Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
f040282b
Commit
f040282b
authored
Jun 13, 2018
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #11739 from dkurt:more_ie_models
parents
4fe648b1
2c291bc2
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
119 additions
and
12 deletions
+119
-12
perf_net.cpp
modules/dnn/perf/perf_net.cpp
+11
-1
convolution_layer.cpp
modules/dnn/src/layers/convolution_layer.cpp
+4
-3
elementwise_layers.cpp
modules/dnn/src/layers/elementwise_layers.cpp
+53
-3
resize_layer.cpp
modules/dnn/src/layers/resize_layer.cpp
+4
-2
slice_layer.cpp
modules/dnn/src/layers/slice_layer.cpp
+30
-0
test_backends.cpp
modules/dnn/test/test_backends.cpp
+16
-1
test_darknet_importer.cpp
modules/dnn/test/test_darknet_importer.cpp
+0
-2
test_torch_importer.cpp
modules/dnn/test/test_torch_importer.cpp
+1
-0
No files found.
modules/dnn/perf/perf_net.cpp
View file @
f040282b
...
...
@@ -144,7 +144,8 @@ PERF_TEST_P_(DNNTestNetwork, SSD)
PERF_TEST_P_
(
DNNTestNetwork
,
OpenFace
)
{
if
(
backend
==
DNN_BACKEND_HALIDE
||
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
!=
DNN_TARGET_CPU
)
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_OPENCL_FP16
)
||
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_MYRIAD
))
throw
SkipTestException
(
""
);
processNet
(
"dnn/openface_nn4.small2.v1.t7"
,
""
,
""
,
Mat
(
cv
::
Size
(
96
,
96
),
CV_32FC3
));
...
...
@@ -248,6 +249,15 @@ PERF_TEST_P_(DNNTestNetwork, EAST_text_detection)
processNet
(
"dnn/frozen_east_text_detection.pb"
,
""
,
""
,
Mat
(
cv
::
Size
(
320
,
320
),
CV_32FC3
));
}
PERF_TEST_P_
(
DNNTestNetwork
,
FastNeuralStyle_eccv16
)
{
if
(
backend
==
DNN_BACKEND_HALIDE
||
(
backend
==
DNN_BACKEND_OPENCV
&&
target
==
DNN_TARGET_OPENCL_FP16
)
||
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_MYRIAD
))
throw
SkipTestException
(
""
);
processNet
(
"dnn/fast_neural_style_eccv16_starry_night.t7"
,
""
,
""
,
Mat
(
cv
::
Size
(
320
,
240
),
CV_32FC3
));
}
const
tuple
<
DNNBackend
,
DNNTarget
>
testCases
[]
=
{
#ifdef HAVE_HALIDE
tuple
<
DNNBackend
,
DNNTarget
>
(
DNN_BACKEND_HALIDE
,
DNN_TARGET_CPU
),
...
...
modules/dnn/src/layers/convolution_layer.cpp
View file @
f040282b
...
...
@@ -81,9 +81,10 @@ public:
virtual
bool
supportBackend
(
int
backendId
)
CV_OVERRIDE
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
&&
haveHalide
()
||
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
&&
haveInfEngine
();
if
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
)
return
preferableTarget
!=
DNN_TARGET_MYRIAD
||
type
!=
"Deconvolution"
||
adjustPad
==
Size
();
else
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
;
}
void
finalize
(
const
std
::
vector
<
Mat
*>
&
inputs
,
std
::
vector
<
Mat
>
&
outputs
)
CV_OVERRIDE
...
...
modules/dnn/src/layers/elementwise_layers.cpp
View file @
f040282b
...
...
@@ -115,9 +115,7 @@ public:
virtual
bool
supportBackend
(
int
backendId
)
CV_OVERRIDE
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
&&
haveHalide
()
||
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
&&
haveInfEngine
();
return
func
.
supportBackend
(
backendId
,
this
->
preferableTarget
);
}
virtual
Ptr
<
BackendNode
>
tryAttach
(
const
Ptr
<
BackendNode
>&
node
)
CV_OVERRIDE
...
...
@@ -238,6 +236,12 @@ struct ReLUFunctor
explicit
ReLUFunctor
(
float
slope_
=
1.
f
)
:
slope
(
slope_
)
{}
bool
supportBackend
(
int
backendId
,
int
)
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
||
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
;
}
void
apply
(
const
float
*
srcptr
,
float
*
dstptr
,
int
len
,
size_t
planeSize
,
int
cn0
,
int
cn1
)
const
{
float
s
=
slope
;
...
...
@@ -353,6 +357,12 @@ struct ReLU6Functor
CV_Assert
(
minValue
<=
maxValue
);
}
bool
supportBackend
(
int
backendId
,
int
)
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
||
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
;
}
void
apply
(
const
float
*
srcptr
,
float
*
dstptr
,
int
len
,
size_t
planeSize
,
int
cn0
,
int
cn1
)
const
{
for
(
int
cn
=
cn0
;
cn
<
cn1
;
cn
++
,
srcptr
+=
planeSize
,
dstptr
+=
planeSize
)
...
...
@@ -445,6 +455,12 @@ struct TanHFunctor
{
typedef
TanHLayer
Layer
;
bool
supportBackend
(
int
backendId
,
int
)
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
||
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
;
}
void
apply
(
const
float
*
srcptr
,
float
*
dstptr
,
int
len
,
size_t
planeSize
,
int
cn0
,
int
cn1
)
const
{
for
(
int
cn
=
cn0
;
cn
<
cn1
;
cn
++
,
srcptr
+=
planeSize
,
dstptr
+=
planeSize
)
...
...
@@ -509,6 +525,12 @@ struct SigmoidFunctor
{
typedef
SigmoidLayer
Layer
;
bool
supportBackend
(
int
backendId
,
int
)
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
||
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
;
}
void
apply
(
const
float
*
srcptr
,
float
*
dstptr
,
int
len
,
size_t
planeSize
,
int
cn0
,
int
cn1
)
const
{
for
(
int
cn
=
cn0
;
cn
<
cn1
;
cn
++
,
srcptr
+=
planeSize
,
dstptr
+=
planeSize
)
...
...
@@ -575,6 +597,11 @@ struct ELUFunctor
explicit
ELUFunctor
()
{}
bool
supportBackend
(
int
backendId
,
int
)
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
;
}
void
apply
(
const
float
*
srcptr
,
float
*
dstptr
,
int
len
,
size_t
planeSize
,
int
cn0
,
int
cn1
)
const
{
for
(
int
cn
=
cn0
;
cn
<
cn1
;
cn
++
,
srcptr
+=
planeSize
,
dstptr
+=
planeSize
)
...
...
@@ -638,6 +665,11 @@ struct AbsValFunctor
{
typedef
AbsLayer
Layer
;
bool
supportBackend
(
int
backendId
,
int
)
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
;
}
void
apply
(
const
float
*
srcptr
,
float
*
dstptr
,
int
len
,
size_t
planeSize
,
int
cn0
,
int
cn1
)
const
{
for
(
int
cn
=
cn0
;
cn
<
cn1
;
cn
++
,
srcptr
+=
planeSize
,
dstptr
+=
planeSize
)
...
...
@@ -701,6 +733,11 @@ struct BNLLFunctor
{
typedef
BNLLLayer
Layer
;
bool
supportBackend
(
int
backendId
,
int
)
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
;
}
void
apply
(
const
float
*
srcptr
,
float
*
dstptr
,
int
len
,
size_t
planeSize
,
int
cn0
,
int
cn1
)
const
{
for
(
int
cn
=
cn0
;
cn
<
cn1
;
cn
++
,
srcptr
+=
planeSize
,
dstptr
+=
planeSize
)
...
...
@@ -751,6 +788,14 @@ struct PowerFunctor
explicit
PowerFunctor
(
float
power_
=
1.
f
,
float
scale_
=
1.
f
,
float
shift_
=
0.
f
)
:
power
(
power_
),
scale
(
scale_
),
shift
(
shift_
)
{}
bool
supportBackend
(
int
backendId
,
int
targetId
)
{
if
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
)
return
(
targetId
!=
DNN_TARGET_OPENCL
&&
targetId
!=
DNN_TARGET_OPENCL_FP16
)
||
power
==
1.0
;
else
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
;
}
void
apply
(
const
float
*
srcptr
,
float
*
dstptr
,
int
len
,
size_t
planeSize
,
int
cn0
,
int
cn1
)
const
{
float
a
=
scale
,
b
=
shift
,
p
=
power
;
...
...
@@ -853,6 +898,11 @@ struct ChannelsPReLUFunctor
scale_umat
=
scale
.
getUMat
(
ACCESS_READ
);
}
bool
supportBackend
(
int
backendId
,
int
)
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_HALIDE
;
}
void
apply
(
const
float
*
srcptr
,
float
*
dstptr
,
int
len
,
size_t
planeSize
,
int
cn0
,
int
cn1
)
const
{
CV_Assert
(
scale
.
isContinuous
()
&&
scale
.
type
()
==
CV_32F
);
...
...
modules/dnn/src/layers/resize_layer.cpp
View file @
f040282b
...
...
@@ -53,8 +53,10 @@ public:
virtual
bool
supportBackend
(
int
backendId
)
CV_OVERRIDE
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
&&
haveInfEngine
()
&&
interpolation
==
"nearest"
;
if
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
)
return
interpolation
==
"nearest"
&&
preferableTarget
!=
DNN_TARGET_MYRIAD
;
else
return
backendId
==
DNN_BACKEND_OPENCV
;
}
virtual
void
finalize
(
const
std
::
vector
<
Mat
*>&
inputs
,
std
::
vector
<
Mat
>
&
outputs
)
CV_OVERRIDE
...
...
modules/dnn/src/layers/slice_layer.cpp
View file @
f040282b
...
...
@@ -41,6 +41,7 @@
//M*/
#include "../precomp.hpp"
#include "../op_inf_engine.hpp"
#include "layers_common.hpp"
#include <opencv2/dnn/shape_utils.hpp>
...
...
@@ -107,6 +108,12 @@ public:
}
}
virtual
bool
supportBackend
(
int
backendId
)
CV_OVERRIDE
{
return
backendId
==
DNN_BACKEND_OPENCV
||
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
&&
sliceRanges
.
size
()
==
1
;
}
bool
getMemoryShapes
(
const
std
::
vector
<
MatShape
>
&
inputs
,
const
int
requiredOutputs
,
std
::
vector
<
MatShape
>
&
outputs
,
...
...
@@ -247,6 +254,29 @@ public:
inpMat
(
sliceRanges
[
i
]).
copyTo
(
outputs
[
i
]);
}
}
virtual
Ptr
<
BackendNode
>
initInfEngine
(
const
std
::
vector
<
Ptr
<
BackendWrapper
>
>&
inputs
)
CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
InferenceEngine
::
DataPtr
input
=
infEngineDataNode
(
inputs
[
0
]);
InferenceEngine
::
LayerParams
lp
;
lp
.
name
=
name
;
lp
.
type
=
"Crop"
;
lp
.
precision
=
InferenceEngine
::
Precision
::
FP32
;
std
::
shared_ptr
<
InferenceEngine
::
CropLayer
>
ieLayer
(
new
InferenceEngine
::
CropLayer
(
lp
));
CV_Assert
(
sliceRanges
.
size
()
==
1
);
for
(
int
i
=
sliceRanges
[
0
].
size
()
-
1
;
i
>=
0
;
--
i
)
{
ieLayer
->
axis
.
push_back
(
i
);
ieLayer
->
offset
.
push_back
(
sliceRanges
[
0
][
i
].
start
);
ieLayer
->
dim
.
push_back
(
sliceRanges
[
0
][
i
].
end
-
sliceRanges
[
0
][
i
].
start
);
}
return
Ptr
<
BackendNode
>
(
new
InfEngineBackendNode
(
ieLayer
));
#endif // HAVE_INF_ENGINE
return
Ptr
<
BackendNode
>
();
}
};
Ptr
<
SliceLayer
>
SliceLayer
::
create
(
const
LayerParams
&
params
)
...
...
modules/dnn/test/test_backends.cpp
View file @
f040282b
...
...
@@ -256,7 +256,8 @@ TEST_P(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages)
TEST_P
(
DNNTestNetwork
,
OpenFace
)
{
if
(
backend
==
DNN_BACKEND_HALIDE
||
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
!=
DNN_TARGET_CPU
)
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_OPENCL_FP16
)
||
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_MYRIAD
))
throw
SkipTestException
(
""
);
processNet
(
"dnn/openface_nn4.small2.v1.t7"
,
""
,
Size
(
96
,
96
),
""
);
}
...
...
@@ -296,6 +297,20 @@ TEST_P(DNNTestNetwork, DenseNet_121)
processNet
(
"dnn/DenseNet_121.caffemodel"
,
"dnn/DenseNet_121.prototxt"
,
Size
(
224
,
224
),
""
,
"caffe"
);
}
TEST_P
(
DNNTestNetwork
,
FastNeuralStyle_eccv16
)
{
if
(
backend
==
DNN_BACKEND_HALIDE
||
(
backend
==
DNN_BACKEND_OPENCV
&&
target
==
DNN_TARGET_OPENCL_FP16
)
||
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_MYRIAD
))
throw
SkipTestException
(
""
);
Mat
img
=
imread
(
findDataFile
(
"dnn/googlenet_1.png"
,
false
));
Mat
inp
=
blobFromImage
(
img
,
1.0
,
Size
(
320
,
240
),
Scalar
(
103.939
,
116.779
,
123.68
),
false
,
false
);
// Output image has values in range [-143.526, 148.539].
float
l1
=
(
target
==
DNN_TARGET_OPENCL_FP16
||
target
==
DNN_TARGET_MYRIAD
)
?
0.3
:
4e-5
;
float
lInf
=
(
target
==
DNN_TARGET_OPENCL_FP16
||
target
==
DNN_TARGET_MYRIAD
)
?
7.0
:
2e-3
;
processNet
(
"dnn/fast_neural_style_eccv16_starry_night.t7"
,
""
,
inp
,
""
,
""
,
l1
,
lInf
);
}
const
tuple
<
DNNBackend
,
DNNTarget
>
testCases
[]
=
{
#ifdef HAVE_HALIDE
tuple
<
DNNBackend
,
DNNTarget
>
(
DNN_BACKEND_HALIDE
,
DNN_TARGET_CPU
),
...
...
modules/dnn/test/test_darknet_importer.cpp
View file @
f040282b
...
...
@@ -135,8 +135,6 @@ TEST_P(Test_Darknet_nets, YoloVoc)
{
int
backendId
=
get
<
0
>
(
GetParam
());
int
targetId
=
get
<
1
>
(
GetParam
());
if
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
&&
targetId
==
DNN_TARGET_MYRIAD
)
throw
SkipTestException
(
""
);
std
::
vector
<
cv
::
String
>
outNames
(
1
,
"detection_out"
);
std
::
vector
<
int
>
classIds
(
3
);
...
...
modules/dnn/test/test_torch_importer.cpp
View file @
f040282b
...
...
@@ -296,6 +296,7 @@ TEST_P(Test_Torch_nets, FastNeuralStyle_accuracy)
Mat
inputBlob
=
blobFromImage
(
img
,
1.0
,
Size
(),
Scalar
(
103.939
,
116.779
,
123.68
),
false
);
net
.
setInput
(
inputBlob
);
net
.
setPreferableBackend
(
DNN_BACKEND_OPENCV
);
Mat
out
=
net
.
forward
();
// Deprocessing.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment