Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
f33cbe94
Commit
f33cbe94
authored
Aug 31, 2018
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #12142 from alalek:dnn_ocl_fix_convolution_perf_tests
parents
e13f6ded
c557193b
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
94 additions
and
205 deletions
+94
-205
perf_convolution.cpp
modules/dnn/perf/opencl/perf_convolution.cpp
+0
-107
perf_convolution.cpp
modules/dnn/perf/perf_convolution.cpp
+0
-0
perf_net.cpp
modules/dnn/perf/perf_net.cpp
+2
-21
perf_precomp.hpp
modules/dnn/perf/perf_precomp.hpp
+2
-0
test_backends.cpp
modules/dnn/test/test_backends.cpp
+1
-16
test_common.hpp
modules/dnn/test/test_common.hpp
+87
-0
test_halide_layers.cpp
modules/dnn/test/test_halide_layers.cpp
+2
-16
test_precomp.hpp
modules/dnn/test/test_precomp.hpp
+0
-45
No files found.
modules/dnn/perf/opencl/perf_convolution.cpp
deleted
100644 → 0
View file @
e13f6ded
#include "../perf_precomp.hpp"
#include "opencv2/ts/ocl_perf.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#ifdef HAVE_OPENCL
namespace
opencv_test
{
namespace
ocl
{
using
namespace
::
perf
;
namespace
{
enum
{
STRIDE_OFF
=
1
,
STRIDE_ON
=
2
};
CV_ENUM
(
StrideSize
,
STRIDE_OFF
,
STRIDE_ON
);
enum
{
GROUP_OFF
=
1
,
GROUP_2
=
2
};
CV_ENUM
(
GroupSize
,
GROUP_OFF
,
GROUP_2
);
}
// namespace
//Squared Size
#define SSZ(n) cv::Size(n, n)
typedef
std
::
pair
<
MatShape
,
int
>
InpShapeNumOut
;
typedef
tuple
<
Size
,
InpShapeNumOut
,
GroupSize
,
StrideSize
>
ConvParam
;
//kernel_size, inp shape, groups, stride
typedef
TestBaseWithParam
<
ConvParam
>
ConvolutionPerfTest
;
static
inline
MatShape
blobShape
(
int
count
,
int
nplanes
,
int
height
,
int
width
)
{
int
data
[]
=
{
count
,
nplanes
,
height
,
width
};
return
MatShape
(
data
,
data
+
4
);
}
OCL_PERF_TEST_P
(
ConvolutionPerfTest
,
perf
,
Combine
(
Values
(
Size
(
1
,
1
),
Size
(
3
,
3
),
Size
(
5
,
5
),
Size
(
11
,
11
)),
Values
(
make_pair
(
blobShape
(
1
,
4
,
224
,
224
),
64
),
make_pair
(
blobShape
(
1
,
64
,
112
,
122
),
128
),
make_pair
(
blobShape
(
1
,
256
,
28
,
28
),
512
)),
GroupSize
::
all
(),
StrideSize
::
all
())
)
{
RNG
rng
(
0
);
ConvParam
params
=
GetParam
();
int
ksz
=
get
<
0
>
(
params
).
width
;
MatShape
inpShape
=
get
<
1
>
(
params
).
first
;
int
outCn
=
get
<
1
>
(
params
).
second
;
int
groups
=
get
<
2
>
(
params
);
int
stride
=
(
ksz
>=
11
)
?
4
:
(
int
)
get
<
3
>
(
params
);
int
inpCn
=
inpShape
[
1
];
int
wgtSize
[]
=
{
outCn
,
inpCn
/
groups
,
ksz
,
ksz
};
int
biasSize
[]
=
{
outCn
,
1
,
1
,
1
};
const
int
wtype
=
CV_32F
;
Mat
wgtBlob
(
4
,
wgtSize
,
wtype
),
biasBlob
(
4
,
biasSize
,
wtype
);
Mat
inpBlob
(
4
,
&
inpShape
[
0
],
wtype
);
rng
.
fill
(
biasBlob
,
RNG
::
UNIFORM
,
-
1
,
+
1
);
rng
.
fill
(
wgtBlob
,
RNG
::
UNIFORM
,
-
1
,
+
1
);
rng
.
fill
(
inpBlob
,
RNG
::
UNIFORM
,
-
1
,
+
1
);
LayerParams
lp
;
lp
.
set
(
"num_output"
,
outCn
);
lp
.
set
(
"group"
,
groups
);
lp
.
set
(
"stride"
,
stride
);
lp
.
set
(
"kernel_size"
,
ksz
);
lp
.
blobs
.
reserve
(
2
);
lp
.
blobs
.
push_back
(
wgtBlob
);
lp
.
blobs
.
push_back
(
biasBlob
);
std
::
vector
<
Mat
*>
inpBlobs
(
1
,
&
inpBlob
);
std
::
vector
<
Mat
>
outBlobs
,
internalBlobs
;
Ptr
<
Layer
>
layer
=
cv
::
dnn
::
LayerFactory
::
createLayerInstance
(
"Convolution"
,
lp
);
std
::
vector
<
MatShape
>
inputShapes
(
1
,
shape
(
inpBlob
)),
outShapes
,
internals
;
layer
->
getMemoryShapes
(
inputShapes
,
0
,
outShapes
,
internals
);
for
(
size_t
i
=
0
;
i
<
outShapes
.
size
();
i
++
)
{
outBlobs
.
push_back
(
Mat
(
outShapes
[
i
],
CV_32F
));
}
for
(
size_t
i
=
0
;
i
<
internals
.
size
();
i
++
)
{
internalBlobs
.
push_back
(
Mat
());
if
(
total
(
internals
[
i
]))
internalBlobs
.
back
().
create
(
internals
[
i
],
CV_32F
);
}
layer
->
finalize
(
inpBlobs
,
outBlobs
);
layer
->
preferableTarget
=
DNN_TARGET_OPENCL
;
Mat
inpBlob2D
=
inpBlob
.
reshape
(
1
,
outCn
);
Mat
wgtBlob2D
=
wgtBlob
.
reshape
(
1
,
outCn
*
(
inpCn
/
groups
));
Mat
outBlob2D
=
outBlobs
[
0
].
reshape
(
1
,
outBlobs
[
0
].
size
[
0
]);
declare
.
in
(
inpBlob2D
,
wgtBlob2D
,
WARMUP_RNG
).
out
(
outBlob2D
);
// warmup
layer
->
forward
(
inpBlobs
,
outBlobs
,
internalBlobs
);
TEST_CYCLE
()
{
layer
->
forward
(
inpBlobs
,
outBlobs
,
internalBlobs
);
}
SANITY_CHECK_NOTHING
();
}
}
}
#endif
modules/dnn/perf/perf_convolution.cpp
View file @
f33cbe94
This diff is collapsed.
Click to expand it.
modules/dnn/perf/perf_net.cpp
View file @
f33cbe94
...
...
@@ -14,10 +14,7 @@
namespace
opencv_test
{
CV_ENUM
(
DNNBackend
,
DNN_BACKEND_DEFAULT
,
DNN_BACKEND_HALIDE
,
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_BACKEND_OPENCV
)
CV_ENUM
(
DNNTarget
,
DNN_TARGET_CPU
,
DNN_TARGET_OPENCL
,
DNN_TARGET_OPENCL_FP16
,
DNN_TARGET_MYRIAD
)
class
DNNTestNetwork
:
public
::
perf
::
TestBaseWithParam
<
tuple
<
DNNBackend
,
DNNTarget
>
>
class
DNNTestNetwork
:
public
::
perf
::
TestBaseWithParam
<
tuple
<
Backend
,
Target
>
>
{
public
:
dnn
::
Backend
backend
;
...
...
@@ -269,22 +266,6 @@ PERF_TEST_P_(DNNTestNetwork, Inception_v2_Faster_RCNN)
Mat
(
cv
::
Size
(
800
,
600
),
CV_32FC3
));
}
const
tuple
<
DNNBackend
,
DNNTarget
>
testCases
[]
=
{
#ifdef HAVE_HALIDE
tuple
<
DNNBackend
,
DNNTarget
>
(
DNN_BACKEND_HALIDE
,
DNN_TARGET_CPU
),
tuple
<
DNNBackend
,
DNNTarget
>
(
DNN_BACKEND_HALIDE
,
DNN_TARGET_OPENCL
),
#endif
#ifdef HAVE_INF_ENGINE
tuple
<
DNNBackend
,
DNNTarget
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_CPU
),
tuple
<
DNNBackend
,
DNNTarget
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_OPENCL
),
tuple
<
DNNBackend
,
DNNTarget
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_OPENCL_FP16
),
tuple
<
DNNBackend
,
DNNTarget
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_MYRIAD
),
#endif
tuple
<
DNNBackend
,
DNNTarget
>
(
DNN_BACKEND_OPENCV
,
DNN_TARGET_CPU
),
tuple
<
DNNBackend
,
DNNTarget
>
(
DNN_BACKEND_OPENCV
,
DNN_TARGET_OPENCL
),
tuple
<
DNNBackend
,
DNNTarget
>
(
DNN_BACKEND_OPENCV
,
DNN_TARGET_OPENCL_FP16
)
};
INSTANTIATE_TEST_CASE_P
(
/*nothing*/
,
DNNTestNetwork
,
testing
::
ValuesIn
(
testCases
));
INSTANTIATE_TEST_CASE_P
(
/*nothing*/
,
DNNTestNetwork
,
dnnBackendsAndTargets
());
}
// namespace
modules/dnn/perf/perf_precomp.hpp
View file @
f33cbe94
...
...
@@ -4,6 +4,8 @@
#include <opencv2/ts.hpp>
#include <opencv2/dnn.hpp>
#include "../test/test_common.hpp"
namespace
opencv_test
{
using
namespace
perf
;
using
namespace
cv
::
dnn
;
...
...
modules/dnn/test/test_backends.cpp
View file @
f33cbe94
...
...
@@ -285,21 +285,6 @@ TEST_P(DNNTestNetwork, FastNeuralStyle_eccv16)
processNet
(
"dnn/fast_neural_style_eccv16_starry_night.t7"
,
""
,
inp
,
""
,
""
,
l1
,
lInf
);
}
const
tuple
<
Backend
,
Target
>
testCases
[]
=
{
#ifdef HAVE_HALIDE
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_HALIDE
,
DNN_TARGET_CPU
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_HALIDE
,
DNN_TARGET_OPENCL
),
#endif
#ifdef HAVE_INF_ENGINE
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_CPU
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_OPENCL
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_OPENCL_FP16
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_MYRIAD
),
#endif
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_OPENCV
,
DNN_TARGET_OPENCL
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_OPENCV
,
DNN_TARGET_OPENCL_FP16
)
};
INSTANTIATE_TEST_CASE_P
(
/*nothing*/
,
DNNTestNetwork
,
testing
::
ValuesIn
(
testCases
));
INSTANTIATE_TEST_CASE_P
(
/*nothing*/
,
DNNTestNetwork
,
dnnBackendsAndTargets
(
true
,
true
,
false
));
}}
// namespace
modules/dnn/test/test_common.hpp
View file @
f33cbe94
...
...
@@ -42,6 +42,47 @@
#ifndef __OPENCV_TEST_COMMON_HPP__
#define __OPENCV_TEST_COMMON_HPP__
#ifdef HAVE_OPENCL
#include "opencv2/core/ocl.hpp"
#endif
namespace
cv
{
namespace
dnn
{
CV__DNN_EXPERIMENTAL_NS_BEGIN
static
inline
void
PrintTo
(
const
cv
::
dnn
::
Backend
&
v
,
std
::
ostream
*
os
)
{
switch
(
v
)
{
case
DNN_BACKEND_DEFAULT
:
*
os
<<
"DEFAULT"
;
return
;
case
DNN_BACKEND_HALIDE
:
*
os
<<
"HALIDE"
;
return
;
case
DNN_BACKEND_INFERENCE_ENGINE
:
*
os
<<
"DLIE"
;
return
;
case
DNN_BACKEND_OPENCV
:
*
os
<<
"OCV"
;
return
;
}
// don't use "default:" to emit compiler warnings
*
os
<<
"DNN_BACKEND_UNKNOWN("
<<
v
<<
")"
;
}
static
inline
void
PrintTo
(
const
cv
::
dnn
::
Target
&
v
,
std
::
ostream
*
os
)
{
switch
(
v
)
{
case
DNN_TARGET_CPU
:
*
os
<<
"CPU"
;
return
;
case
DNN_TARGET_OPENCL
:
*
os
<<
"OCL"
;
return
;
case
DNN_TARGET_OPENCL_FP16
:
*
os
<<
"OCL_FP16"
;
return
;
case
DNN_TARGET_MYRIAD
:
*
os
<<
"MYRIAD"
;
return
;
}
// don't use "default:" to emit compiler warnings
*
os
<<
"DNN_TARGET_UNKNOWN("
<<
v
<<
")"
;
}
using
opencv_test
::
tuple
;
using
opencv_test
::
get
;
static
inline
void
PrintTo
(
const
tuple
<
cv
::
dnn
::
Backend
,
cv
::
dnn
::
Target
>
v
,
std
::
ostream
*
os
)
{
PrintTo
(
get
<
0
>
(
v
),
os
);
*
os
<<
"/"
;
PrintTo
(
get
<
1
>
(
v
),
os
);
}
CV__DNN_EXPERIMENTAL_NS_END
}}
// namespace
static
inline
const
std
::
string
&
getOpenCVExtraDir
()
{
return
cvtest
::
TS
::
ptr
()
->
get_data_path
();
...
...
@@ -190,4 +231,50 @@ static inline bool readFileInMemory(const std::string& filename, std::string& co
return
true
;
}
namespace
opencv_test
{
using
namespace
cv
::
dnn
;
static
testing
::
internal
::
ParamGenerator
<
tuple
<
Backend
,
Target
>
>
dnnBackendsAndTargets
(
bool
withInferenceEngine
=
true
,
bool
withHalide
=
false
,
bool
withCpuOCV
=
true
)
{
std
::
vector
<
tuple
<
Backend
,
Target
>
>
targets
;
#ifdef HAVE_HALIDE
if
(
withHalide
)
{
targets
.
push_back
(
make_tuple
(
DNN_BACKEND_HALIDE
,
DNN_TARGET_CPU
));
if
(
cv
::
ocl
::
useOpenCL
())
targets
.
push_back
(
make_tuple
(
DNN_BACKEND_HALIDE
,
DNN_TARGET_OPENCL
));
}
#endif
#ifdef HAVE_INF_ENGINE
if
(
withInferenceEngine
)
{
targets
.
push_back
(
make_tuple
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_CPU
));
if
(
cv
::
ocl
::
useOpenCL
())
{
targets
.
push_back
(
make_tuple
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_OPENCL
));
targets
.
push_back
(
make_tuple
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_OPENCL_FP16
));
}
if
(
checkMyriadTarget
())
targets
.
push_back
(
make_tuple
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_MYRIAD
));
}
#endif
if
(
withCpuOCV
)
targets
.
push_back
(
make_tuple
(
DNN_BACKEND_OPENCV
,
DNN_TARGET_CPU
));
#ifdef HAVE_OPENCL
if
(
cv
::
ocl
::
useOpenCL
())
{
targets
.
push_back
(
make_tuple
(
DNN_BACKEND_OPENCV
,
DNN_TARGET_OPENCL
));
targets
.
push_back
(
make_tuple
(
DNN_BACKEND_OPENCV
,
DNN_TARGET_OPENCL_FP16
));
}
#endif
return
testing
::
ValuesIn
(
targets
);
}
}
// namespace
#endif
modules/dnn/test/test_halide_layers.cpp
View file @
f33cbe94
...
...
@@ -44,23 +44,9 @@ static void test(LayerParams& params, Mat& input, Backend backendId, Target targ
test
(
input
,
net
,
backendId
,
targetId
,
skipCheck
);
}
static
testing
::
internal
::
ParamGenerator
<
tuple
<
Backend
,
Target
>
>
dnnBackendsAndTargetsWithHalide
()
static
inline
testing
::
internal
::
ParamGenerator
<
tuple
<
Backend
,
Target
>
>
dnnBackendsAndTargetsWithHalide
()
{
static
const
tuple
<
Backend
,
Target
>
testCases
[]
=
{
#ifdef HAVE_HALIDE
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_HALIDE
,
DNN_TARGET_CPU
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_HALIDE
,
DNN_TARGET_OPENCL
),
#endif
#ifdef HAVE_INF_ENGINE
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_CPU
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_OPENCL
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_OPENCL_FP16
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_MYRIAD
),
#endif
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_OPENCV
,
DNN_TARGET_OPENCL
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_OPENCV
,
DNN_TARGET_OPENCL_FP16
)
};
return
testing
::
ValuesIn
(
testCases
);
return
dnnBackendsAndTargets
(
true
,
true
,
false
);
// OpenCV/CPU is used as reference
}
class
Test_Halide_layers
:
public
DNNTestLayer
{};
...
...
modules/dnn/test/test_precomp.hpp
View file @
f33cbe94
...
...
@@ -49,35 +49,6 @@
#include "opencv2/dnn.hpp"
#include "test_common.hpp"
namespace
cv
{
namespace
dnn
{
CV__DNN_EXPERIMENTAL_NS_BEGIN
static
inline
void
PrintTo
(
const
cv
::
dnn
::
Backend
&
v
,
std
::
ostream
*
os
)
{
switch
(
v
)
{
case
DNN_BACKEND_DEFAULT
:
*
os
<<
"DNN_BACKEND_DEFAULT"
;
return
;
case
DNN_BACKEND_HALIDE
:
*
os
<<
"DNN_BACKEND_HALIDE"
;
return
;
case
DNN_BACKEND_INFERENCE_ENGINE
:
*
os
<<
"DNN_BACKEND_INFERENCE_ENGINE"
;
return
;
case
DNN_BACKEND_OPENCV
:
*
os
<<
"DNN_BACKEND_OPENCV"
;
return
;
}
// don't use "default:" to emit compiler warnings
*
os
<<
"DNN_BACKEND_UNKNOWN("
<<
v
<<
")"
;
}
static
inline
void
PrintTo
(
const
cv
::
dnn
::
Target
&
v
,
std
::
ostream
*
os
)
{
switch
(
v
)
{
case
DNN_TARGET_CPU
:
*
os
<<
"DNN_TARGET_CPU"
;
return
;
case
DNN_TARGET_OPENCL
:
*
os
<<
"DNN_TARGET_OPENCL"
;
return
;
case
DNN_TARGET_OPENCL_FP16
:
*
os
<<
"DNN_TARGET_OPENCL_FP16"
;
return
;
case
DNN_TARGET_MYRIAD
:
*
os
<<
"DNN_TARGET_MYRIAD"
;
return
;
}
// don't use "default:" to emit compiler warnings
*
os
<<
"DNN_TARGET_UNKNOWN("
<<
v
<<
")"
;
}
CV__DNN_EXPERIMENTAL_NS_END
}}
// namespace
namespace
opencv_test
{
using
namespace
cv
::
dnn
;
...
...
@@ -95,22 +66,6 @@ static testing::internal::ParamGenerator<Target> availableDnnTargets()
return
testing
::
ValuesIn
(
targets
);
}
static
testing
::
internal
::
ParamGenerator
<
tuple
<
Backend
,
Target
>
>
dnnBackendsAndTargets
()
{
static
const
tuple
<
Backend
,
Target
>
testCases
[]
=
{
#ifdef HAVE_INF_ENGINE
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_CPU
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_OPENCL
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_OPENCL_FP16
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_INFERENCE_ENGINE
,
DNN_TARGET_MYRIAD
),
#endif
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_OPENCV
,
DNN_TARGET_CPU
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_OPENCV
,
DNN_TARGET_OPENCL
),
tuple
<
Backend
,
Target
>
(
DNN_BACKEND_OPENCV
,
DNN_TARGET_OPENCL_FP16
)
};
return
testing
::
ValuesIn
(
testCases
);
}
class
DNNTestLayer
:
public
TestWithParam
<
tuple
<
Backend
,
Target
>
>
{
public
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment