Commit efd00238 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

fixed warnings; restored fixed_size parameter in AutoBuffer

parent dc4d0398
......@@ -109,7 +109,7 @@ template<typename _Tp> class CV_EXPORTS MatIterator_;
template<typename _Tp> class CV_EXPORTS MatConstIterator_;
template<typename _Tp> class CV_EXPORTS MatCommaInitializer_;
template<typename _Tp> class CV_EXPORTS AutoBuffer;
template<typename _Tp, size_t fixed_size = 1024/sizeof(_Tp)+8> class CV_EXPORTS AutoBuffer;
CV_EXPORTS string format( const char* fmt, ... );
CV_EXPORTS string tempfile( const char* suffix CV_DEFAULT(0));
......@@ -3093,11 +3093,10 @@ public:
}
\endcode
*/
template<typename _Tp> class CV_EXPORTS AutoBuffer
template<typename _Tp, size_t fixed_size> class CV_EXPORTS AutoBuffer
{
public:
typedef _Tp value_type;
enum { fixed_size = 1024/sizeof(_Tp)+8, buffer_padding = (int)((16 + sizeof(_Tp) - 1)/sizeof(_Tp)) };
//! the default contructor
AutoBuffer();
......@@ -3105,9 +3104,9 @@ public:
AutoBuffer(size_t _size);
//! the copy constructor
AutoBuffer(const AutoBuffer<_Tp>& buf);
AutoBuffer(const AutoBuffer<_Tp, fixed_size>& buf);
//! the assignment operator
AutoBuffer<_Tp>& operator = (const AutoBuffer<_Tp>& buf);
AutoBuffer<_Tp, fixed_size>& operator = (const AutoBuffer<_Tp, fixed_size>& buf);
//! destructor. calls deallocate()
~AutoBuffer();
......@@ -3117,7 +3116,7 @@ public:
//! deallocates the buffer if it was dynamically allocated
void deallocate();
//! resizes the buffer and preserves the content
void resize(size_t _size);
void resize(size_t _size);
//! returns the current buffer size
size_t size() const;
//! returns pointer to the real buffer, stack-allocated or head-allocated
......@@ -3131,7 +3130,7 @@ protected:
//! size of the real buffer
size_t sz;
//! pre-allocated buffer
_Tp buf[fixed_size+buffer_padding];
_Tp buf[fixed_size];
};
/////////////////////////// multi-dimensional dense matrix //////////////////////////
......
......@@ -2534,21 +2534,23 @@ inline Point LineIterator::pos() const
/////////////////////////////// AutoBuffer ////////////////////////////////////////
template<typename _Tp> inline AutoBuffer<_Tp>::AutoBuffer()
template<typename _Tp, size_t fixed_size> inline
AutoBuffer<_Tp, fixed_size>::AutoBuffer()
{
ptr = buf;
sz = fixed_size;
}
template<typename _Tp> inline AutoBuffer<_Tp>::AutoBuffer(size_t _size)
template<typename _Tp, size_t fixed_size> inline
AutoBuffer<_Tp, fixed_size>::AutoBuffer(size_t _size)
{
ptr = buf;
sz = fixed_size;
allocate(_size);
}
template<typename _Tp>
inline AutoBuffer<_Tp>::AutoBuffer(const AutoBuffer<_Tp>& abuf )
template<typename _Tp, size_t fixed_size> inline
AutoBuffer<_Tp, fixed_size>::AutoBuffer(const AutoBuffer<_Tp, fixed_size>& abuf )
{
ptr = buf;
sz = fixed_size;
......@@ -2557,8 +2559,8 @@ inline AutoBuffer<_Tp>::AutoBuffer(const AutoBuffer<_Tp>& abuf )
ptr[i] = abuf.ptr[i];
}
template<typename _Tp>
inline AutoBuffer<_Tp>& AutoBuffer<_Tp>::operator = (const AutoBuffer<_Tp>& abuf )
template<typename _Tp, size_t fixed_size> inline AutoBuffer<_Tp, fixed_size>&
AutoBuffer<_Tp, fixed_size>::operator = (const AutoBuffer<_Tp, fixed_size>& abuf)
{
if( this != &abuf )
{
......@@ -2570,10 +2572,12 @@ inline AutoBuffer<_Tp>& AutoBuffer<_Tp>::operator = (const AutoBuffer<_Tp>& abuf
return *this;
}
template<typename _Tp> inline AutoBuffer<_Tp>::~AutoBuffer()
template<typename _Tp, size_t fixed_size> inline
AutoBuffer<_Tp, fixed_size>::~AutoBuffer()
{ deallocate(); }
template<typename _Tp> inline void AutoBuffer<_Tp>::allocate(size_t _size)
template<typename _Tp, size_t fixed_size> inline void
AutoBuffer<_Tp, fixed_size>::allocate(size_t _size)
{
if(_size <= sz)
{
......@@ -2588,7 +2592,8 @@ template<typename _Tp> inline void AutoBuffer<_Tp>::allocate(size_t _size)
}
}
template<typename _Tp> inline void AutoBuffer<_Tp>::deallocate()
template<typename _Tp, size_t fixed_size> inline void
AutoBuffer<_Tp, fixed_size>::deallocate()
{
if( ptr != buf )
{
......@@ -2598,7 +2603,8 @@ template<typename _Tp> inline void AutoBuffer<_Tp>::deallocate()
}
}
template<typename _Tp> inline void AutoBuffer<_Tp>::resize(size_t _size)
template<typename _Tp, size_t fixed_size> inline void
AutoBuffer<_Tp, fixed_size>::resize(size_t _size)
{
if(_size <= sz)
{
......@@ -2621,13 +2627,16 @@ template<typename _Tp> inline void AutoBuffer<_Tp>::resize(size_t _size)
delete[] prevptr;
}
template<typename _Tp> inline size_t AutoBuffer<_Tp>::size() const
template<typename _Tp, size_t fixed_size> inline size_t
AutoBuffer<_Tp, fixed_size>::size() const
{ return sz; }
template<typename _Tp> inline AutoBuffer<_Tp>::operator _Tp* ()
template<typename _Tp, size_t fixed_size> inline
AutoBuffer<_Tp, fixed_size>::operator _Tp* ()
{ return ptr; }
template<typename _Tp> inline AutoBuffer<_Tp>::operator const _Tp* () const
template<typename _Tp, size_t fixed_size> inline
AutoBuffer<_Tp, fixed_size>::operator const _Tp* () const
{ return ptr; }
......
......@@ -92,7 +92,7 @@ namespace
}
void download(double** hptrs)
{
AutoBuffer<double> hbuf(count);
AutoBuffer<double, 2 * sizeof(double)> hbuf(count);
cudaSafeCall( cudaMemcpy((void*)hbuf, pdev, count * sizeof(double), cudaMemcpyDeviceToHost) );
for (int i = 0; i < count; ++i)
*hptrs[i] = hbuf[i];
......
......@@ -42,325 +42,6 @@
#include "precomp.hpp"
#include <iostream>
#if 0
/* contour must be a simple polygon */
/* it must have more than 3 points */
CV_IMPL CvSeq* cvConvexityDefects( const CvArr* array,
const CvArr* hullarray,
CvMemStorage* storage )
{
CvSeq* defects = 0;
int i, index;
CvPoint* hull_cur;
/* is orientation of hull different from contour one */
int rev_orientation;
CvContour contour_header;
union { CvContour c; CvSeq s; } hull_header;
CvSeqBlock block, hullblock;
CvSeq *ptseq = (CvSeq*)array, *hull = (CvSeq*)hullarray;
CvSeqReader hull_reader;
CvSeqReader ptseq_reader;
CvSeqWriter writer;
int is_index;
if( CV_IS_SEQ( ptseq ))
{
if( !CV_IS_SEQ_POINT_SET( ptseq ))
CV_Error( CV_StsUnsupportedFormat,
"Input sequence is not a sequence of points" );
if( !storage )
storage = ptseq->storage;
}
else
{
ptseq = cvPointSeqFromMat( CV_SEQ_KIND_GENERIC, array, &contour_header, &block );
}
if( CV_SEQ_ELTYPE( ptseq ) != CV_32SC2 )
CV_Error( CV_StsUnsupportedFormat, "Floating-point coordinates are not supported here" );
if( CV_IS_SEQ( hull ))
{
int hulltype = CV_SEQ_ELTYPE( hull );
if( hulltype != CV_SEQ_ELTYPE_PPOINT && hulltype != CV_SEQ_ELTYPE_INDEX )
CV_Error( CV_StsUnsupportedFormat,
"Convex hull must represented as a sequence "
"of indices or sequence of pointers" );
if( !storage )
storage = hull->storage;
}
else
{
CvMat* mat = (CvMat*)hull;
if( !CV_IS_MAT( hull ))
CV_Error(CV_StsBadArg, "Convex hull is neither sequence nor matrix");
if( (mat->cols != 1 && mat->rows != 1) ||
!CV_IS_MAT_CONT(mat->type) || CV_MAT_TYPE(mat->type) != CV_32SC1 )
CV_Error( CV_StsBadArg,
"The matrix should be 1-dimensional and continuous array of int's" );
if( mat->cols + mat->rows - 1 > ptseq->total )
CV_Error( CV_StsBadSize, "Convex hull is larger than the point sequence" );
hull = cvMakeSeqHeaderForArray(
CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
sizeof(CvContour), CV_ELEM_SIZE(mat->type), mat->data.ptr,
mat->cols + mat->rows - 1, &hull_header.s, &hullblock );
}
is_index = CV_SEQ_ELTYPE(hull) == CV_SEQ_ELTYPE_INDEX;
if( !storage )
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
defects = cvCreateSeq( CV_SEQ_KIND_GENERIC, sizeof(CvSeq), sizeof(CvConvexityDefect), storage );
if( ptseq->total < 4 || hull->total < 3)
{
//CV_ERROR( CV_StsBadSize,
// "point seq size must be >= 4, convex hull size must be >= 3" );
return defects;
}
/* recognize co-orientation of ptseq and its hull */
{
int sign = 0;
int index1, index2, index3;
if( !is_index )
{
CvPoint* pos = *CV_SEQ_ELEM( hull, CvPoint*, 0 );
index1 = cvSeqElemIdx( ptseq, pos );
pos = *CV_SEQ_ELEM( hull, CvPoint*, 1 );
index2 = cvSeqElemIdx( ptseq, pos );
pos = *CV_SEQ_ELEM( hull, CvPoint*, 2 );
index3 = cvSeqElemIdx( ptseq, pos );
}
else
{
index1 = *CV_SEQ_ELEM( hull, int, 0 );
index2 = *CV_SEQ_ELEM( hull, int, 1 );
index3 = *CV_SEQ_ELEM( hull, int, 2 );
}
sign += (index2 > index1) ? 1 : 0;
sign += (index3 > index2) ? 1 : 0;
sign += (index1 > index3) ? 1 : 0;
rev_orientation = (sign == 2) ? 0 : 1;
}
cvStartReadSeq( ptseq, &ptseq_reader, 0 );
cvStartReadSeq( hull, &hull_reader, rev_orientation );
if( !is_index )
{
hull_cur = *(CvPoint**)hull_reader.prev_elem;
index = cvSeqElemIdx( ptseq, (char*)hull_cur, 0 );
}
else
{
index = *(int*)hull_reader.prev_elem;
hull_cur = CV_GET_SEQ_ELEM( CvPoint, ptseq, index );
}
cvSetSeqReaderPos( &ptseq_reader, index );
cvStartAppendToSeq( defects, &writer );
/* cycle through ptseq and hull with computing defects */
for( i = 0; i < hull->total; i++ )
{
CvConvexityDefect defect;
int is_defect = 0;
double dx0, dy0;
double depth = 0, scale;
CvPoint* hull_next;
if( !is_index )
hull_next = *(CvPoint**)hull_reader.ptr;
else
{
int t = *(int*)hull_reader.ptr;
hull_next = CV_GET_SEQ_ELEM( CvPoint, ptseq, t );
}
dx0 = (double)hull_next->x - (double)hull_cur->x;
dy0 = (double)hull_next->y - (double)hull_cur->y;
assert( dx0 != 0 || dy0 != 0 );
scale = 1./sqrt(dx0*dx0 + dy0*dy0);
defect.start = hull_cur;
defect.end = hull_next;
for(;;)
{
/* go through ptseq to achieve next hull point */
CV_NEXT_SEQ_ELEM( sizeof(CvPoint), ptseq_reader );
if( ptseq_reader.ptr == (schar*)hull_next )
break;
else
{
CvPoint* cur = (CvPoint*)ptseq_reader.ptr;
/* compute distance from current point to hull edge */
double dx = (double)cur->x - (double)hull_cur->x;
double dy = (double)cur->y - (double)hull_cur->y;
/* compute depth */
double dist = fabs(-dy0*dx + dx0*dy) * scale;
if( dist > depth )
{
depth = dist;
defect.depth_point = cur;
defect.depth = (float)depth;
is_defect = 1;
}
}
}
if( is_defect )
{
CV_WRITE_SEQ_ELEM( defect, writer );
}
hull_cur = hull_next;
if( rev_orientation )
{
CV_PREV_SEQ_ELEM( hull->elem_size, hull_reader );
}
else
{
CV_NEXT_SEQ_ELEM( hull->elem_size, hull_reader );
}
}
return cvEndWriteSeq( &writer );
}
CV_IMPL int
cvCheckContourConvexity( const CvArr* array )
{
int flag = -1;
int i;
int orientation = 0;
CvSeqReader reader;
CvContour contour_header;
CvSeqBlock block;
CvSeq* contour = (CvSeq*)array;
if( CV_IS_SEQ(contour) )
{
if( !CV_IS_SEQ_POINT_SET(contour))
CV_Error( CV_StsUnsupportedFormat,
"Input sequence must be polygon (closed 2d curve)" );
}
else
{
contour = cvPointSeqFromMat(CV_SEQ_KIND_CURVE|CV_SEQ_FLAG_CLOSED, array, &contour_header, &block );
}
if( contour->total == 0 )
return -1;
cvStartReadSeq( contour, &reader, 0 );
flag = 1;
if( CV_SEQ_ELTYPE( contour ) == CV_32SC2 )
{
CvPoint *prev_pt = (CvPoint*)reader.prev_elem;
CvPoint *cur_pt = (CvPoint*)reader.ptr;
int dx0 = cur_pt->x - prev_pt->x;
int dy0 = cur_pt->y - prev_pt->y;
for( i = 0; i < contour->total; i++ )
{
int dxdy0, dydx0;
int dx, dy;
/*int orient; */
CV_NEXT_SEQ_ELEM( sizeof(CvPoint), reader );
prev_pt = cur_pt;
cur_pt = (CvPoint *) reader.ptr;
dx = cur_pt->x - prev_pt->x;
dy = cur_pt->y - prev_pt->y;
dxdy0 = dx * dy0;
dydx0 = dy * dx0;
/* find orientation */
/* orient = -dy0 * dx + dx0 * dy;
orientation |= (orient > 0) ? 1 : 2;
*/
orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
if( orientation == 3 )
{
flag = 0;
break;
}
dx0 = dx;
dy0 = dy;
}
}
else
{
CV_Assert( CV_SEQ_ELTYPE(contour) == CV_32FC2 );
CvPoint2D32f *prev_pt = (CvPoint2D32f*)reader.prev_elem;
CvPoint2D32f *cur_pt = (CvPoint2D32f*)reader.ptr;
float dx0 = cur_pt->x - prev_pt->x;
float dy0 = cur_pt->y - prev_pt->y;
for( i = 0; i < contour->total; i++ )
{
float dxdy0, dydx0;
float dx, dy;
/*int orient; */
CV_NEXT_SEQ_ELEM( sizeof(CvPoint2D32f), reader );
prev_pt = cur_pt;
cur_pt = (CvPoint2D32f*) reader.ptr;
dx = cur_pt->x - prev_pt->x;
dy = cur_pt->y - prev_pt->y;
dxdy0 = dx * dy0;
dydx0 = dy * dx0;
/* find orientation */
/* orient = -dy0 * dx + dx0 * dy;
orientation |= (orient > 0) ? 1 : 2;
*/
orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
if( orientation == 3 )
{
flag = 0;
break;
}
dx0 = dx;
dy0 = dy;
}
}
return flag;
}
#endif
namespace cv
{
......
......@@ -323,7 +323,7 @@ static void fitLine2D( const Point2f * points, int count, int dist,
float rdelta = reps != 0 ? reps : 1.0f;
float adelta = aeps != 0 ? aeps : 0.01f;
double min_err = DBL_MAX, err = 0;
RNG rng(-1);
RNG rng((uint64)-1);
memset( line, 0, 4*sizeof(line[0]) );
......@@ -463,7 +463,7 @@ static void fitLine3D( Point3f * points, int count, int dist,
float rdelta = reps != 0 ? reps : 1.0f;
float adelta = aeps != 0 ? aeps : 0.01f;
double min_err = DBL_MAX, err = 0;
RNG rng(-1);
RNG rng((uint64)-1);
switch (dist)
{
......
This diff is collapsed.
......@@ -110,7 +110,7 @@ static int findEnslosingCicle4pts_32f( Point2f* pts, Point2f& _center, float& _r
for( i = 0; i < 4; i++ )
for( j = i + 1; j < 4; j++ )
{
float dist = norm(pts[i] - pts[j]);
float dist = (float)norm(pts[i] - pts[j]);
if( max_dist < dist )
{
......@@ -132,13 +132,14 @@ static int findEnslosingCicle4pts_32f( Point2f* pts, Point2f& _center, float& _r
idxs[k++] = i;
}
center = Point2f( (pts[idxs[0]].x + pts[idxs[1]].x)*0.5f, (pts[idxs[0]].y + pts[idxs[1]].y)*0.5f );
center = Point2f( (pts[idxs[0]].x + pts[idxs[1]].x)*0.5f,
(pts[idxs[0]].y + pts[idxs[1]].y)*0.5f );
radius = (float)(norm(pts[idxs[0]] - center)*1.03);
if( radius < 1.f )
radius = 1.f;
if( pointInCircle( pts[idxs[2]], center, radius ) >= 0 &&
pointInCircle( pts[idxs[3]], center, radius ) >= 0 )
pointInCircle( pts[idxs[3]], center, radius ) >= 0 )
{
k = 2; //rand()%2+2;
}
......@@ -148,14 +149,14 @@ static int findEnslosingCicle4pts_32f( Point2f* pts, Point2f& _center, float& _r
for( i = 0; i < 4; i++ )
{
if( findCircle( pts[shuffles[i][0]], pts[shuffles[i][1]],
pts[shuffles[i][2]], &center, &radius ) >= 0 )
pts[shuffles[i][2]], &center, &radius ) )
{
radius *= 1.03f;
if( radius < 2.f )
radius = 2.f;
if( pointInCircle( pts[shuffles[i][3]], center, radius ) >= 0 &&
min_radius > radius )
min_radius > radius )
{
min_radius = radius;
min_center = center;
......@@ -217,9 +218,9 @@ void cv::minEnclosingCircle( InputArray _points, Point2f& _center, float& _radiu
Point2f pt = is_float ? ptsf[0] : Point2f((float)ptsi[0].x,(float)ptsi[0].y);
Point2f pts[4] = {pt, pt, pt, pt};
for(int i = 1; i < count; i++ )
for( i = 1; i < count; i++ )
{
Point2f pt = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
pt = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
if( pt.x < pts[0].x )
pts[0] = pt;
......@@ -234,20 +235,20 @@ void cv::minEnclosingCircle( InputArray _points, Point2f& _center, float& _radiu
for( k = 0; k < max_iters; k++ )
{
double min_delta = 0, delta;
Point2f ptf, farAway(0,0);
Point2f farAway(0,0);
/*only for first iteration because the alg is repared at the loop's foot*/
if( k == 0 )
findEnslosingCicle4pts_32f( pts, center, radius );
for( i = 0; i < count; i++ )
{
ptf = is_float ? ptsf[i] : Point2f((float)ptsi[i].x,(float)ptsi[i].y);
pt = is_float ? ptsf[i] : Point2f((float)ptsi[i].x,(float)ptsi[i].y);
delta = pointInCircle( ptf, center, radius );
delta = pointInCircle( pt, center, radius );
if( delta < min_delta )
{
min_delta = delta;
farAway = ptf;
farAway = pt;
}
}
result = min_delta >= 0;
......@@ -275,10 +276,10 @@ void cv::minEnclosingCircle( InputArray _points, Point2f& _center, float& _radiu
if( !result )
{
radius = 0.f;
for(int i = 0; i < count; i++ )
for( i = 0; i < count; i++ )
{
Point2f ptf = is_float ? ptsf[i] : Point2f((float)ptsi[i].x,(float)ptsi[i].y);
float dx = center.x - ptf.x, dy = center.y - ptf.y;
pt = is_float ? ptsf[i] : Point2f((float)ptsi[i].x,(float)ptsi[i].y);
float dx = center.x - pt.x, dy = center.y - pt.y;
float t = dx*dx + dy*dy;
radius = MAX(radius, t);
}
......@@ -1045,14 +1046,12 @@ cvFitEllipse2( const CvArr* array )
CV_IMPL CvRect
cvBoundingRect( CvArr* array, int update )
{
CvSeqReader reader;
CvRect rect = { 0, 0, 0, 0 };
CvContour contour_header;
CvSeq* ptseq = 0;
CvSeqBlock block;
CvMat stub, *mat = 0;
int xmin = 0, ymin = 0, xmax = -1, ymax = -1, i, j, k;
int calculate = update;
if( CV_IS_SEQ( array ))
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment