void
cv
::
cuda
::
FastNonLocalMeansDenoising
::
labMethod
(
const
GpuMat
&
,
GpuMat
&
,
float
,
float
,
int
,
int
,
Stream
&
)
{
throw_no_cuda
();
}
void
cv
::
cuda
::
nonLocalMeans
(
InputArray
,
OutputArray
,
float
,
int
,
int
,
int
,
Stream
&
)
{
throw_no_cuda
();
}
void
cv
::
cuda
::
fastNlMeansDenoising
(
InputArray
,
OutputArray
,
float
,
int
,
int
,
Stream
&
)
{
throw_no_cuda
();
}
void
cv
::
cuda
::
fastNlMeansDenoisingColored
(
InputArray
,
OutputArray
,
float
,
float
,
int
,
int
,
Stream
&
)
{
throw_no_cuda
();
}
#else
...
...
@@ -78,13 +78,15 @@ namespace cv { namespace cuda { namespace device
}
}}}
void
cv
::
cuda
::
nonLocalMeans
(
const
GpuMat
&
src
,
GpuMat
&
dst
,
float
h
,
int
search_window
,
int
block_window
,
int
borderMode
,
Stream
&
s
)
void
cv
::
cuda
::
nonLocalMeans
(
InputArray
_src
,
OutputArray
_dst
,
float
h
,
int
search_window
,
int
block_window
,
int
borderMode
,
Stream
&
stream
)
{
using
cv
::
cuda
::
device
::
imgproc
::
nlm_bruteforce_gpu
;
typedef
void
(
*
func_t
)(
const
PtrStepSzb
&
src
,
PtrStepSzb
dst
,
int
search_radius
,
int
block_radius
,
float
h
,
int
borderMode
,
cudaStream_t
stream
);
static
const
func_t
funcs
[
4
]
=
{
nlm_bruteforce_gpu
<
uchar
>
,
nlm_bruteforce_gpu
<
uchar2
>
,
nlm_bruteforce_gpu
<
uchar3
>
,
0
/*nlm_bruteforce_gpu<uchar4>,*/
};
const
GpuMat
src
=
_src
.
getGpuMat
();
CV_Assert
(
src
.
type
()
==
CV_8U
||
src
.
type
()
==
CV_8UC2
||
src
.
type
()
==
CV_8UC3
);
const
func_t
func
=
funcs
[
src
.
channels
()
-
1
];
...
...
@@ -93,8 +95,10 @@ void cv::cuda::nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, int search
int
b
=
borderMode
;
CV_Assert
(
b
==
BORDER_REFLECT101
||
b
==
BORDER_REPLICATE
||
b
==
BORDER_CONSTANT
||
b
==
BORDER_REFLECT
||
b
==
BORDER_WRAP
);
dst
.
create
(
src
.
size
(),
src
.
type
());
func
(
src
,
dst
,
search_window
/
2
,
block_window
/
2
,
h
,
borderMode
,
StreamAccessor
::
getStream
(
s
));
_dst
.
create
(
src
.
size
(),
src
.
type
());
GpuMat
dst
=
_dst
.
getGpuMat
();
func
(
src
,
dst
,
search_window
/
2
,
block_window
/
2
,
h
,
borderMode
,
StreamAccessor
::
getStream
(
stream
));
}
namespace
cv
{
namespace
cuda
{
namespace
device
...
...
@@ -112,47 +116,55 @@ namespace cv { namespace cuda { namespace device
}
}}}
void
cv
::
cuda
::
FastNonLocalMeansDenoising
::
simpleMethod
(
const
GpuMat
&
src
,
GpuMat
&
dst
,
float
h
,
int
search_window
,
int
block_window
,
Stream
&
s
)
void
cv
::
cuda
::
fastNlMeansDenoising
(
InputArray
_src
,
OutputArray
_dst
,
float
h
,
int
search_window
,
int
block_window
,
Stream
&
stream
)
{
const
GpuMat
src
=
_src
.
getGpuMat
();
CV_Assert
(
src
.
depth
()
==
CV_8U
&&
src
.
channels
()
<
4
);
int
border_size
=
search_window
/
2
+
block_window
/
2
;
Size
esize
=
src
.
size
()
+
Size
(
border_size
,
border_size
)
*
2
;
cv
::
cuda
::
ensureSizeIsEnough
(
esize
,
CV_8UC3
,
extended_src_buffer
);
GpuMat
extended_src
(
esize
,
src
.
type
(),
extended_src_buffer
.
ptr
(),
extended_src_buffer
.
step
);
BufferPool
pool
(
stream
);
cv
::
cuda
::
copyMakeBorder
(
src
,
extended_src
,
border_size
,
border_size
,
border_size
,
border_size
,
cv
::
BORDER_DEFAULT
,
Scalar
(),
s
);
GpuMat
extended_src
=
pool
.
getBuffer
(
esize
,
src
.
type
());
cv
::
cuda
::
copyMakeBorder
(
src
,
extended_src
,
border_size
,
border_size
,
border_size
,
border_size
,
cv
::
BORDER_DEFAULT
,
Scalar
(),
stream
);
GpuMat
src_hdr
=
extended_src
(
Rect
(
Point2i
(
border_size
,
border_size
),
src
.
size
()));
int
bcols
,
brows
;
device
::
imgproc
::
nln_fast_get_buffer_size
(
src_hdr
,
search_window
,
block_window
,
bcols
,
brows
);
buffer
.
create
(
brows
,
bcols
,
CV_32S
);
GpuMat
buffer
=
pool
.
getBuffer
(
brows
,
bcols
,
CV_32S
);
using
namespace
cv
::
cuda
::
device
::
imgproc
;
typedef
void
(
*
nlm_fast_t
)(
const
PtrStepSzb
&
,
PtrStepSzb
,
PtrStepi
,
int
,
int
,
float
,
cudaStream_t
);
static
const
nlm_fast_t
funcs
[]
=
{
nlm_fast_gpu
<
uchar
>
,
nlm_fast_gpu
<
uchar2
>
,
nlm_fast_gpu
<
uchar3
>
,
0
};
dst
.
create
(
src
.
size
(),
src
.
type
());
funcs
[
src
.
channels
()
-
1
](
src_hdr
,
dst
,
buffer
,
search_window
,
block_window
,
h
,
StreamAccessor
::
getStream
(
s
));
_dst
.
create
(
src
.
size
(),
src
.
type
());
GpuMat
dst
=
_dst
.
getGpuMat
();
funcs
[
src
.
channels
()
-
1
](
src_hdr
,
dst
,
buffer
,
search_window
,
block_window
,
h
,
StreamAccessor
::
getStream
(
stream
));
}
void
cv
::
cuda
::
FastNonLocalMeansDenoising
::
labMethod
(
const
GpuMat
&
src
,
GpuMat
&
dst
,
float
h_luminance
,
float
h_color
,
int
search_window
,
int
block_window
,
Stream
&
s
)
void
cv
::
cuda
::
fastNlMeansDenoisingColored
(
InputArray
_src
,
OutputArray
_dst
,
float
h_luminance
,
float
h_color
,
int
search_window
,
int
block_window
,
Stream
&
stream
)
{
const
GpuMat
src
=
_src
.
getGpuMat
();
CV_Assert
(
src
.
type
()
==
CV_8UC3
);
lab
.
create
(
src
.
size
(),
src
.
type
());
cv
::
cuda
::
cvtColor
(
src
,
lab
,
cv
::
COLOR_BGR2Lab
,
0
,
s
);
BufferPool
pool
(
stream
);
GpuMat
lab
=
pool
.
getBuffer
(
src
.
size
(),
src
.
type
());
cv
::
cuda
::
cvtColor
(
src
,
lab
,
cv
::
COLOR_BGR2Lab
,
0
,
stream
);
l
.
create
(
src
.
size
(),
CV_8U
);
ab
.
create
(
src
.
size
(),
CV_8UC2
);
device
::
imgproc
::
fnlm_split_channels
(
lab
,
l
,
ab
,
StreamAccessor
::
getStream
(
s
));
GpuMat
l
=
pool
.
getBuffer
(
src
.
size
(),
CV_8U
);
GpuMat
ab
=
pool
.
getBuffer
(
src
.
size
(),
CV_8UC2
);
device
::
imgproc
::
fnlm_split_channels
(
lab
,
l
,
ab
,
StreamAccessor
::
getStream
(
s
tream
));
simpleMethod
(
l
,
l
,
h_luminance
,
search_window
,
block_window
,
s
);
simpleMethod
(
ab
,
ab
,
h_color
,
search_window
,
block_window
,
s
);
fastNlMeansDenoising
(
l
,
l
,
h_luminance
,
search_window
,
block_window
,
stream
);
fastNlMeansDenoising
(
ab
,
ab
,
h_color
,
search_window
,
block_window
,
stream
);
device
::
imgproc
::
fnlm_merge_channels
(
l
,
ab
,
lab
,
StreamAccessor
::
getStream
(
s
));
cv
::
cuda
::
cvtColor
(
lab
,
dst
,
cv
::
COLOR_Lab2BGR
,
0
,
s
);
device
::
imgproc
::
fnlm_merge_channels
(
l
,
ab
,
lab
,
StreamAccessor
::
getStream
(
s
tream
));
cv
::
cuda
::
cvtColor
(
lab
,
_dst
,
cv
::
COLOR_Lab2BGR
,
0
,
stream
);
}
#endif
modules/photo/test/test_denoising.cuda.cpp
View file @
f48befc6
...
...
@@ -99,10 +99,9 @@ TEST(CUDA_FastNonLocalMeans, Regression)
cv
::
cvtColor
(
bgr
,
gray
,
cv
::
COLOR_BGR2GRAY
);
GpuMat
dbgr
,
dgray
;
cv
::
cuda
::
FastNonLocalMeansDenoising
fnlmd
;
fnlmd
.
simpleMethod
(
GpuMat
(
gray
),
dgray
,
20
);
fnlmd
.
labMetho
d
(
GpuMat
(
bgr
),
dbgr
,
20
,
10
);
cv
::
cuda
::
fastNlMeansDenoising
(
GpuMat
(
gray
),
dgray
,
20
);
cv
::
cuda
::
fastNlMeansDenoisingColore
d
(
GpuMat
(
bgr
),
dbgr
,
20
,
10
);
#if 0
dumpImage("../gpu/denoising/fnlm_denoised_lena_bgr.png", cv::Mat(dbgr));
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment