Commit f4433428 authored by Konstantin Matskevich's avatar Konstantin Matskevich

features2d

parent c684da35
......@@ -140,7 +140,7 @@ const Mat& BOWImgDescriptorExtractor::getVocabulary() const
return vocabulary;
}
void BOWImgDescriptorExtractor::compute( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& imgDescriptor,
void BOWImgDescriptorExtractor::compute( InputArray image, std::vector<KeyPoint>& keypoints, InputOutputArray imgDescriptor,
std::vector<std::vector<int> >* pointIdxsOfClusters, Mat* descriptors )
{
imgDescriptor.release();
......@@ -170,7 +170,7 @@ int BOWImgDescriptorExtractor::descriptorType() const
return CV_32FC1;
}
void BOWImgDescriptorExtractor::compute( const Mat& keypointDescriptors, Mat& imgDescriptor, std::vector<std::vector<int> >* pointIdxsOfClusters )
void BOWImgDescriptorExtractor::compute( InputArray keypointDescriptors, InputOutputArray _imgDescriptor, std::vector<std::vector<int> >* pointIdxsOfClusters )
{
CV_Assert( vocabulary.empty() != false );
......@@ -187,7 +187,10 @@ void BOWImgDescriptorExtractor::compute( const Mat& keypointDescriptors, Mat& im
pointIdxsOfClusters->resize(clusterCount);
}
imgDescriptor = Mat( 1, clusterCount, descriptorType(), Scalar::all(0.0) );
Mat( 1, clusterCount, descriptorType(), Scalar::all(0.0) ).copyTo(_imgDescriptor);
Mat imgDescriptor = _imgDescriptor.getMat();
float *dptr = (float*)imgDescriptor.data;
for( size_t i = 0; i < matches.size(); i++ )
{
......@@ -201,7 +204,7 @@ void BOWImgDescriptorExtractor::compute( const Mat& keypointDescriptors, Mat& im
}
// Normalize image descriptor.
imgDescriptor /= keypointDescriptors.rows;
imgDescriptor /= keypointDescriptors.size().height;
}
}
......@@ -163,8 +163,9 @@ void SimpleBlobDetector::write( cv::FileStorage& fs ) const
params.write(fs);
}
void SimpleBlobDetector::findBlobs(const cv::Mat &image, const cv::Mat &binaryImage, std::vector<Center> &centers) const
void SimpleBlobDetector::findBlobs(InputArray _image, InputArray _binaryImage, std::vector<Center> &centers) const
{
Mat image = _image.getMat(), binaryImage = _binaryImage.getMat();
(void)image;
centers.clear();
......
......@@ -61,8 +61,9 @@ inline int smoothedSum(const Mat& sum, const KeyPoint& pt, int y, int x)
+ sum.at<int>(img_y - HALF_KERNEL, img_x - HALF_KERNEL);
}
static void pixelTests16(const Mat& sum, const std::vector<KeyPoint>& keypoints, Mat& descriptors)
static void pixelTests16(InputArray _sum, const std::vector<KeyPoint>& keypoints, OutputArray _descriptors)
{
Mat sum = _sum.getMat(), descriptors = _descriptors.getMat();
for (int i = 0; i < (int)keypoints.size(); ++i)
{
uchar* desc = descriptors.ptr(i);
......@@ -71,8 +72,9 @@ static void pixelTests16(const Mat& sum, const std::vector<KeyPoint>& keypoints,
}
}
static void pixelTests32(const Mat& sum, const std::vector<KeyPoint>& keypoints, Mat& descriptors)
static void pixelTests32(InputArray _sum, const std::vector<KeyPoint>& keypoints, OutputArray _descriptors)
{
Mat sum = _sum.getMat(), descriptors = _descriptors.getMat();
for (int i = 0; i < (int)keypoints.size(); ++i)
{
uchar* desc = descriptors.ptr(i);
......@@ -82,8 +84,9 @@ static void pixelTests32(const Mat& sum, const std::vector<KeyPoint>& keypoints,
}
}
static void pixelTests64(const Mat& sum, const std::vector<KeyPoint>& keypoints, Mat& descriptors)
static void pixelTests64(InputArray _sum, const std::vector<KeyPoint>& keypoints, OutputArray _descriptors)
{
Mat sum = _sum.getMat(), descriptors = _descriptors.getMat();
for (int i = 0; i < (int)keypoints.size(); ++i)
{
uchar* desc = descriptors.ptr(i);
......@@ -155,12 +158,12 @@ void BriefDescriptorExtractor::write( FileStorage& fs) const
fs << "descriptorSize" << bytes_;
}
void BriefDescriptorExtractor::computeImpl(const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const
void BriefDescriptorExtractor::computeImpl(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
{
// Construct integral image for fast smoothing (box filter)
Mat sum;
Mat grayImage = image;
Mat grayImage = image.getMat();
if( image.type() != CV_8U ) cvtColor( image, grayImage, COLOR_BGR2GRAY );
///TODO allow the user to pass in a precomputed integral image
......@@ -173,7 +176,7 @@ void BriefDescriptorExtractor::computeImpl(const Mat& image, std::vector<KeyPoin
//Remove keypoints very close to the border
KeyPointsFilter::runByImageBorder(keypoints, image.size(), PATCH_SIZE/2 + KERNEL_SIZE/2);
descriptors = Mat::zeros((int)keypoints.size(), bytes_, CV_8U);
Mat(Mat::zeros((int)keypoints.size(), bytes_, CV_8U)).copyTo(descriptors);
test_fn_(sum, keypoints, descriptors);
}
......
......@@ -757,7 +757,7 @@ BRISK::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArra
}
void
BRISK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const
BRISK::computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
{
(*this)(image, Mat(), keypoints, descriptors, true);
}
......
......@@ -54,7 +54,7 @@ namespace cv
DescriptorExtractor::~DescriptorExtractor()
{}
void DescriptorExtractor::compute( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const
void DescriptorExtractor::compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const
{
if( image.empty() || keypoints.empty() )
{
......@@ -68,8 +68,11 @@ void DescriptorExtractor::compute( const Mat& image, std::vector<KeyPoint>& keyp
computeImpl( image, keypoints, descriptors );
}
void DescriptorExtractor::compute( const std::vector<Mat>& imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection, std::vector<Mat>& descCollection ) const
void DescriptorExtractor::compute( InputArrayOfArrays _imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection, OutputArrayOfArrays _descCollection ) const
{
std::vector<Mat> imageCollection, descCollection;
_imageCollection.getMatVector(imageCollection);
_descCollection.getMatVector(descCollection);
CV_Assert( imageCollection.size() == pointCollection.size() );
descCollection.resize( imageCollection.size() );
for( size_t i = 0; i < imageCollection.size(); i++ )
......@@ -106,7 +109,7 @@ Ptr<DescriptorExtractor> DescriptorExtractor::create(const String& descriptorExt
}
CV_WRAP void Feature2D::compute( const Mat& image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const
CV_WRAP void Feature2D::compute( InputArray image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, CV_OUT OutputArray descriptors ) const
{
DescriptorExtractor::compute(image, keypoints, descriptors);
}
......@@ -157,8 +160,9 @@ struct KP_LessThan
const std::vector<KeyPoint>* kp;
};
void OpponentColorDescriptorExtractor::computeImpl( const Mat& bgrImage, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const
void OpponentColorDescriptorExtractor::computeImpl( InputArray _bgrImage, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const
{
Mat bgrImage = _bgrImage.getMat();
std::vector<Mat> opponentChannels;
convertBGRImageToOpponentColorSpace( bgrImage, opponentChannels );
......
......@@ -50,7 +50,7 @@ namespace cv
/*
* Functions to draw keypoints and matches.
*/
static inline void _drawKeypoint( Mat& img, const KeyPoint& p, const Scalar& color, int flags )
static inline void _drawKeypoint( InputOutputArray img, const KeyPoint& p, const Scalar& color, int flags )
{
CV_Assert( !img.empty() );
Point center( cvRound(p.pt.x * draw_multiplier), cvRound(p.pt.y * draw_multiplier) );
......@@ -88,7 +88,7 @@ static inline void _drawKeypoint( Mat& img, const KeyPoint& p, const Scalar& col
}
}
void drawKeypoints( const Mat& image, const std::vector<KeyPoint>& keypoints, Mat& outImage,
void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray& outImage,
const Scalar& _color, int flags )
{
if( !(flags & DrawMatchesFlags::DRAW_OVER_OUTIMG) )
......@@ -120,26 +120,30 @@ void drawKeypoints( const Mat& image, const std::vector<KeyPoint>& keypoints, Ma
}
}
static void _prepareImgAndDrawKeypoints( const Mat& img1, const std::vector<KeyPoint>& keypoints1,
const Mat& img2, const std::vector<KeyPoint>& keypoints2,
Mat& outImg, Mat& outImg1, Mat& outImg2,
static void _prepareImgAndDrawKeypoints( InputArray img1, const std::vector<KeyPoint>& keypoints1,
InputArray img2, const std::vector<KeyPoint>& keypoints2,
InputOutputArray _outImg, Mat& outImg1, Mat& outImg2,
const Scalar& singlePointColor, int flags )
{
Size size( img1.cols + img2.cols, MAX(img1.rows, img2.rows) );
Mat outImg;
Size img1size = img1.size(), img2size = img2.size();
Size size( img1size.width + img2size.width, MAX(img1size.height, img2size.height) );
if( flags & DrawMatchesFlags::DRAW_OVER_OUTIMG )
{
outImg = _outImg.getMat();
if( size.width > outImg.cols || size.height > outImg.rows )
CV_Error( Error::StsBadSize, "outImg has size less than need to draw img1 and img2 together" );
outImg1 = outImg( Rect(0, 0, img1.cols, img1.rows) );
outImg2 = outImg( Rect(img1.cols, 0, img2.cols, img2.rows) );
outImg1 = outImg( Rect(0, 0, img1size.width, img1size.height) );
outImg2 = outImg( Rect(img1size.width, 0, img2size.width, img2size.height) );
}
else
{
outImg.create( size, CV_MAKETYPE(img1.depth(), 3) );
_outImg.create( size, CV_MAKETYPE(img1.depth(), 3) );
outImg = _outImg.getMat();
outImg = Scalar::all(0);
outImg1 = outImg( Rect(0, 0, img1.cols, img1.rows) );
outImg2 = outImg( Rect(img1.cols, 0, img2.cols, img2.rows) );
outImg1 = outImg( Rect(0, 0, img1size.width, img1size.height) );
outImg2 = outImg( Rect(img1size.width, 0, img2size.width, img2size.height) );
printf("%d %d\n", _outImg.size().width, _outImg.size().height);
if( img1.type() == CV_8U )
cvtColor( img1, outImg1, COLOR_GRAY2BGR );
else
......@@ -154,15 +158,15 @@ static void _prepareImgAndDrawKeypoints( const Mat& img1, const std::vector<KeyP
// draw keypoints
if( !(flags & DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS) )
{
Mat _outImg1 = outImg( Rect(0, 0, img1.cols, img1.rows) );
Mat _outImg1 = outImg( Rect(0, 0, img1size.width, img1size.height) );
drawKeypoints( _outImg1, keypoints1, _outImg1, singlePointColor, flags + DrawMatchesFlags::DRAW_OVER_OUTIMG );
Mat _outImg2 = outImg( Rect(img1.cols, 0, img2.cols, img2.rows) );
Mat _outImg2 = outImg( Rect(img1size.width, 0, img2size.width, img2size.height) );
drawKeypoints( _outImg2, keypoints2, _outImg2, singlePointColor, flags + DrawMatchesFlags::DRAW_OVER_OUTIMG );
}
}
static inline void _drawMatch( Mat& outImg, Mat& outImg1, Mat& outImg2 ,
static inline void _drawMatch( InputOutputArray outImg, InputOutputArray outImg1, InputOutputArray outImg2 ,
const KeyPoint& kp1, const KeyPoint& kp2, const Scalar& matchColor, int flags )
{
RNG& rng = theRNG();
......@@ -174,7 +178,7 @@ static inline void _drawMatch( Mat& outImg, Mat& outImg1, Mat& outImg2 ,
Point2f pt1 = kp1.pt,
pt2 = kp2.pt,
dpt2 = Point2f( std::min(pt2.x+outImg1.cols, float(outImg.cols-1)), pt2.y );
dpt2 = Point2f( std::min(pt2.x+outImg1.size().width, float(outImg.size().width-1)), pt2.y );
line( outImg,
Point(cvRound(pt1.x*draw_multiplier), cvRound(pt1.y*draw_multiplier)),
......@@ -182,9 +186,9 @@ static inline void _drawMatch( Mat& outImg, Mat& outImg1, Mat& outImg2 ,
color, 1, LINE_AA, draw_shift_bits );
}
void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1,
const Mat& img2, const std::vector<KeyPoint>& keypoints2,
const std::vector<DMatch>& matches1to2, Mat& outImg,
void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
InputArray img2, const std::vector<KeyPoint>& keypoints2,
const std::vector<DMatch>& matches1to2, InputOutputArray outImg,
const Scalar& matchColor, const Scalar& singlePointColor,
const std::vector<char>& matchesMask, int flags )
{
......@@ -211,9 +215,9 @@ void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1,
}
}
void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1,
const Mat& img2, const std::vector<KeyPoint>& keypoints2,
const std::vector<std::vector<DMatch> >& matches1to2, Mat& outImg,
void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
InputArray img2, const std::vector<KeyPoint>& keypoints2,
const std::vector<std::vector<DMatch> >& matches1to2, InputOutputArray outImg,
const Scalar& matchColor, const Scalar& singlePointColor,
const std::vector<std::vector<char> >& matchesMask, int flags )
{
......
......@@ -229,9 +229,9 @@ void FREAK::buildPattern()
}
}
void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const
void FREAK::computeImpl( InputArray _image, std::vector<KeyPoint>& keypoints, OutputArray _descriptors ) const
{
Mat image = _image.getMat();
if( image.empty() )
return;
if( keypoints.empty() )
......@@ -297,7 +297,8 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
if( !extAll )
{
// extract the best comparisons only
descriptors = cv::Mat::zeros((int)keypoints.size(), FREAK_NB_PAIRS/8, CV_8U);
Mat(cv::Mat::zeros((int)keypoints.size(), FREAK_NB_PAIRS/8, CV_8U)).copyTo(_descriptors);
Mat descriptors = _descriptors.getMat();
#if CV_SSE2
__m128i* ptr= (__m128i*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);
#else
......@@ -415,7 +416,8 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
}
else // extract all possible comparisons for selection
{
descriptors = cv::Mat::zeros((int)keypoints.size(), 128, CV_8U);
Mat(cv::Mat::zeros((int)keypoints.size(), 128, CV_8U)).copyTo(_descriptors);
Mat descriptors = _descriptors.getMat();
std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);
for( size_t k = keypoints.size(); k--; )
......@@ -474,13 +476,14 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
}
// simply take average on a square patch, not even gaussian approx
uchar FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral,
uchar FREAK::meanIntensity( InputArray _image, InputArray _integral,
const float kp_x,
const float kp_y,
const unsigned int scale,
const unsigned int rot,
const unsigned int point) const
{
Mat image = _image.getMat(), integral = _integral.getMat();
// get point position in image
const PatternPoint& FreakPoint = patternLookup[scale*FREAK_NB_ORIENTATION*FREAK_NB_POINTS + rot*FREAK_NB_POINTS + point];
const float xf = FreakPoint.x+kp_x;
......
......@@ -1617,9 +1617,11 @@ GenericDescriptorMatcher::GenericDescriptorMatcher()
GenericDescriptorMatcher::~GenericDescriptorMatcher()
{}
void GenericDescriptorMatcher::add( const std::vector<Mat>& images,
void GenericDescriptorMatcher::add( InputArrayOfArrays _images,
std::vector<std::vector<KeyPoint> >& keypoints )
{
std::vector<Mat> images;
_images.getMatVector(images);
CV_Assert( !images.empty() );
CV_Assert( images.size() == keypoints.size() );
......@@ -1651,8 +1653,8 @@ void GenericDescriptorMatcher::clear()
void GenericDescriptorMatcher::train()
{}
void GenericDescriptorMatcher::classify( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints ) const
void GenericDescriptorMatcher::classify( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
InputArray trainImage, std::vector<KeyPoint>& trainKeypoints ) const
{
std::vector<DMatch> matches;
match( queryImage, queryKeypoints, trainImage, trainKeypoints, matches );
......@@ -1662,7 +1664,7 @@ void GenericDescriptorMatcher::classify( const Mat& queryImage, std::vector<KeyP
queryKeypoints[matches[i].queryIdx].class_id = trainKeypoints[matches[i].trainIdx].class_id;
}
void GenericDescriptorMatcher::classify( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints )
void GenericDescriptorMatcher::classify( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints )
{
std::vector<DMatch> matches;
match( queryImage, queryKeypoints, matches );
......@@ -1672,10 +1674,11 @@ void GenericDescriptorMatcher::classify( const Mat& queryImage, std::vector<KeyP
queryKeypoints[matches[i].queryIdx].class_id = trainPointCollection.getKeyPoint( matches[i].trainIdx, matches[i].trainIdx ).class_id;
}
void GenericDescriptorMatcher::match( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints,
void GenericDescriptorMatcher::match( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
InputArray _trainImage, std::vector<KeyPoint>& trainKeypoints,
std::vector<DMatch>& matches, const Mat& mask ) const
{
Mat trainImage = _trainImage.getMat();
Ptr<GenericDescriptorMatcher> tempMatcher = clone( true );
std::vector<std::vector<KeyPoint> > vecTrainPoints(1, trainKeypoints);
tempMatcher->add( std::vector<Mat>(1, trainImage), vecTrainPoints );
......@@ -1683,10 +1686,11 @@ void GenericDescriptorMatcher::match( const Mat& queryImage, std::vector<KeyPoin
vecTrainPoints[0].swap( trainKeypoints );
}
void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints,
void GenericDescriptorMatcher::knnMatch( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
InputArray _trainImage, std::vector<KeyPoint>& trainKeypoints,
std::vector<std::vector<DMatch> >& matches, int knn, const Mat& mask, bool compactResult ) const
{
Mat trainImage = _trainImage.getMat();
Ptr<GenericDescriptorMatcher> tempMatcher = clone( true );
std::vector<std::vector<KeyPoint> > vecTrainPoints(1, trainKeypoints);
tempMatcher->add( std::vector<Mat>(1, trainImage), vecTrainPoints );
......@@ -1694,11 +1698,12 @@ void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, std::vector<KeyP
vecTrainPoints[0].swap( trainKeypoints );
}
void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints,
void GenericDescriptorMatcher::radiusMatch( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
InputArray _trainImage, std::vector<KeyPoint>& trainKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance,
const Mat& mask, bool compactResult ) const
{
Mat trainImage = _trainImage.getMat();
Ptr<GenericDescriptorMatcher> tempMatcher = clone( true );
std::vector<std::vector<KeyPoint> > vecTrainPoints(1, trainKeypoints);
tempMatcher->add( std::vector<Mat>(1, trainImage), vecTrainPoints );
......@@ -1706,7 +1711,7 @@ void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, std::vector<K
vecTrainPoints[0].swap( trainKeypoints );
}
void GenericDescriptorMatcher::match( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
void GenericDescriptorMatcher::match( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<DMatch>& matches, const std::vector<Mat>& masks )
{
std::vector<std::vector<DMatch> > knnMatches;
......@@ -1714,7 +1719,7 @@ void GenericDescriptorMatcher::match( const Mat& queryImage, std::vector<KeyPoin
convertMatches( knnMatches, matches );
}
void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
void GenericDescriptorMatcher::knnMatch( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int knn,
const std::vector<Mat>& masks, bool compactResult )
{
......@@ -1730,7 +1735,7 @@ void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, std::vector<KeyP
knnMatchImpl( queryImage, queryKeypoints, matches, knn, masks, compactResult );
}
void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
void GenericDescriptorMatcher::radiusMatch( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& masks, bool compactResult )
{
......@@ -1792,10 +1797,11 @@ VectorDescriptorMatcher::VectorDescriptorMatcher( const Ptr<DescriptorExtractor>
VectorDescriptorMatcher::~VectorDescriptorMatcher()
{}
void VectorDescriptorMatcher::add( const std::vector<Mat>& imgCollection,
void VectorDescriptorMatcher::add( InputArrayOfArrays _imgCollection,
std::vector<std::vector<KeyPoint> >& pointCollection )
{
std::vector<Mat> descriptors;
std::vector<Mat> imgCollection, descriptors;
_imgCollection.getMatVector(imgCollection);
extractor->compute( imgCollection, pointCollection, descriptors );
matcher->add( descriptors );
......@@ -1820,7 +1826,7 @@ bool VectorDescriptorMatcher::isMaskSupported()
return matcher->isMaskSupported();
}
void VectorDescriptorMatcher::knnMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
void VectorDescriptorMatcher::knnMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int knn,
const std::vector<Mat>& masks, bool compactResult )
{
......@@ -1829,7 +1835,7 @@ void VectorDescriptorMatcher::knnMatchImpl( const Mat& queryImage, std::vector<K
matcher->knnMatch( queryDescriptors, matches, knn, masks, compactResult );
}
void VectorDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
void VectorDescriptorMatcher::radiusMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& masks, bool compactResult )
{
......
......@@ -948,7 +948,7 @@ void ORB::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputA
(*this)(image.getMat(), mask.getMat(), keypoints, noArray(), false);
}
void ORB::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const
void ORB::computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
{
(*this)(image, Mat(), keypoints, descriptors, true);
}
......
......@@ -2672,10 +2672,10 @@ protected:
// The minimum distance to each training patch with all its affine poses is found over all scales.
// The class ID of a match is returned for each keypoint. The distance is calculated over PCA components
// loaded with DescriptorOneWay::Initialize, kd tree is used for finding minimum distances.
virtual void knnMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
virtual void knnMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int k,
const std::vector<Mat>& masks, bool compactResult );
virtual void radiusMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
virtual void radiusMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& masks, bool compactResult );
......@@ -2735,10 +2735,10 @@ public:
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected:
virtual void knnMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
virtual void knnMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int k,
const std::vector<Mat>& masks, bool compactResult );
virtual void radiusMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
virtual void radiusMatchImpl( InputArray queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& masks, bool compactResult );
......@@ -2770,7 +2770,7 @@ public:
virtual bool empty() const;
protected:
virtual void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const;
virtual void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
RTreeClassifier classifier_;
static const int BORDER_SIZE = 16;
......@@ -2783,15 +2783,17 @@ CalonderDescriptorExtractor<T>::CalonderDescriptorExtractor(const String& classi
}
template<typename T>
void CalonderDescriptorExtractor<T>::computeImpl( const Mat& image,
void CalonderDescriptorExtractor<T>::computeImpl( InputArray _image,
std::vector<KeyPoint>& keypoints,
Mat& descriptors) const
OutputArray _descriptors) const
{
Mat image = _image.getMat(), descriptors;
// Cannot compute descriptors for keypoints on the image border.
KeyPointsFilter::runByImageBorder(keypoints, image.size(), BORDER_SIZE);
/// @todo Check 16-byte aligned
descriptors.create((int)keypoints.size(), classifier_.classes(), cv::DataType<T>::type);
_descriptors.create((int)keypoints.size(), classifier_.classes(), cv::DataType<T>::type);
descriptors = _descriptors.getMat();
int patchSize = RandomizedTree::PATCH_SIZE;
int offset = patchSize / 2;
......
......@@ -2232,10 +2232,11 @@ namespace cv{
return false;
}
void OneWayDescriptorMatcher::knnMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
void OneWayDescriptorMatcher::knnMatchImpl( InputArray _queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int knn,
const std::vector<Mat>& /*masks*/, bool /*compactResult*/ )
{
Mat queryImage = _queryImage.getMat();
train();
CV_Assert( knn == 1 ); // knn > 1 unsupported because of bug in OneWayDescriptorBase for this case
......@@ -2251,10 +2252,12 @@ namespace cv{
}
}
void OneWayDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
void OneWayDescriptorMatcher::radiusMatchImpl( InputArray _queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& /*masks*/, bool /*compactResult*/ )
{
Mat queryImage = _queryImage.getMat();
train();
matches.resize( queryKeypoints.size() );
......
......@@ -1297,10 +1297,12 @@ void FernDescriptorMatcher::calcBestProbAndMatchIdx( const Mat& image, const Poi
}
}
void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
void FernDescriptorMatcher::knnMatchImpl( InputArray _queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, int knn,
const std::vector<Mat>& /*masks*/, bool /*compactResult*/ )
{
Mat queryImage = _queryImage.getMat();
train();
matches.resize( queryKeypoints.size() );
......@@ -1333,10 +1335,11 @@ void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImage, std::vector<Key
}
}
void FernDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
void FernDescriptorMatcher::radiusMatchImpl( InputArray _queryImage, std::vector<KeyPoint>& queryKeypoints,
std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& /*masks*/, bool /*compactResult*/ )
{
Mat queryImage = _queryImage.getMat();
train();
matches.resize( queryKeypoints.size() );
std::vector<float> signature( (size_t)classifier->getClassCount() );
......
......@@ -88,7 +88,7 @@ public:
protected:
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask = noArray() ) const;
void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const;
void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
CV_PROP_RW int nfeatures;
CV_PROP_RW int nOctaveLayers;
......@@ -144,7 +144,7 @@ public:
protected:
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask = noArray() ) const;
void computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const;
void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
};
typedef SURF SurfFeatureDetector;
......
......@@ -823,7 +823,7 @@ void SIFT::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, Input
(*this)(image.getMat(), mask.getMat(), keypoints, noArray());
}
void SIFT::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const
void SIFT::computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
{
(*this)(image, Mat(), keypoints, descriptors, true);
}
......
......@@ -984,7 +984,7 @@ void SURF::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, Input
(*this)(image.getMat(), mask.getMat(), keypoints, noArray(), false);
}
void SURF::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const
void SURF::computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
{
(*this)(image, Mat(), keypoints, descriptors, true);
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment