Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
ef8182e1
Commit
ef8182e1
authored
May 21, 2015
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #4025 from vpisarev:features2d_fixes
parents
021473e9
af47b655
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
222 additions
and
137 deletions
+222
-137
persistence.hpp
modules/core/include/opencv2/core/persistence.hpp
+2
-0
persistence.cpp
modules/core/src/persistence.cpp
+29
-0
mser.cpp
modules/features2d/src/mser.cpp
+0
-0
test_descriptors_regression.cpp
modules/features2d/test/test_descriptors_regression.cpp
+94
-0
test_matchers_algorithmic.cpp
modules/features2d/test/test_matchers_algorithmic.cpp
+10
-0
test_mser.cpp
modules/features2d/test/test_mser.cpp
+87
-137
No files found.
modules/core/include/opencv2/core/persistence.hpp
View file @
ef8182e1
...
...
@@ -660,6 +660,7 @@ CV_EXPORTS void write( FileStorage& fs, const String& name, const String& value
CV_EXPORTS
void
write
(
FileStorage
&
fs
,
const
String
&
name
,
const
Mat
&
value
);
CV_EXPORTS
void
write
(
FileStorage
&
fs
,
const
String
&
name
,
const
SparseMat
&
value
);
CV_EXPORTS
void
write
(
FileStorage
&
fs
,
const
String
&
name
,
const
std
::
vector
<
KeyPoint
>&
value
);
CV_EXPORTS
void
write
(
FileStorage
&
fs
,
const
String
&
name
,
const
std
::
vector
<
DMatch
>&
value
);
CV_EXPORTS
void
writeScalar
(
FileStorage
&
fs
,
int
value
);
CV_EXPORTS
void
writeScalar
(
FileStorage
&
fs
,
float
value
);
...
...
@@ -678,6 +679,7 @@ CV_EXPORTS void read(const FileNode& node, String& value, const String& default_
CV_EXPORTS
void
read
(
const
FileNode
&
node
,
Mat
&
mat
,
const
Mat
&
default_mat
=
Mat
()
);
CV_EXPORTS
void
read
(
const
FileNode
&
node
,
SparseMat
&
mat
,
const
SparseMat
&
default_mat
=
SparseMat
()
);
CV_EXPORTS
void
read
(
const
FileNode
&
node
,
std
::
vector
<
KeyPoint
>&
keypoints
);
CV_EXPORTS
void
read
(
const
FileNode
&
node
,
std
::
vector
<
DMatch
>&
matches
);
template
<
typename
_Tp
>
static
inline
void
read
(
const
FileNode
&
node
,
Point_
<
_Tp
>&
value
,
const
Point_
<
_Tp
>&
default_value
)
{
...
...
modules/core/src/persistence.cpp
View file @
ef8182e1
...
...
@@ -5594,6 +5594,35 @@ void read(const FileNode& node, std::vector<KeyPoint>& keypoints)
}
}
void
write
(
FileStorage
&
fs
,
const
String
&
objname
,
const
std
::
vector
<
DMatch
>&
matches
)
{
cv
::
internal
::
WriteStructContext
ws
(
fs
,
objname
,
CV_NODE_SEQ
+
CV_NODE_FLOW
);
int
i
,
n
=
(
int
)
matches
.
size
();
for
(
i
=
0
;
i
<
n
;
i
++
)
{
const
DMatch
&
m
=
matches
[
i
];
cv
::
write
(
fs
,
m
.
queryIdx
);
cv
::
write
(
fs
,
m
.
trainIdx
);
cv
::
write
(
fs
,
m
.
imgIdx
);
cv
::
write
(
fs
,
m
.
distance
);
}
}
void
read
(
const
FileNode
&
node
,
std
::
vector
<
DMatch
>&
matches
)
{
matches
.
resize
(
0
);
FileNodeIterator
it
=
node
.
begin
(),
it_end
=
node
.
end
();
for
(
;
it
!=
it_end
;
)
{
DMatch
m
;
it
>>
m
.
queryIdx
>>
m
.
trainIdx
>>
m
.
imgIdx
>>
m
.
distance
;
matches
.
push_back
(
m
);
}
}
int
FileNode
::
type
()
const
{
return
!
node
?
NONE
:
(
node
->
tag
&
TYPE_MASK
);
}
bool
FileNode
::
isNamed
()
const
{
return
!
node
?
false
:
(
node
->
tag
&
NAMED
)
!=
0
;
}
...
...
modules/features2d/src/mser.cpp
View file @
ef8182e1
This diff is collapsed.
Click to expand it.
modules/features2d/test/test_descriptors_regression.cpp
View file @
ef8182e1
...
...
@@ -347,3 +347,97 @@ TEST( Features2d_DescriptorExtractor_AKAZE, regression )
Hamming
(),
AKAZE
::
create
());
test
.
safe_run
();
}
TEST
(
Features2d_DescriptorExtractor
,
batch
)
{
string
path
=
string
(
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
"detectors_descriptors_evaluation/images_datasets/graf"
);
vector
<
Mat
>
imgs
,
descriptors
;
vector
<
vector
<
KeyPoint
>
>
keypoints
;
int
i
,
n
=
6
;
Ptr
<
ORB
>
orb
=
ORB
::
create
();
for
(
i
=
0
;
i
<
n
;
i
++
)
{
string
imgname
=
format
(
"%s/img%d.png"
,
path
.
c_str
(),
i
+
1
);
Mat
img
=
imread
(
imgname
,
0
);
imgs
.
push_back
(
img
);
}
orb
->
detect
(
imgs
,
keypoints
);
orb
->
compute
(
imgs
,
keypoints
,
descriptors
);
ASSERT_EQ
((
int
)
keypoints
.
size
(),
n
);
ASSERT_EQ
((
int
)
descriptors
.
size
(),
n
);
for
(
i
=
0
;
i
<
n
;
i
++
)
{
EXPECT_GT
((
int
)
keypoints
[
i
].
size
(),
100
);
EXPECT_GT
(
descriptors
[
i
].
rows
,
100
);
}
}
TEST
(
Features2d_Feature2d
,
no_crash
)
{
const
String
&
pattern
=
string
(
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
"shared/*.png"
);
vector
<
String
>
fnames
;
glob
(
pattern
,
fnames
,
false
);
sort
(
fnames
.
begin
(),
fnames
.
end
());
Ptr
<
AKAZE
>
akaze
=
AKAZE
::
create
();
Ptr
<
ORB
>
orb
=
ORB
::
create
();
Ptr
<
KAZE
>
kaze
=
KAZE
::
create
();
Ptr
<
BRISK
>
brisk
=
BRISK
::
create
();
size_t
i
,
n
=
fnames
.
size
();
vector
<
KeyPoint
>
keypoints
;
Mat
descriptors
;
orb
->
setMaxFeatures
(
5000
);
for
(
i
=
0
;
i
<
n
;
i
++
)
{
printf
(
"%d. image: %s:
\n
"
,
(
int
)
i
,
fnames
[
i
].
c_str
());
if
(
strstr
(
fnames
[
i
].
c_str
(),
"MP.png"
)
!=
0
)
continue
;
bool
checkCount
=
strstr
(
fnames
[
i
].
c_str
(),
"templ.png"
)
==
0
;
Mat
img
=
imread
(
fnames
[
i
],
-
1
);
printf
(
"
\t
AKAZE ... "
);
fflush
(
stdout
);
akaze
->
detectAndCompute
(
img
,
noArray
(),
keypoints
,
descriptors
);
printf
(
"(%d keypoints) "
,
(
int
)
keypoints
.
size
());
fflush
(
stdout
);
if
(
checkCount
)
{
EXPECT_GT
((
int
)
keypoints
.
size
(),
0
);
}
ASSERT_EQ
(
descriptors
.
rows
,
(
int
)
keypoints
.
size
());
printf
(
"ok
\n
"
);
printf
(
"
\t
KAZE ... "
);
fflush
(
stdout
);
kaze
->
detectAndCompute
(
img
,
noArray
(),
keypoints
,
descriptors
);
printf
(
"(%d keypoints) "
,
(
int
)
keypoints
.
size
());
fflush
(
stdout
);
if
(
checkCount
)
{
EXPECT_GT
((
int
)
keypoints
.
size
(),
0
);
}
ASSERT_EQ
(
descriptors
.
rows
,
(
int
)
keypoints
.
size
());
printf
(
"ok
\n
"
);
printf
(
"
\t
ORB ... "
);
fflush
(
stdout
);
orb
->
detectAndCompute
(
img
,
noArray
(),
keypoints
,
descriptors
);
printf
(
"(%d keypoints) "
,
(
int
)
keypoints
.
size
());
fflush
(
stdout
);
if
(
checkCount
)
{
EXPECT_GT
((
int
)
keypoints
.
size
(),
0
);
}
ASSERT_EQ
(
descriptors
.
rows
,
(
int
)
keypoints
.
size
());
printf
(
"ok
\n
"
);
printf
(
"
\t
BRISK ... "
);
fflush
(
stdout
);
brisk
->
detectAndCompute
(
img
,
noArray
(),
keypoints
,
descriptors
);
printf
(
"(%d keypoints) "
,
(
int
)
keypoints
.
size
());
fflush
(
stdout
);
if
(
checkCount
)
{
EXPECT_GT
((
int
)
keypoints
.
size
(),
0
);
}
ASSERT_EQ
(
descriptors
.
rows
,
(
int
)
keypoints
.
size
());
printf
(
"ok
\n
"
);
}
}
modules/features2d/test/test_matchers_algorithmic.cpp
View file @
ef8182e1
...
...
@@ -543,3 +543,13 @@ TEST( Features2d_DescriptorMatcher_FlannBased, regression )
DescriptorMatcher
::
create
(
"FlannBased"
),
0.04
f
);
test
.
safe_run
();
}
TEST
(
Features2d_DMatch
,
read_write
)
{
FileStorage
fs
(
".xml"
,
FileStorage
::
WRITE
+
FileStorage
::
MEMORY
);
vector
<
DMatch
>
matches
;
matches
.
push_back
(
DMatch
(
1
,
2
,
3
,
4.5
f
));
fs
<<
"Match"
<<
matches
;
String
str
=
fs
.
releaseAndGetString
();
ASSERT_NE
(
strstr
(
str
.
c_str
(),
"4.5"
),
(
char
*
)
0
);
}
modules/features2d/test/test_mser.cpp
View file @
ef8182e1
...
...
@@ -41,171 +41,121 @@
//M*/
#include "test_precomp.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#if 0
#include "opencv2/highgui.hpp"
#include <vector>
#include <string>
using
namespace
std
;
using
namespace
cv
;
class CV_MserTest : public cvtest::BaseTest
{
public:
CV_MserTest();
protected:
void run(int);
int LoadBoxes(const char* path, vector<CvBox2D>& boxes);
int SaveBoxes(const char* path, const vector<CvBox2D>& boxes);
int CompareBoxes(const vector<CvBox2D>& boxes1,const vector<CvBox2D>& boxes2, float max_rel_diff = 0.01f);
};
CV_MserTest::CV_MserTest()
{
}
#undef RENDER_MSERS
#define RENDER_MSERS 0
int CV_MserTest::LoadBoxes(const char* path, vector<CvBox2D>& boxes)
#if defined RENDER_MSERS && RENDER_MSERS
static
void
renderMSERs
(
const
Mat
&
gray
,
Mat
&
img
,
const
vector
<
vector
<
Point
>
>&
msers
)
{
boxes.clear();
FILE* f = fopen(path,"r");
if (f==NULL)
cvtColor
(
gray
,
img
,
COLOR_GRAY2BGR
);
RNG
rng
((
uint64
)
1749583
);
for
(
int
i
=
0
;
i
<
(
int
)
msers
.
size
();
i
++
)
{
return 0;
}
uchar
b
=
rng
.
uniform
(
0
,
256
);
uchar
g
=
rng
.
uniform
(
0
,
256
);
uchar
r
=
rng
.
uniform
(
0
,
256
);
Vec3b
color
(
b
,
g
,
r
);
while (!feof(f))
{
CvBox2D box;
int values_read = fscanf(f,"%f,%f,%f,%f,%f\n",&box.angle,&box.center.x,&box.center.y,&box.size.width,&box.size.height);
CV_Assert(values_read == 5);
boxes.push_back(box);
const
Point
*
pt
=
&
msers
[
i
][
0
];
size_t
j
,
n
=
msers
[
i
].
size
();
for
(
j
=
0
;
j
<
n
;
j
++
)
img
.
at
<
Vec3b
>
(
pt
[
j
])
=
color
;
}
fclose(f);
return 1;
}
int CV_MserTest::SaveBoxes(const char* path, const vector<CvBox2D>& boxes)
{
FILE* f = fopen(path,"w");
if (f==NULL)
{
return 0;
}
for (int i=0;i<(int)boxes.size();i++)
{
fprintf(f,"%f,%f,%f,%f,%f\n",boxes[i].angle,boxes[i].center.x,boxes[i].center.y,boxes[i].size.width,boxes[i].size.height);
}
fclose(f);
return 1;
}
#endif
int CV_MserTest::CompareBoxes(const vector<CvBox2D>& boxes1,const vector<CvBox2D>& boxes2, float max_rel_diff
)
TEST
(
Features2d_MSER
,
cases
)
{
if (boxes1.size() != boxes2.size())
return 0;
for (int i=0; i<(int)boxes1.size();i++)
{
float rel_diff;
if (!((boxes1[i].angle == 0.0f) && (abs(boxes2[i].angle) < max_rel_diff)))
{
float angle_diff = (float)fmod(boxes1[i].angle - boxes2[i].angle, 180);
// for angular correctness, it makes no sense to use a "relative" error.
// a 1-degree error around 5 degrees is equally bas as around 250 degrees.
// in correct cases, angle_diff can now be a bit above 0 or a bit below 180
if (angle_diff > 90.0f)
{
angle_diff -= 180.0f;
}
rel_diff = (float)fabs(angle_diff);
if (rel_diff > max_rel_diff)
return i;
}
uchar
buf
[]
=
{
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
};
Mat
big_image
=
imread
(
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
"mser/puzzle.png"
,
0
);
Mat
small_image
(
14
,
26
,
CV_8U
,
buf
);
static
const
int
thresharr
[]
=
{
0
,
70
,
120
,
180
,
255
};
const
int
kDelta
=
5
;
Ptr
<
MSER
>
mserExtractor
=
MSER
::
create
(
kDelta
);
vector
<
vector
<
Point
>
>
msers
;
vector
<
Rect
>
boxes
;
if (!((boxes1[i].center.x == 0.0f) && (abs(boxes2[i].center.x) < max_rel_diff)))
{
rel_diff = abs(boxes1[i].center.x-boxes2[i].center.x)/abs(boxes1[i].center.x);
if (rel_diff > max_rel_diff)
return i;
}
RNG
rng
((
uint64
)
123456
);
if (!((boxes1[i].center.y == 0.0f) && (abs(boxes2[i].center.y) < max_rel_diff))
)
for
(
int
i
=
0
;
i
<
100
;
i
++
)
{
rel_diff = abs(boxes1[i].center.y-boxes2[i].center.y)/abs(boxes1[i].center.y);
if (rel_diff > max_rel_diff)
return i;
}
if (!((boxes1[i].size.width == 0.0f) && (abs(boxes2[i].size.width) < max_rel_diff)))
{
rel_diff = abs(boxes1[i].size.width-boxes2[i].size.width)/abs(boxes1[i].size.width);
if (rel_diff > max_rel_diff)
return i;
}
bool
use_big_image
=
rng
.
uniform
(
0
,
7
)
!=
0
;
bool
invert
=
rng
.
uniform
(
0
,
2
)
!=
0
;
bool
binarize
=
use_big_image
?
rng
.
uniform
(
0
,
5
)
!=
0
:
false
;
bool
blur
=
rng
.
uniform
(
0
,
2
)
!=
0
;
int
thresh
=
thresharr
[
rng
.
uniform
(
0
,
5
)];
if (!((boxes1[i].size.height == 0.0f) && (abs(boxes2[i].size.height) < max_rel_diff))
)
/*if( i == 0
)
{
rel_diff = abs(boxes1[i].size.height-boxes2[i].size.height)/abs(boxes1[i].size.height);
if (rel_diff > max_rel_diff)
return i;
}
}
use_big_image = true;
invert = binarize = blur = false;
}*/
return -1
;
}
const
Mat
&
src0
=
use_big_image
?
big_image
:
small_image
;
Mat
src
=
src0
.
clone
();
void CV_MserTest::run(int)
{
string image_path = string(ts->get_data_path()) + "mser/puzzle.png";
int
kMinArea
=
use_big_image
?
256
:
10
;
int
kMaxArea
=
(
int
)
src
.
total
()
/
4
;
Mat img = imread( image_path );
if (img.empty())
{
ts->printf( cvtest::TS::LOG, "Unable to open image mser/puzzle.png\n");
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
mserExtractor
->
setMinArea
(
kMinArea
);
mserExtractor
->
setMaxArea
(
kMaxArea
);
Mat yuv;
cvtColor(img, yuv, COLOR_BGR2YCrCb);
vector<vector<Point> > msers;
MSER()(yuv, msers);
if
(
invert
)
bitwise_not
(
src
,
src
);
if
(
binarize
)
threshold
(
src
,
src
,
thresh
,
255
,
THRESH_BINARY
);
if
(
blur
)
GaussianBlur
(
src
,
src
,
Size
(
5
,
5
),
1.5
,
1.5
);
vector<CvBox2D> boxes;
vector<CvBox2D> boxes_orig;
for ( size_t i = 0; i < msers.size(); i++ )
{
RotatedRect box = fitEllipse(msers[i]);
box.angle=(float)CV_PI/2-box.angle;
boxes.push_back(box);
}
int
minRegs
=
use_big_image
?
7
:
2
;
int
maxRegs
=
use_big_image
?
1000
:
15
;
if
(
binarize
&&
(
thresh
==
0
||
thresh
==
255
)
)
minRegs
=
maxRegs
=
0
;
string boxes_path = string(ts->get_data_path()) + "mser/boxes.txt";
string calc_boxes_path = string(ts->get_data_path()) + "mser/boxes.calc.txt";
mserExtractor
->
detectRegions
(
src
,
msers
,
boxes
);
int
nmsers
=
(
int
)
msers
.
size
();
ASSERT_EQ
(
nmsers
,
(
int
)
boxes
.
size
());
if (!LoadBoxes(boxes_path.c_str(),boxes_orig)
)
if
(
maxRegs
<
nmsers
||
minRegs
>
nmsers
)
{
SaveBoxes(boxes_path.c_str(),boxes);
ts->printf( cvtest::TS::LOG, "Unable to open data file mser/boxes.txt\n");
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
printf
(
"%d. minArea=%d, maxArea=%d, nmsers=%d, minRegs=%d, maxRegs=%d, "
"image=%s, invert=%d, binarize=%d, thresh=%d, blur=%d
\n
"
,
i
,
kMinArea
,
kMaxArea
,
nmsers
,
minRegs
,
maxRegs
,
use_big_image
?
"big"
:
"small"
,
(
int
)
invert
,
(
int
)
binarize
,
thresh
,
(
int
)
blur
);
#if defined RENDER_MSERS && RENDER_MSERS
Mat
image
;
imshow
(
"source"
,
src
);
renderMSERs
(
src
,
image
,
msers
);
imshow
(
"result"
,
image
);
waitKey
();
#endif
}
const float dissimularity = 0.01f;
int n_box = CompareBoxes(boxes_orig,boxes,dissimularity);
if (n_box < 0)
{
ts->set_failed_test_info(cvtest::TS::OK);
}
else
{
SaveBoxes(calc_boxes_path.c_str(), boxes);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
ts->printf( cvtest::TS::LOG, "Incorrect correspondence in box %d\n",n_box);
ASSERT_LE
(
minRegs
,
nmsers
);
ASSERT_GE
(
maxRegs
,
nmsers
);
}
}
TEST(Features2d_MSER, DISABLED_regression) { CV_MserTest test; test.safe_run(); }
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment