Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
f06c44f1
Commit
f06c44f1
authored
Jan 31, 2018
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #10701 from dkurt:tf_ave_pooling
parents
027da35c
a2e9bfba
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
40 additions
and
8 deletions
+40
-8
pooling_layer.cpp
modules/dnn/src/layers/pooling_layer.cpp
+9
-8
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+31
-0
No files found.
modules/dnn/src/layers/pooling_layer.cpp
View file @
f06c44f1
...
...
@@ -228,6 +228,7 @@ public:
const
Mat
*
src
,
*
rois
;
Mat
*
dst
,
*
mask
;
Size
kernel
,
stride
,
pad
;
String
padMode
;
int
nstripes
;
bool
computeMaxIdx
;
std
::
vector
<
int
>
ofsbuf
;
...
...
@@ -238,7 +239,7 @@ public:
computeMaxIdx
(
0
),
poolingType
(
MAX
),
spatialScale
(
0
)
{}
static
void
run
(
const
Mat
&
src
,
const
Mat
&
rois
,
Mat
&
dst
,
Mat
&
mask
,
Size
kernel
,
Size
stride
,
Size
pad
,
int
poolingType
,
float
spatialScale
,
Size
stride
,
Size
pad
,
String
padMode
,
int
poolingType
,
float
spatialScale
,
bool
computeMaxIdx
,
int
nstripes
)
{
CV_Assert
(
src
.
isContinuous
(),
dst
.
isContinuous
(),
...
...
@@ -257,6 +258,7 @@ public:
p
.
kernel
=
kernel
;
p
.
stride
=
stride
;
p
.
pad
=
pad
;
p
.
padMode
=
padMode
;
p
.
nstripes
=
nstripes
;
p
.
computeMaxIdx
=
computeMaxIdx
;
p
.
poolingType
=
poolingType
;
...
...
@@ -336,7 +338,6 @@ public:
yend
=
min
(
ystart
+
kernel_h
,
inp_height
+
pad_h
);
srcData
=
src
->
ptr
<
float
>
(
n
,
c
);
}
int
ydelta
=
yend
-
ystart
;
ystart
=
max
(
ystart
,
0
);
yend
=
min
(
yend
,
inp_height
);
float
*
dstData
=
dst
->
ptr
<
float
>
(
n
,
c
,
y0
);
...
...
@@ -500,15 +501,15 @@ public:
}
else
if
(
poolingType
==
AVE
)
{
bool
isSamePad
=
padMode
==
"SAME"
;
for
(
;
x0
<
x1
;
x0
++
)
{
int
xstart
=
x0
*
stride_w
-
pad_w
;
int
xend
=
min
(
xstart
+
kernel_w
,
inp_width
+
pad_w
);
int
xdelta
=
xend
-
xstart
;
xstart
=
max
(
xstart
,
0
);
xend
=
min
(
xend
,
inp_width
);
float
inv_kernel_area
=
1.
f
/
(
ydelta
*
xdelta
);
float
inv_kernel_area
=
isSamePad
?
(
yend
-
ystart
)
*
(
xend
-
xstart
)
:
kernel
.
area
(
);
inv_kernel_area
=
1.0
/
inv_kernel_area
;
#if CV_SIMD128
if
(
xstart
>
0
&&
x0
+
7
<
x1
&&
(
x0
+
7
)
*
stride_w
-
pad_w
+
kernel_w
<
inp_width
)
{
...
...
@@ -619,21 +620,21 @@ public:
{
const
int
nstripes
=
getNumThreads
();
Mat
rois
;
PoolingInvoker
::
run
(
src
,
rois
,
dst
,
mask
,
kernel
,
stride
,
pad
,
type
,
spatialScale
,
computeMaxIdx
,
nstripes
);
PoolingInvoker
::
run
(
src
,
rois
,
dst
,
mask
,
kernel
,
stride
,
pad
,
padMode
,
type
,
spatialScale
,
computeMaxIdx
,
nstripes
);
}
void
avePooling
(
Mat
&
src
,
Mat
&
dst
)
{
const
int
nstripes
=
getNumThreads
();
Mat
rois
,
mask
;
PoolingInvoker
::
run
(
src
,
rois
,
dst
,
mask
,
kernel
,
stride
,
pad
,
type
,
spatialScale
,
computeMaxIdx
,
nstripes
);
PoolingInvoker
::
run
(
src
,
rois
,
dst
,
mask
,
kernel
,
stride
,
pad
,
padMode
,
type
,
spatialScale
,
computeMaxIdx
,
nstripes
);
}
void
roiPooling
(
const
Mat
&
src
,
const
Mat
&
rois
,
Mat
&
dst
)
{
const
int
nstripes
=
getNumThreads
();
Mat
mask
;
PoolingInvoker
::
run
(
src
,
rois
,
dst
,
mask
,
kernel
,
stride
,
pad
,
type
,
spatialScale
,
computeMaxIdx
,
nstripes
);
PoolingInvoker
::
run
(
src
,
rois
,
dst
,
mask
,
kernel
,
stride
,
pad
,
padMode
,
type
,
spatialScale
,
computeMaxIdx
,
nstripes
);
}
virtual
Ptr
<
BackendNode
>
initMaxPoolingHalide
(
const
std
::
vector
<
Ptr
<
BackendWrapper
>
>
&
inputs
)
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
f06c44f1
...
...
@@ -164,6 +164,7 @@ TEST(Test_TensorFlow, pooling)
runTensorFlowNet
(
"max_pool_even"
);
runTensorFlowNet
(
"max_pool_odd_valid"
);
runTensorFlowNet
(
"max_pool_odd_same"
);
runTensorFlowNet
(
"ave_pool_same"
);
}
TEST
(
Test_TensorFlow
,
deconvolution
)
...
...
@@ -248,6 +249,36 @@ TEST(Test_TensorFlow, MobileNet_SSD)
normAssert
(
target
[
2
].
reshape
(
1
,
1
),
output
[
2
].
reshape
(
1
,
1
),
""
,
4e-5
,
1e-2
);
}
TEST
(
Test_TensorFlow
,
Inception_v2_SSD
)
{
std
::
string
proto
=
findDataFile
(
"dnn/ssd_inception_v2_coco_2017_11_17.pbtxt"
,
false
);
std
::
string
model
=
findDataFile
(
"dnn/ssd_inception_v2_coco_2017_11_17.pb"
,
false
);
Net
net
=
readNetFromTensorflow
(
model
,
proto
);
Mat
img
=
imread
(
findDataFile
(
"dnn/street.png"
,
false
));
Mat
blob
=
blobFromImage
(
img
,
1.0
f
/
127.5
,
Size
(
300
,
300
),
Scalar
(
127.5
,
127.5
,
127.5
),
true
,
false
);
net
.
setInput
(
blob
);
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
Mat
out
=
net
.
forward
();
out
=
out
.
reshape
(
1
,
out
.
total
()
/
7
);
Mat
detections
;
for
(
int
i
=
0
;
i
<
out
.
rows
;
++
i
)
{
if
(
out
.
at
<
float
>
(
i
,
2
)
>
0.5
)
detections
.
push_back
(
out
.
row
(
i
).
colRange
(
1
,
7
));
}
Mat
ref
=
(
Mat_
<
float
>
(
5
,
6
)
<<
1
,
0.90176028
,
0.19872092
,
0.36311883
,
0.26461923
,
0.63498729
,
3
,
0.93569964
,
0.64865261
,
0.45906419
,
0.80675775
,
0.65708131
,
3
,
0.75838411
,
0.44668293
,
0.45907149
,
0.49459291
,
0.52197015
,
10
,
0.95932811
,
0.38349164
,
0.32528657
,
0.40387636
,
0.39165527
,
10
,
0.93973452
,
0.66561931
,
0.37841269
,
0.68074018
,
0.42907384
);
normAssert
(
detections
,
ref
);
}
OCL_TEST
(
Test_TensorFlow
,
MobileNet_SSD
)
{
throw
SkipTestException
(
"TODO: test is failed"
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment