The following graphic shows all values for the three norm functions \f$\| r(x) \|_{L_1}, \| r(x) \|_{L_2}\f$ and \f$\| r(x) \|_{L_\infty}\f$.
It is notable that the \f$ L_{1} \f$ norm forms the upper and the \f$ L_{\infty} \f$ norm forms the lower border for the example function \f$ r(x) \f$.
![Graphs for the different norm functions from the above example](pics/NormTypes_OneArray_1-2-INF.png)
When the mask parameter is specified and it is not empty, the norm is
If normType is not specified, NORM_L2 is used.
calculated only over the region specified by the mask.
A multi-channel input arrays are treated as a single-channel, that is,
Multi-channel input arrays are treated as single-channel arrays, that is,
the results for all channels are combined.
Hamming norms can only be calculated with CV_8U depth arrays.
@param src1 first input array.
@param normType type of the norm (see cv::NormTypes).
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
The following graphic shows all values for the three norm functions \f$\| r(x) \|_{L_1}, \| r(x) \|_{L_2}\f$ and \f$\| r(x) \|_{L_\infty}\f$.
It is notable that the \f$ L_{1} \f$ norm forms the upper and the \f$ L_{\infty} \f$ norm forms the lower border for the example function \f$ r(x) \f$.
![Graphs for the different norm functions from the above example](pics/NormTypes_OneArray_1-2-INF.png)