Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
f414c16c
Commit
f414c16c
authored
Feb 08, 2019
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
parents
c6f39870
757d8ac8
Hide whitespace changes
Inline
Side-by-side
Showing
10 changed files
with
254 additions
and
15 deletions
+254
-15
cuda_types.hpp
modules/core/include/opencv2/core/cuda_types.hpp
+2
-0
prior_box_layer.cpp
modules/dnn/src/layers/prior_box_layer.cpp
+13
-6
op_inf_engine.cpp
modules/dnn/src/op_inf_engine.cpp
+9
-2
test_backends.cpp
modules/dnn/test/test_backends.cpp
+24
-0
test_layers.cpp
modules/dnn/test/test_layers.cpp
+34
-0
perf_cvt_color.cpp
modules/imgproc/perf/perf_cvt_color.cpp
+120
-0
perf_histogram.cpp
modules/imgproc/perf/perf_histogram.cpp
+5
-3
morph.cpp
modules/imgproc/src/morph.cpp
+1
-1
camshift.cpp
modules/video/src/camshift.cpp
+2
-0
tf_text_graph_mask_rcnn.py
samples/dnn/tf_text_graph_mask_rcnn.py
+44
-3
No files found.
modules/core/include/opencv2/core/cuda_types.hpp
View file @
f414c16c
...
...
@@ -127,10 +127,12 @@ namespace cv
};
typedef
PtrStepSz
<
unsigned
char
>
PtrStepSzb
;
typedef
PtrStepSz
<
unsigned
short
>
PtrStepSzus
;
typedef
PtrStepSz
<
float
>
PtrStepSzf
;
typedef
PtrStepSz
<
int
>
PtrStepSzi
;
typedef
PtrStep
<
unsigned
char
>
PtrStepb
;
typedef
PtrStep
<
unsigned
short
>
PtrStepus
;
typedef
PtrStep
<
float
>
PtrStepf
;
typedef
PtrStep
<
int
>
PtrStepi
;
...
...
modules/dnn/src/layers/prior_box_layer.cpp
View file @
f414c16c
...
...
@@ -502,9 +502,7 @@ public:
if
(
_explicitSizes
)
{
InferenceEngine
::
Builder
::
PriorBoxClusteredLayer
ieLayer
(
name
);
CV_Assert
(
_stepX
==
_stepY
);
ieLayer
.
setStep
(
_stepX
);
ieLayer
.
setSteps
({
_stepY
,
_stepX
});
CV_CheckEQ
(
_offsetsX
.
size
(),
(
size_t
)
1
,
""
);
CV_CheckEQ
(
_offsetsY
.
size
(),
(
size_t
)
1
,
""
);
CV_CheckEQ
(
_offsetsX
[
0
],
_offsetsY
[
0
],
""
);
ieLayer
.
setOffset
(
_offsetsX
[
0
]);
...
...
@@ -531,9 +529,6 @@ public:
if
(
_maxSize
>
0
)
ieLayer
.
setMaxSize
(
_maxSize
);
CV_Assert
(
_stepX
==
_stepY
);
ieLayer
.
setStep
(
_stepX
);
CV_CheckEQ
(
_offsetsX
.
size
(),
(
size_t
)
1
,
""
);
CV_CheckEQ
(
_offsetsY
.
size
(),
(
size_t
)
1
,
""
);
CV_CheckEQ
(
_offsetsX
[
0
],
_offsetsY
[
0
],
""
);
ieLayer
.
setOffset
(
_offsetsX
[
0
]);
...
...
@@ -541,6 +536,18 @@ public:
ieLayer
.
setFlip
(
false
);
// We already flipped aspect ratios.
InferenceEngine
::
Builder
::
Layer
l
=
ieLayer
;
if
(
_stepX
==
_stepY
)
{
l
.
getParameters
()[
"step"
]
=
_stepX
;
l
.
getParameters
()[
"step_h"
]
=
0.0
;
l
.
getParameters
()[
"step_w"
]
=
0.0
;
}
else
{
l
.
getParameters
()[
"step"
]
=
0.0
;
l
.
getParameters
()[
"step_h"
]
=
_stepY
;
l
.
getParameters
()[
"step_w"
]
=
_stepX
;
}
if
(
!
_aspectRatios
.
empty
())
{
l
.
getParameters
()[
"aspect_ratio"
]
=
_aspectRatios
;
...
...
modules/dnn/src/op_inf_engine.cpp
View file @
f414c16c
...
...
@@ -622,7 +622,11 @@ void InfEngineBackendNet::init(int targetId)
#endif // IE < R5
static
std
::
map
<
InferenceEngine
::
TargetDevice
,
InferenceEngine
::
InferenceEnginePluginPtr
>
sharedPlugins
;
static
std
::
map
<
InferenceEngine
::
TargetDevice
,
InferenceEngine
::
InferenceEnginePluginPtr
>&
getSharedPlugins
()
{
static
std
::
map
<
InferenceEngine
::
TargetDevice
,
InferenceEngine
::
InferenceEnginePluginPtr
>
sharedPlugins
;
return
sharedPlugins
;
}
void
InfEngineBackendNet
::
initPlugin
(
InferenceEngine
::
ICNNNetwork
&
net
)
{
...
...
@@ -630,6 +634,8 @@ void InfEngineBackendNet::initPlugin(InferenceEngine::ICNNNetwork& net)
try
{
AutoLock
lock
(
getInitializationMutex
());
auto
&
sharedPlugins
=
getSharedPlugins
();
auto
pluginIt
=
sharedPlugins
.
find
(
targetDevice
);
if
(
pluginIt
!=
sharedPlugins
.
end
())
{
...
...
@@ -797,7 +803,8 @@ CV__DNN_INLINE_NS_BEGIN
void
resetMyriadDevice
()
{
#ifdef HAVE_INF_ENGINE
sharedPlugins
.
erase
(
InferenceEngine
::
TargetDevice
::
eMYRIAD
);
AutoLock
lock
(
getInitializationMutex
());
getSharedPlugins
().
erase
(
InferenceEngine
::
TargetDevice
::
eMYRIAD
);
#endif // HAVE_INF_ENGINE
}
...
...
modules/dnn/test/test_backends.cpp
View file @
f414c16c
...
...
@@ -162,6 +162,18 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe)
inp
,
"detection_out"
,
""
,
diffScores
);
}
TEST_P
(
DNNTestNetwork
,
MobileNet_SSD_Caffe_Different_Width_Height
)
{
if
(
backend
==
DNN_BACKEND_HALIDE
)
throw
SkipTestException
(
""
);
Mat
sample
=
imread
(
findDataFile
(
"dnn/street.png"
,
false
));
Mat
inp
=
blobFromImage
(
sample
,
1.0
f
/
127.5
,
Size
(
300
,
560
),
Scalar
(
127.5
,
127.5
,
127.5
),
false
);
float
diffScores
=
(
target
==
DNN_TARGET_OPENCL_FP16
||
target
==
DNN_TARGET_MYRIAD
)
?
0.029
:
0.0
;
float
diffSquares
=
(
target
==
DNN_TARGET_OPENCL_FP16
||
target
==
DNN_TARGET_MYRIAD
)
?
0.09
:
0.0
;
processNet
(
"dnn/MobileNetSSD_deploy.caffemodel"
,
"dnn/MobileNetSSD_deploy.prototxt"
,
inp
,
"detection_out"
,
""
,
diffScores
,
diffSquares
);
}
TEST_P
(
DNNTestNetwork
,
MobileNet_SSD_v1_TensorFlow
)
{
if
(
backend
==
DNN_BACKEND_HALIDE
)
...
...
@@ -174,6 +186,18 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow)
inp
,
"detection_out"
,
""
,
l1
,
lInf
);
}
TEST_P
(
DNNTestNetwork
,
MobileNet_SSD_v1_TensorFlow_Different_Width_Height
)
{
if
(
backend
==
DNN_BACKEND_HALIDE
)
throw
SkipTestException
(
""
);
Mat
sample
=
imread
(
findDataFile
(
"dnn/street.png"
,
false
));
Mat
inp
=
blobFromImage
(
sample
,
1.0
f
,
Size
(
300
,
560
),
Scalar
(),
false
);
float
l1
=
(
target
==
DNN_TARGET_OPENCL_FP16
||
target
==
DNN_TARGET_MYRIAD
)
?
0.012
:
0.0
;
float
lInf
=
(
target
==
DNN_TARGET_OPENCL_FP16
||
target
==
DNN_TARGET_MYRIAD
)
?
0.06
:
0.0
;
processNet
(
"dnn/ssd_mobilenet_v1_coco_2017_11_17.pb"
,
"dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt"
,
inp
,
"detection_out"
,
""
,
l1
,
lInf
);
}
TEST_P
(
DNNTestNetwork
,
MobileNet_SSD_v2_TensorFlow
)
{
if
(
backend
==
DNN_BACKEND_HALIDE
)
...
...
modules/dnn/test/test_layers.cpp
View file @
f414c16c
...
...
@@ -46,6 +46,10 @@
#include <opencv2/dnn/all_layers.hpp>
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
#ifdef HAVE_INF_ENGINE
#include <thread>
#endif
namespace
opencv_test
{
namespace
{
template
<
typename
TString
>
...
...
@@ -974,6 +978,36 @@ TEST_P(Layer_Test_Convolution_DLDT, setInput_uint8)
if
(
targetId
!=
DNN_TARGET_MYRIAD
)
normAssert
(
outs
[
0
],
outs
[
1
]);
}
TEST_P
(
Layer_Test_Convolution_DLDT
,
multithreading
)
{
Target
targetId
=
GetParam
();
std
::
string
suffix
=
(
targetId
==
DNN_TARGET_OPENCL_FP16
||
targetId
==
DNN_TARGET_MYRIAD
)
?
"_fp16"
:
""
;
std
::
string
xmlPath
=
_tf
(
"layer_convolution"
+
suffix
+
".xml"
);
std
::
string
binPath
=
_tf
(
"layer_convolution"
+
suffix
+
".bin"
);
Net
firstNet
=
readNet
(
xmlPath
,
binPath
);
Net
secondNet
=
readNet
(
xmlPath
,
binPath
);
Mat
inp
=
blobFromNPY
(
_tf
(
"blob.npy"
));
firstNet
.
setInput
(
inp
);
secondNet
.
setInput
(
inp
);
firstNet
.
setPreferableTarget
(
targetId
);
secondNet
.
setPreferableTarget
(
targetId
);
Mat
out1
,
out2
;
std
::
thread
t1
([
&
]{
out1
=
firstNet
.
forward
();});
std
::
thread
t2
([
&
]{
out2
=
secondNet
.
forward
();});
t1
.
join
();
t2
.
join
();
Mat
ref
=
blobFromNPY
(
_tf
(
"layer_convolution.npy"
));
double
l1
=
(
targetId
==
DNN_TARGET_OPENCL_FP16
||
targetId
==
DNN_TARGET_MYRIAD
)
?
1.5e-3
:
1e-5
;
double
lInf
=
(
targetId
==
DNN_TARGET_OPENCL_FP16
||
targetId
==
DNN_TARGET_MYRIAD
)
?
1.8e-2
:
1e-4
;
normAssert
(
out1
,
ref
,
"first thread"
,
l1
,
lInf
);
normAssert
(
out2
,
ref
,
"second thread"
,
l1
,
lInf
);
}
INSTANTIATE_TEST_CASE_P
(
/**/
,
Layer_Test_Convolution_DLDT
,
testing
::
ValuesIn
(
getAvailableTargets
(
DNN_BACKEND_INFERENCE_ENGINE
)));
...
...
modules/imgproc/perf/perf_cvt_color.cpp
View file @
f414c16c
...
...
@@ -100,6 +100,72 @@ CV_ENUM(CvtMode,
COLOR_YUV2BGR
,
COLOR_YUV2RGB
,
CX_YUV2BGRA
,
CX_YUV2RGBA
)
CV_ENUM
(
CvtMode16U
,
COLOR_BGR2BGRA
,
COLOR_BGR2GRAY
,
COLOR_BGR2RGB
,
COLOR_BGR2RGBA
,
COLOR_BGR2XYZ
,
COLOR_BGR2YCrCb
,
COLOR_BGR2YUV
,
COLOR_BGRA2BGR
,
COLOR_BGRA2GRAY
,
COLOR_BGRA2RGBA
,
CX_BGRA2XYZ
,
CX_BGRA2YCrCb
,
CX_BGRA2YUV
,
COLOR_GRAY2BGR
,
COLOR_GRAY2BGRA
,
COLOR_RGB2GRAY
,
COLOR_RGB2XYZ
,
COLOR_RGB2YCrCb
,
COLOR_RGB2YUV
,
COLOR_RGBA2BGR
,
COLOR_RGBA2GRAY
,
CX_RGBA2XYZ
,
CX_RGBA2YCrCb
,
CX_RGBA2YUV
,
COLOR_XYZ2BGR
,
COLOR_XYZ2RGB
,
CX_XYZ2BGRA
,
CX_XYZ2RGBA
,
COLOR_YCrCb2BGR
,
COLOR_YCrCb2RGB
,
CX_YCrCb2BGRA
,
CX_YCrCb2RGBA
,
COLOR_YUV2BGR
,
COLOR_YUV2RGB
,
CX_YUV2BGRA
,
CX_YUV2RGBA
)
CV_ENUM
(
CvtMode32F
,
COLOR_BGR2BGRA
,
COLOR_BGR2GRAY
,
COLOR_BGR2HLS
,
COLOR_BGR2HLS_FULL
,
COLOR_BGR2HSV
,
COLOR_BGR2HSV_FULL
,
COLOR_BGR2Lab
,
COLOR_BGR2Luv
,
COLOR_BGR2RGB
,
COLOR_BGR2RGBA
,
COLOR_BGR2XYZ
,
COLOR_BGR2YCrCb
,
COLOR_BGR2YUV
,
COLOR_BGRA2BGR
,
COLOR_BGRA2GRAY
,
COLOR_BGRA2RGBA
,
CX_BGRA2HLS
,
CX_BGRA2HLS_FULL
,
CX_BGRA2HSV
,
CX_BGRA2HSV_FULL
,
CX_BGRA2Lab
,
CX_BGRA2Luv
,
CX_BGRA2XYZ
,
CX_BGRA2YCrCb
,
CX_BGRA2YUV
,
COLOR_GRAY2BGR
,
COLOR_GRAY2BGRA
,
COLOR_HLS2BGR
,
COLOR_HLS2BGR_FULL
,
COLOR_HLS2RGB
,
COLOR_HLS2RGB_FULL
,
CX_HLS2BGRA
,
CX_HLS2BGRA_FULL
,
CX_HLS2RGBA
,
CX_HLS2RGBA_FULL
,
COLOR_HSV2BGR
,
COLOR_HSV2BGR_FULL
,
COLOR_HSV2RGB
,
COLOR_HSV2RGB_FULL
,
CX_HSV2BGRA
,
CX_HSV2BGRA_FULL
,
CX_HSV2RGBA
,
CX_HSV2RGBA_FULL
,
COLOR_Lab2BGR
,
COLOR_Lab2LBGR
,
COLOR_Lab2LRGB
,
COLOR_Lab2RGB
,
CX_Lab2BGRA
,
CX_Lab2LBGRA
,
CX_Lab2LRGBA
,
CX_Lab2RGBA
,
COLOR_LBGR2Lab
,
COLOR_LBGR2Luv
,
COLOR_LRGB2Lab
,
COLOR_LRGB2Luv
,
CX_LBGRA2Lab
,
CX_LBGRA2Luv
,
CX_LRGBA2Lab
,
CX_LRGBA2Luv
,
COLOR_Luv2BGR
,
COLOR_Luv2LBGR
,
COLOR_Luv2LRGB
,
COLOR_Luv2RGB
,
CX_Luv2BGRA
,
CX_Luv2LBGRA
,
CX_Luv2LRGBA
,
CX_Luv2RGBA
,
COLOR_RGB2GRAY
,
COLOR_RGB2HLS
,
COLOR_RGB2HLS_FULL
,
COLOR_RGB2HSV
,
COLOR_RGB2HSV_FULL
,
COLOR_RGB2Lab
,
COLOR_RGB2Luv
,
COLOR_RGB2XYZ
,
COLOR_RGB2YCrCb
,
COLOR_RGB2YUV
,
COLOR_RGBA2BGR
,
COLOR_RGBA2GRAY
,
CX_RGBA2HLS
,
CX_RGBA2HLS_FULL
,
CX_RGBA2HSV
,
CX_RGBA2HSV_FULL
,
CX_RGBA2Lab
,
CX_RGBA2Luv
,
CX_RGBA2XYZ
,
CX_RGBA2YCrCb
,
CX_RGBA2YUV
,
COLOR_XYZ2BGR
,
COLOR_XYZ2RGB
,
CX_XYZ2BGRA
,
CX_XYZ2RGBA
,
COLOR_YCrCb2BGR
,
COLOR_YCrCb2RGB
,
CX_YCrCb2BGRA
,
CX_YCrCb2RGBA
,
COLOR_YUV2BGR
,
COLOR_YUV2RGB
,
CX_YUV2BGRA
,
CX_YUV2RGBA
)
CV_ENUM
(
CvtModeBayer
,
COLOR_BayerBG2BGR
,
COLOR_BayerBG2BGRA
,
COLOR_BayerBG2BGR_VNG
,
COLOR_BayerBG2GRAY
,
...
...
@@ -274,6 +340,60 @@ PERF_TEST_P(Size_CvtMode, cvtColor8u,
#endif
}
typedef
tuple
<
Size
,
CvtMode16U
>
Size_CvtMode16U_t
;
typedef
perf
::
TestBaseWithParam
<
Size_CvtMode16U_t
>
Size_CvtMode16U
;
PERF_TEST_P
(
Size_CvtMode16U
,
DISABLED_cvtColor_16u
,
testing
::
Combine
(
testing
::
Values
(
::
perf
::
szODD
,
::
perf
::
szVGA
,
::
perf
::
sz1080p
),
CvtMode16U
::
all
()
)
)
{
Size
sz
=
get
<
0
>
(
GetParam
());
int
_mode
=
get
<
1
>
(
GetParam
()),
mode
=
_mode
;
ChPair
ch
=
getConversionInfo
(
mode
);
mode
%=
COLOR_COLORCVT_MAX
;
Mat
src
(
sz
,
CV_16UC
(
ch
.
scn
));
Mat
dst
(
sz
,
CV_16UC
(
ch
.
scn
));
declare
.
time
(
100
);
declare
.
in
(
src
,
WARMUP_RNG
).
out
(
dst
);
int
runs
=
sz
.
width
<=
320
?
100
:
5
;
TEST_CYCLE_MULTIRUN
(
runs
)
cvtColor
(
src
,
dst
,
mode
,
ch
.
dcn
);
SANITY_CHECK
(
dst
,
1
);
}
typedef
tuple
<
Size
,
CvtMode32F
>
Size_CvtMode32F_t
;
typedef
perf
::
TestBaseWithParam
<
Size_CvtMode32F_t
>
Size_CvtMode32F
;
PERF_TEST_P
(
Size_CvtMode32F
,
DISABLED_cvtColor_32f
,
testing
::
Combine
(
testing
::
Values
(
::
perf
::
szODD
,
::
perf
::
szVGA
,
::
perf
::
sz1080p
),
CvtMode32F
::
all
()
)
)
{
Size
sz
=
get
<
0
>
(
GetParam
());
int
_mode
=
get
<
1
>
(
GetParam
()),
mode
=
_mode
;
ChPair
ch
=
getConversionInfo
(
mode
);
mode
%=
COLOR_COLORCVT_MAX
;
Mat
src
(
sz
,
CV_32FC
(
ch
.
scn
));
Mat
dst
(
sz
,
CV_32FC
(
ch
.
scn
));
declare
.
time
(
100
);
declare
.
in
(
src
,
WARMUP_RNG
).
out
(
dst
);
int
runs
=
sz
.
width
<=
320
?
100
:
5
;
TEST_CYCLE_MULTIRUN
(
runs
)
cvtColor
(
src
,
dst
,
mode
,
ch
.
dcn
);
SANITY_CHECK_NOTHING
();
}
typedef
tuple
<
Size
,
CvtModeBayer
>
Size_CvtMode_Bayer_t
;
typedef
perf
::
TestBaseWithParam
<
Size_CvtMode_Bayer_t
>
Size_CvtMode_Bayer
;
...
...
modules/imgproc/perf/perf_histogram.cpp
View file @
f414c16c
...
...
@@ -141,18 +141,20 @@ PERF_TEST_P(Dim_Cmpmethod, compareHist,
SANITY_CHECK_NOTHING
();
}
typedef
tuple
<
Size
,
double
>
Sz_ClipLimit_t
;
typedef
tuple
<
Size
,
double
,
MatType
>
Sz_ClipLimit_t
;
typedef
TestBaseWithParam
<
Sz_ClipLimit_t
>
Sz_ClipLimit
;
PERF_TEST_P
(
Sz_ClipLimit
,
CLAHE
,
testing
::
Combine
(
testing
::
Values
(
::
perf
::
szVGA
,
::
perf
::
sz720p
,
::
perf
::
sz1080p
),
testing
::
Values
(
0.0
,
40.0
))
testing
::
Values
(
0.0
,
40.0
),
testing
::
Values
(
MatType
(
CV_8UC1
),
MatType
(
CV_16UC1
)))
)
{
const
Size
size
=
get
<
0
>
(
GetParam
());
const
double
clipLimit
=
get
<
1
>
(
GetParam
());
const
int
type
=
get
<
2
>
(
GetParam
());
Mat
src
(
size
,
CV_8UC1
);
Mat
src
(
size
,
type
);
declare
.
in
(
src
,
WARMUP_RNG
);
Ptr
<
CLAHE
>
clahe
=
createCLAHE
(
clipLimit
);
...
...
modules/imgproc/src/morph.cpp
View file @
f414c16c
...
...
@@ -159,7 +159,7 @@ template<class VecUpdate> struct MorphRowVec
i
+=
vtype
::
nlanes
/
2
;
}
return
i
;
return
i
-
i
%
cn
;
}
int
ksize
,
anchor
;
...
...
modules/video/src/camshift.cpp
View file @
f414c16c
...
...
@@ -167,6 +167,8 @@ cv::RotatedRect cv::CamShift( InputArray _probImage, Rect& window,
double
rotate_a
=
cs
*
cs
*
mu20
+
2
*
cs
*
sn
*
mu11
+
sn
*
sn
*
mu02
;
double
rotate_c
=
sn
*
sn
*
mu20
-
2
*
cs
*
sn
*
mu11
+
cs
*
cs
*
mu02
;
rotate_a
=
std
::
max
(
0.0
,
rotate_a
);
// avoid negative result due calculation numeric errors
rotate_c
=
std
::
max
(
0.0
,
rotate_c
);
// avoid negative result due calculation numeric errors
double
length
=
std
::
sqrt
(
rotate_a
*
inv_m00
)
*
4
;
double
width
=
std
::
sqrt
(
rotate_c
*
inv_m00
)
*
4
;
...
...
samples/dnn/tf_text_graph_mask_rcnn.py
View file @
f414c16c
...
...
@@ -25,7 +25,8 @@ scopesToIgnore = ('FirstStageFeatureExtractor/Assert',
'FirstStageFeatureExtractor/Shape'
,
'FirstStageFeatureExtractor/strided_slice'
,
'FirstStageFeatureExtractor/GreaterEqual'
,
'FirstStageFeatureExtractor/LogicalAnd'
)
'FirstStageFeatureExtractor/LogicalAnd'
,
'Conv/required_space_to_batch_paddings'
)
# Load a config file.
config
=
readTextMessage
(
args
.
config
)
...
...
@@ -54,10 +55,30 @@ graph_def = parseTextGraph(args.output)
removeIdentity
(
graph_def
)
nodesToKeep
=
[]
def
to_remove
(
name
,
op
):
if
name
in
nodesToKeep
:
return
False
return
op
==
'Const'
or
name
.
startswith
(
scopesToIgnore
)
or
not
name
.
startswith
(
scopesToKeep
)
or
\
(
name
.
startswith
(
'CropAndResize'
)
and
op
!=
'CropAndResize'
)
# Fuse atrous convolutions (with dilations).
nodesMap
=
{
node
.
name
:
node
for
node
in
graph_def
.
node
}
for
node
in
reversed
(
graph_def
.
node
):
if
node
.
op
==
'BatchToSpaceND'
:
del
node
.
input
[
2
]
conv
=
nodesMap
[
node
.
input
[
0
]]
spaceToBatchND
=
nodesMap
[
conv
.
input
[
0
]]
paddingsNode
=
NodeDef
()
paddingsNode
.
name
=
conv
.
name
+
'/paddings'
paddingsNode
.
op
=
'Const'
paddingsNode
.
addAttr
(
'value'
,
[
2
,
2
,
2
,
2
])
graph_def
.
node
.
insert
(
graph_def
.
node
.
index
(
spaceToBatchND
),
paddingsNode
)
nodesToKeep
.
append
(
paddingsNode
.
name
)
spaceToBatchND
.
input
[
2
]
=
paddingsNode
.
name
removeUnusedNodesAndAttrs
(
to_remove
,
graph_def
)
...
...
@@ -106,8 +127,8 @@ heights = []
for
a
in
aspect_ratios
:
for
s
in
scales
:
ar
=
np
.
sqrt
(
a
)
heights
.
append
((
features
_stride
**
2
)
*
s
/
ar
)
widths
.
append
((
features
_stride
**
2
)
*
s
*
ar
)
heights
.
append
((
height
_stride
**
2
)
*
s
/
ar
)
widths
.
append
((
width
_stride
**
2
)
*
s
*
ar
)
proposals
.
addAttr
(
'width'
,
widths
)
proposals
.
addAttr
(
'height'
,
heights
)
...
...
@@ -252,5 +273,25 @@ graph_def.node[-1].name = 'detection_masks'
graph_def
.
node
[
-
1
]
.
op
=
'Sigmoid'
graph_def
.
node
[
-
1
]
.
input
.
pop
()
def
getUnconnectedNodes
():
unconnected
=
[
node
.
name
for
node
in
graph_def
.
node
]
for
node
in
graph_def
.
node
:
for
inp
in
node
.
input
:
if
inp
in
unconnected
:
unconnected
.
remove
(
inp
)
return
unconnected
while
True
:
unconnectedNodes
=
getUnconnectedNodes
()
unconnectedNodes
.
remove
(
graph_def
.
node
[
-
1
]
.
name
)
if
not
unconnectedNodes
:
break
for
name
in
unconnectedNodes
:
for
i
in
range
(
len
(
graph_def
.
node
)):
if
graph_def
.
node
[
i
]
.
name
==
name
:
del
graph_def
.
node
[
i
]
break
# Save as text.
graph_def
.
save
(
args
.
output
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment