Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
f46cd9db
Commit
f46cd9db
authored
Feb 05, 2019
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #13670 from allnes:dnn_fix_obj_detect_sample
parents
37a5af36
cca2c4b3
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
35 additions
and
57 deletions
+35
-57
object_detection.cpp
samples/dnn/object_detection.cpp
+27
-39
object_detection.py
samples/dnn/object_detection.py
+8
-18
No files found.
samples/dnn/object_detection.cpp
View file @
f46cd9db
...
@@ -153,51 +153,39 @@ void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net)
...
@@ -153,51 +153,39 @@ void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net)
std
::
vector
<
int
>
classIds
;
std
::
vector
<
int
>
classIds
;
std
::
vector
<
float
>
confidences
;
std
::
vector
<
float
>
confidences
;
std
::
vector
<
Rect
>
boxes
;
std
::
vector
<
Rect
>
boxes
;
if
(
net
.
getLayer
(
0
)
->
outputNameToIndex
(
"im_info"
)
!=
-
1
)
// Faster-RCNN or R-FCN
if
(
outLayerType
==
"DetectionOutput"
)
{
{
// Network produces output blob with a shape 1x1xNx7 where N is a number of
// Network produces output blob with a shape 1x1xNx7 where N is a number of
// detections and an every detection is a vector of values
// detections and an every detection is a vector of values
// [batchId, classId, confidence, left, top, right, bottom]
// [batchId, classId, confidence, left, top, right, bottom]
CV_Assert
(
outs
.
size
()
==
1
);
CV_Assert
(
outs
.
size
()
>
0
);
float
*
data
=
(
float
*
)
outs
[
0
].
data
;
for
(
size_t
k
=
0
;
k
<
outs
.
size
();
k
++
)
for
(
size_t
i
=
0
;
i
<
outs
[
0
].
total
();
i
+=
7
)
{
{
float
confidence
=
data
[
i
+
2
]
;
float
*
data
=
(
float
*
)
outs
[
k
].
data
;
if
(
confidence
>
confThreshold
)
for
(
size_t
i
=
0
;
i
<
outs
[
k
].
total
();
i
+=
7
)
{
{
int
left
=
(
int
)
data
[
i
+
3
];
float
confidence
=
data
[
i
+
2
];
int
top
=
(
int
)
data
[
i
+
4
];
if
(
confidence
>
confThreshold
)
int
right
=
(
int
)
data
[
i
+
5
];
{
int
bottom
=
(
int
)
data
[
i
+
6
];
int
left
=
(
int
)
data
[
i
+
3
];
int
width
=
right
-
left
+
1
;
int
top
=
(
int
)
data
[
i
+
4
];
int
height
=
bottom
-
top
+
1
;
int
right
=
(
int
)
data
[
i
+
5
];
classIds
.
push_back
((
int
)(
data
[
i
+
1
])
-
1
);
// Skip 0th background class id.
int
bottom
=
(
int
)
data
[
i
+
6
];
boxes
.
push_back
(
Rect
(
left
,
top
,
width
,
height
));
int
width
=
right
-
left
+
1
;
confidences
.
push_back
(
confidence
);
int
height
=
bottom
-
top
+
1
;
}
if
(
width
*
height
<=
1
)
}
{
}
left
=
(
int
)(
data
[
i
+
3
]
*
frame
.
cols
);
else
if
(
outLayerType
==
"DetectionOutput"
)
top
=
(
int
)(
data
[
i
+
4
]
*
frame
.
rows
);
{
right
=
(
int
)(
data
[
i
+
5
]
*
frame
.
cols
);
// Network produces output blob with a shape 1x1xNx7 where N is a number of
bottom
=
(
int
)(
data
[
i
+
6
]
*
frame
.
rows
);
// detections and an every detection is a vector of values
width
=
right
-
left
+
1
;
// [batchId, classId, confidence, left, top, right, bottom]
height
=
bottom
-
top
+
1
;
CV_Assert
(
outs
.
size
()
==
1
);
}
float
*
data
=
(
float
*
)
outs
[
0
].
data
;
classIds
.
push_back
((
int
)(
data
[
i
+
1
])
-
1
);
// Skip 0th background class id.
for
(
size_t
i
=
0
;
i
<
outs
[
0
].
total
();
i
+=
7
)
boxes
.
push_back
(
Rect
(
left
,
top
,
width
,
height
));
{
confidences
.
push_back
(
confidence
);
float
confidence
=
data
[
i
+
2
];
}
if
(
confidence
>
confThreshold
)
{
int
left
=
(
int
)(
data
[
i
+
3
]
*
frame
.
cols
);
int
top
=
(
int
)(
data
[
i
+
4
]
*
frame
.
rows
);
int
right
=
(
int
)(
data
[
i
+
5
]
*
frame
.
cols
);
int
bottom
=
(
int
)(
data
[
i
+
6
]
*
frame
.
rows
);
int
width
=
right
-
left
+
1
;
int
height
=
bottom
-
top
+
1
;
classIds
.
push_back
((
int
)(
data
[
i
+
1
])
-
1
);
// Skip 0th background class id.
boxes
.
push_back
(
Rect
(
left
,
top
,
width
,
height
));
confidences
.
push_back
(
confidence
);
}
}
}
}
}
}
...
...
samples/dnn/object_detection.py
View file @
f46cd9db
...
@@ -102,7 +102,7 @@ def postprocess(frame, outs):
...
@@ -102,7 +102,7 @@ def postprocess(frame, outs):
classIds
=
[]
classIds
=
[]
confidences
=
[]
confidences
=
[]
boxes
=
[]
boxes
=
[]
if
net
.
getLayer
(
0
)
.
outputNameToIndex
(
'im_info'
)
!=
-
1
:
# Faster-RCNN or R-FCN
if
lastLayer
.
type
==
'DetectionOutput'
:
# Network produces output blob with a shape 1x1xNx7 where N is a number of
# Network produces output blob with a shape 1x1xNx7 where N is a number of
# detections and an every detection is a vector of values
# detections and an every detection is a vector of values
# [batchId, classId, confidence, left, top, right, bottom]
# [batchId, classId, confidence, left, top, right, bottom]
...
@@ -116,23 +116,13 @@ def postprocess(frame, outs):
...
@@ -116,23 +116,13 @@ def postprocess(frame, outs):
bottom
=
int
(
detection
[
6
])
bottom
=
int
(
detection
[
6
])
width
=
right
-
left
+
1
width
=
right
-
left
+
1
height
=
bottom
-
top
+
1
height
=
bottom
-
top
+
1
classIds
.
append
(
int
(
detection
[
1
])
-
1
)
# Skip background label
if
width
*
height
<=
1
:
confidences
.
append
(
float
(
confidence
))
left
=
int
(
detection
[
3
]
*
frameWidth
)
boxes
.
append
([
left
,
top
,
width
,
height
])
top
=
int
(
detection
[
4
]
*
frameHeight
)
elif
lastLayer
.
type
==
'DetectionOutput'
:
right
=
int
(
detection
[
5
]
*
frameWidth
)
# Network produces output blob with a shape 1x1xNx7 where N is a number of
bottom
=
int
(
detection
[
6
]
*
frameHeight
)
# detections and an every detection is a vector of values
width
=
right
-
left
+
1
# [batchId, classId, confidence, left, top, right, bottom]
height
=
bottom
-
top
+
1
for
out
in
outs
:
for
detection
in
out
[
0
,
0
]:
confidence
=
detection
[
2
]
if
confidence
>
confThreshold
:
left
=
int
(
detection
[
3
]
*
frameWidth
)
top
=
int
(
detection
[
4
]
*
frameHeight
)
right
=
int
(
detection
[
5
]
*
frameWidth
)
bottom
=
int
(
detection
[
6
]
*
frameHeight
)
width
=
right
-
left
+
1
height
=
bottom
-
top
+
1
classIds
.
append
(
int
(
detection
[
1
])
-
1
)
# Skip background label
classIds
.
append
(
int
(
detection
[
1
])
-
1
)
# Skip background label
confidences
.
append
(
float
(
confidence
))
confidences
.
append
(
float
(
confidence
))
boxes
.
append
([
left
,
top
,
width
,
height
])
boxes
.
append
([
left
,
top
,
width
,
height
])
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment