Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
ef8182e1
Commit
ef8182e1
authored
May 21, 2015
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #4025 from vpisarev:features2d_fixes
parents
021473e9
af47b655
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
422 additions
and
287 deletions
+422
-287
persistence.hpp
modules/core/include/opencv2/core/persistence.hpp
+2
-0
persistence.cpp
modules/core/src/persistence.cpp
+29
-0
mser.cpp
modules/features2d/src/mser.cpp
+198
-148
test_descriptors_regression.cpp
modules/features2d/test/test_descriptors_regression.cpp
+94
-0
test_matchers_algorithmic.cpp
modules/features2d/test/test_matchers_algorithmic.cpp
+10
-0
test_mser.cpp
modules/features2d/test/test_mser.cpp
+89
-139
No files found.
modules/core/include/opencv2/core/persistence.hpp
View file @
ef8182e1
...
...
@@ -660,6 +660,7 @@ CV_EXPORTS void write( FileStorage& fs, const String& name, const String& value
CV_EXPORTS
void
write
(
FileStorage
&
fs
,
const
String
&
name
,
const
Mat
&
value
);
CV_EXPORTS
void
write
(
FileStorage
&
fs
,
const
String
&
name
,
const
SparseMat
&
value
);
CV_EXPORTS
void
write
(
FileStorage
&
fs
,
const
String
&
name
,
const
std
::
vector
<
KeyPoint
>&
value
);
CV_EXPORTS
void
write
(
FileStorage
&
fs
,
const
String
&
name
,
const
std
::
vector
<
DMatch
>&
value
);
CV_EXPORTS
void
writeScalar
(
FileStorage
&
fs
,
int
value
);
CV_EXPORTS
void
writeScalar
(
FileStorage
&
fs
,
float
value
);
...
...
@@ -678,6 +679,7 @@ CV_EXPORTS void read(const FileNode& node, String& value, const String& default_
CV_EXPORTS
void
read
(
const
FileNode
&
node
,
Mat
&
mat
,
const
Mat
&
default_mat
=
Mat
()
);
CV_EXPORTS
void
read
(
const
FileNode
&
node
,
SparseMat
&
mat
,
const
SparseMat
&
default_mat
=
SparseMat
()
);
CV_EXPORTS
void
read
(
const
FileNode
&
node
,
std
::
vector
<
KeyPoint
>&
keypoints
);
CV_EXPORTS
void
read
(
const
FileNode
&
node
,
std
::
vector
<
DMatch
>&
matches
);
template
<
typename
_Tp
>
static
inline
void
read
(
const
FileNode
&
node
,
Point_
<
_Tp
>&
value
,
const
Point_
<
_Tp
>&
default_value
)
{
...
...
modules/core/src/persistence.cpp
View file @
ef8182e1
...
...
@@ -5594,6 +5594,35 @@ void read(const FileNode& node, std::vector<KeyPoint>& keypoints)
}
}
void
write
(
FileStorage
&
fs
,
const
String
&
objname
,
const
std
::
vector
<
DMatch
>&
matches
)
{
cv
::
internal
::
WriteStructContext
ws
(
fs
,
objname
,
CV_NODE_SEQ
+
CV_NODE_FLOW
);
int
i
,
n
=
(
int
)
matches
.
size
();
for
(
i
=
0
;
i
<
n
;
i
++
)
{
const
DMatch
&
m
=
matches
[
i
];
cv
::
write
(
fs
,
m
.
queryIdx
);
cv
::
write
(
fs
,
m
.
trainIdx
);
cv
::
write
(
fs
,
m
.
imgIdx
);
cv
::
write
(
fs
,
m
.
distance
);
}
}
void
read
(
const
FileNode
&
node
,
std
::
vector
<
DMatch
>&
matches
)
{
matches
.
resize
(
0
);
FileNodeIterator
it
=
node
.
begin
(),
it_end
=
node
.
end
();
for
(
;
it
!=
it_end
;
)
{
DMatch
m
;
it
>>
m
.
queryIdx
>>
m
.
trainIdx
>>
m
.
imgIdx
>>
m
.
distance
;
matches
.
push_back
(
m
);
}
}
int
FileNode
::
type
()
const
{
return
!
node
?
NONE
:
(
node
->
tag
&
TYPE_MASK
);
}
bool
FileNode
::
isNamed
()
const
{
return
!
node
?
false
:
(
node
->
tag
&
NAMED
)
!=
0
;
}
...
...
modules/features2d/src/mser.cpp
View file @
ef8182e1
...
...
@@ -29,12 +29,12 @@
*
* OpenCV functions for MSER extraction
*
* 1. there are two different implementation of MSER, one for gr
e
y image, one for color image
* 2. the gr
e
y image algorithm is taken from: Linear Time Maximally Stable Extremal Regions;
* 1. there are two different implementation of MSER, one for gr
a
y image, one for color image
* 2. the gr
a
y image algorithm is taken from: Linear Time Maximally Stable Extremal Regions;
* the paper claims to be faster than union-find method;
* it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop.
* 3. the color image algorithm is taken from: Maximally Stable Colour Regions for Recognition and Match;
* it should be much slower than gr
e
y image method ( 3~4 times );
* it should be much slower than gr
a
y image method ( 3~4 times );
* the chi_table.h file is taken directly from paper's source code which is distributed under GPL.
* 4. though the name is *contours*, the result actually is a list of point set.
*/
...
...
@@ -121,15 +121,129 @@ public:
};
typedef
int
PPixel
;
struct
WParams
{
Params
p
;
vector
<
vector
<
Point
>
>*
msers
;
vector
<
Rect
>*
bboxvec
;
Pixel
*
pix0
;
int
step
;
};
// the history of region grown
struct
CompHistory
{
CompHistory
()
{
shortcut
=
child
=
0
;
stable
=
val
=
size
=
0
;
}
CompHistory
*
shortcut
;
CompHistory
*
child
;
int
stable
;
// when it ever stabled before, record the size
CompHistory
()
{
parent_
=
child_
=
next_
=
0
;
val
=
size
=
0
;
var
=
-
1.
f
;
head
=
0
;
checked
=
false
;
}
void
updateTree
(
WParams
&
wp
,
CompHistory
**
_h0
,
CompHistory
**
_h1
,
bool
final
)
{
if
(
var
>=
0.
f
)
return
;
int
delta
=
wp
.
p
.
delta
;
CompHistory
*
h0_
=
0
,
*
h1_
=
0
;
CompHistory
*
c
=
child_
;
if
(
size
>=
wp
.
p
.
minArea
)
{
for
(
;
c
!=
0
;
c
=
c
->
next_
)
{
if
(
c
->
var
<
0.
f
)
c
->
updateTree
(
wp
,
c
==
child_
?
&
h0_
:
0
,
c
==
child_
?
&
h1_
:
0
,
final
);
if
(
c
->
var
<
0.
f
)
return
;
}
}
// find h0 and h1 such that:
// h0->val >= h->val - delta and (h0->parent == 0 or h0->parent->val < h->val - delta)
// h1->val <= h->val + delta and (h1->child == 0 or h1->child->val < h->val + delta)
// then we will adjust h0 and h1 as h moves towards latest
CompHistory
*
h0
=
this
,
*
h1
=
h1_
&&
h1_
->
size
>
size
?
h1_
:
this
;
if
(
h0_
)
{
for
(
h0
=
h0_
;
h0
!=
this
&&
h0
->
val
<
val
-
delta
;
h0
=
h0
->
parent_
)
;
}
else
{
for
(
;
h0
->
child_
&&
h0
->
child_
->
val
>=
val
-
delta
;
h0
=
h0
->
child_
)
;
}
for
(
;
h1
->
parent_
&&
h1
->
parent_
->
val
<=
val
+
delta
;
h1
=
h1
->
parent_
)
;
if
(
_h0
)
*
_h0
=
h0
;
if
(
_h1
)
*
_h1
=
h1
;
// when we do not well-defined ER(h->val + delta), we stop
// the process of computing variances unless we are at the final step
if
(
!
final
&&
!
h1
->
parent_
&&
h1
->
val
<
val
+
delta
)
return
;
var
=
(
float
)(
h1
->
size
-
h0
->
size
)
/
size
;
c
=
child_
;
for
(
;
c
!=
0
;
c
=
c
->
next_
)
c
->
checkAndCapture
(
wp
);
if
(
final
&&
!
parent_
)
checkAndCapture
(
wp
);
}
void
checkAndCapture
(
WParams
&
wp
)
{
if
(
checked
)
return
;
checked
=
true
;
if
(
size
<
wp
.
p
.
minArea
||
size
>
wp
.
p
.
maxArea
||
var
<
0.
f
||
var
>
wp
.
p
.
maxVariation
)
return
;
if
(
child_
)
{
CompHistory
*
c
=
child_
;
for
(
;
c
!=
0
;
c
=
c
->
next_
)
{
if
(
c
->
var
>=
0.
f
&&
var
>
c
->
var
)
return
;
}
}
if
(
parent_
&&
parent_
->
var
>=
0.
f
&&
var
>=
parent_
->
var
)
return
;
int
xmin
=
INT_MAX
,
ymin
=
INT_MAX
,
xmax
=
INT_MIN
,
ymax
=
INT_MIN
,
j
=
0
;
wp
.
msers
->
push_back
(
vector
<
Point
>
());
vector
<
Point
>&
region
=
wp
.
msers
->
back
();
region
.
resize
(
size
);
const
Pixel
*
pix0
=
wp
.
pix0
;
int
step
=
wp
.
step
;
for
(
PPixel
pix
=
head
;
j
<
size
;
j
++
,
pix
=
pix0
[
pix
].
getNext
()
)
{
int
y
=
pix
/
step
;
int
x
=
pix
-
y
*
step
;
xmin
=
std
::
min
(
xmin
,
x
);
xmax
=
std
::
max
(
xmax
,
x
);
ymin
=
std
::
min
(
ymin
,
y
);
ymax
=
std
::
max
(
ymax
,
y
);
region
[
j
]
=
Point
(
x
,
y
);
}
wp
.
bboxvec
->
push_back
(
Rect
(
xmin
,
ymin
,
xmax
-
xmin
+
1
,
ymax
-
ymin
+
1
));
}
CompHistory
*
child_
;
CompHistory
*
parent_
;
CompHistory
*
next_
;
int
val
;
int
size
;
float
var
;
PPixel
head
;
bool
checked
;
};
struct
ConnectedComp
...
...
@@ -144,141 +258,87 @@ public:
head
=
tail
=
0
;
history
=
0
;
size
=
0
;
grey_level
=
gray
;
dvar
=
false
;
var
=
0
;
gray_level
=
gray
;
}
// add history chunk to a connected component
void
growHistory
(
CompHistory
*
h
)
void
growHistory
(
CompHistory
*
&
hptr
,
WParams
&
wp
,
int
new_gray_level
,
bool
final
,
bool
force
=
false
)
{
h
->
child
=
h
;
if
(
!
history
)
{
h
->
shortcut
=
h
;
h
->
stable
=
0
;
}
else
bool
update
=
final
;
if
(
new_gray_level
<
0
)
new_gray_level
=
gray_level
;
if
(
!
history
||
(
history
->
size
!=
size
&&
size
>
0
&&
(
gray_level
!=
history
->
val
||
force
)))
{
history
->
child
=
h
;
h
->
shortcut
=
history
->
shortcut
;
h
->
stable
=
history
->
stable
;
CompHistory
*
h
=
hptr
++
;
h
->
parent_
=
0
;
h
->
child_
=
history
;
h
->
next_
=
0
;
if
(
history
)
history
->
parent_
=
h
;
h
->
val
=
gray_level
;
h
->
size
=
size
;
h
->
head
=
head
;
history
=
h
;
h
->
var
=
FLT_MAX
;
h
->
checked
=
true
;
if
(
h
->
size
>=
wp
.
p
.
minArea
)
{
h
->
var
=
-
1.
f
;
h
->
checked
=
false
;
update
=
true
;
}
}
h
->
val
=
gre
y_level
;
h
->
size
=
size
;
history
=
h
;
gray_level
=
new_gra
y_level
;
if
(
update
&&
history
)
history
->
updateTree
(
wp
,
0
,
0
,
final
)
;
}
// merging two connected components
static
void
merge
(
const
ConnectedComp
*
comp1
,
const
ConnectedComp
*
comp2
,
ConnectedComp
*
comp
,
CompHistory
*
h
,
Pixel
*
pix0
)
void
merge
(
ConnectedComp
*
comp1
,
ConnectedComp
*
comp2
,
CompHistory
*&
hptr
,
WParams
&
wp
)
{
comp
->
grey_level
=
comp2
->
grey_level
;
h
->
child
=
h
;
// select the winner by size
if
(
comp1
->
size
<
comp2
->
size
)
std
::
swap
(
comp1
,
comp2
);
comp1
->
growHistory
(
hptr
,
wp
,
-
1
,
false
);
comp2
->
growHistory
(
hptr
,
wp
,
-
1
,
false
);
if
(
!
comp1
->
history
)
{
h
->
shortcut
=
h
;
h
->
stable
=
0
;
}
else
{
comp1
->
history
->
child
=
h
;
h
->
shortcut
=
comp1
->
history
->
shortcut
;
h
->
stable
=
comp1
->
history
->
stable
;
}
if
(
comp2
->
history
&&
comp2
->
history
->
stable
>
h
->
stable
)
h
->
stable
=
comp2
->
history
->
stable
;
h
->
val
=
comp1
->
grey_level
;
h
->
size
=
comp1
->
size
;
// put comp1 to history
comp
->
var
=
comp1
->
var
;
comp
->
dvar
=
comp1
->
dvar
;
if
(
comp1
->
size
>
0
&&
comp2
->
size
>
0
)
pix0
[
comp1
->
tail
].
setNext
(
comp2
->
head
);
PPixel
head
=
comp1
->
size
>
0
?
comp1
->
head
:
comp2
->
head
;
PPixel
tail
=
comp2
->
size
>
0
?
comp2
->
tail
:
comp1
->
tail
;
// always made the newly added in the last of the pixel list (comp1 ... comp2)
comp
->
head
=
head
;
comp
->
tail
=
tail
;
comp
->
history
=
h
;
comp
->
size
=
comp1
->
size
+
comp2
->
size
;
}
if
(
comp1
->
size
<
comp2
->
size
)
std
::
swap
(
comp1
,
comp2
);
float
calcVariation
(
int
delta
)
const
{
if
(
!
history
)
return
1.
f
;
int
val
=
grey_level
;
CompHistory
*
shortcut
=
history
->
shortcut
;
while
(
shortcut
!=
shortcut
->
shortcut
&&
shortcut
->
val
+
delta
>
val
)
shortcut
=
shortcut
->
shortcut
;
CompHistory
*
child
=
shortcut
->
child
;
while
(
child
!=
child
->
child
&&
child
->
val
+
delta
<=
val
)
if
(
comp2
->
size
==
0
)
{
shortcut
=
child
;
child
=
child
->
child
;
gray_level
=
comp1
->
gray_level
;
head
=
comp1
->
head
;
tail
=
comp1
->
tail
;
size
=
comp1
->
size
;
history
=
comp1
->
history
;
return
;
}
// get the position of history where the shortcut->val <= delta+val and shortcut->child->val >= delta+val
history
->
shortcut
=
shortcut
;
return
(
float
)(
size
-
shortcut
->
size
)
/
(
float
)
shortcut
->
size
;
// here is a small modification of MSER where cal ||R_{i}-R_{i-delta}||/||R_{i-delta}||
// in standard MSER, cal ||R_{i+delta}-R_{i-delta}||/||R_{i}||
// my calculation is simpler and much easier to implement
}
bool
isStable
(
const
Params
&
p
)
{
// tricky part: it actually check the stablity of one-step back
if
(
!
history
||
history
->
size
<=
p
.
minArea
||
history
->
size
>=
p
.
maxArea
)
return
false
;
float
div
=
(
float
)(
history
->
size
-
history
->
stable
)
/
(
float
)
history
->
size
;
float
_var
=
calcVariation
(
p
.
delta
);
bool
_dvar
=
(
var
<
_var
)
||
(
history
->
val
+
1
<
grey_level
);
bool
stable
=
_dvar
&&
!
dvar
&&
_var
<
p
.
maxVariation
&&
div
>
p
.
minDiversity
;
var
=
_var
;
dvar
=
_dvar
;
if
(
stable
)
history
->
stable
=
history
->
size
;
return
stable
;
}
CompHistory
*
h1
=
comp1
->
history
;
CompHistory
*
h2
=
comp2
->
history
;
// convert the point set to CvSeq
Rect
capture
(
const
Pixel
*
pix0
,
int
step
,
vector
<
Point
>&
region
)
const
{
int
xmin
=
INT_MAX
,
ymin
=
INT_MAX
,
xmax
=
INT_MIN
,
ymax
=
INT_MIN
;
region
.
clear
();
gray_level
=
std
::
max
(
comp1
->
gray_level
,
comp2
->
gray_level
);
history
=
comp1
->
history
;
wp
.
pix0
[
comp1
->
tail
].
setNext
(
comp2
->
head
);
for
(
PPixel
pix
=
head
;
pix
!=
0
;
pix
=
pix0
[
pix
].
getNext
()
)
head
=
comp1
->
head
;
tail
=
comp2
->
tail
;
size
=
comp1
->
size
+
comp2
->
size
;
bool
keep_2nd
=
h2
->
size
>
wp
.
p
.
minArea
;
growHistory
(
hptr
,
wp
,
-
1
,
false
,
keep_2nd
);
if
(
keep_2nd
)
{
int
y
=
pix
/
step
;
int
x
=
pix
-
y
*
step
;
xmin
=
std
::
min
(
xmin
,
x
);
xmax
=
std
::
max
(
xmax
,
x
);
ymin
=
std
::
min
(
ymin
,
y
);
ymax
=
std
::
max
(
ymax
,
y
);
region
.
push_back
(
Point
(
x
,
y
));
h1
->
next_
=
h2
;
h2
->
parent_
=
history
;
}
return
Rect
(
xmin
,
ymin
,
xmax
-
xmin
+
1
,
ymax
-
ymin
+
1
);
}
PPixel
head
;
PPixel
tail
;
CompHistory
*
history
;
int
gr
e
y_level
;
int
gr
a
y_level
;
int
size
;
float
var
;
// the current variation (most time is the variation of one-step back)
bool
dvar
;
// the derivative of last var
};
void
detectRegions
(
InputArray
image
,
...
...
@@ -296,7 +356,7 @@ public:
heapbuf
.
resize
(
cols
*
rows
+
256
);
histbuf
.
resize
(
cols
*
rows
);
Pixel
borderpix
;
borderpix
.
setDir
(
4
);
borderpix
.
setDir
(
5
);
for
(
j
=
0
;
j
<
step
;
j
++
)
{
...
...
@@ -349,6 +409,12 @@ public:
Pixel
**
heap
[
256
];
ConnectedComp
comp
[
257
];
ConnectedComp
*
comptr
=
&
comp
[
0
];
WParams
wp
;
wp
.
p
=
params
;
wp
.
msers
=
&
msers
;
wp
.
bboxvec
=
&
bboxvec
;
wp
.
pix0
=
ptr0
;
wp
.
step
=
step
;
heap
[
0
]
=
&
heapbuf
[
0
];
heap
[
0
][
0
]
=
0
;
...
...
@@ -359,9 +425,9 @@ public:
heap
[
i
][
0
]
=
0
;
}
comptr
->
gr
e
y_level
=
256
;
comptr
->
gr
a
y_level
=
256
;
comptr
++
;
comptr
->
gr
e
y_level
=
ptr
->
getGray
(
ptr0
,
imgptr0
,
mask
);
comptr
->
gr
a
y_level
=
ptr
->
getGray
(
ptr0
,
imgptr0
,
mask
);
ptr
->
setDir
(
1
);
int
dir
[]
=
{
0
,
1
,
step
,
-
1
,
-
step
};
for
(
;;
)
...
...
@@ -427,48 +493,32 @@ public:
ptr
=
*
heap
[
curr_gray
];
heap
[
curr_gray
]
--
;
if
(
curr_gray
<
comptr
[
-
1
].
grey_level
)
{
// check the stablity and push a new history, increase the grey level
if
(
comptr
->
isStable
(
params
)
)
{
msers
.
push_back
(
vector
<
Point
>
());
vector
<
Point
>&
mser
=
msers
.
back
();
Rect
box
=
comptr
->
capture
(
ptr0
,
step
,
mser
);
bboxvec
.
push_back
(
box
);
}
comptr
->
growHistory
(
histptr
++
);
comptr
[
0
].
grey_level
=
curr_gray
;
}
if
(
curr_gray
<
comptr
[
-
1
].
gray_level
)
comptr
->
growHistory
(
histptr
,
wp
,
curr_gray
,
false
);
else
{
// keep merging top two comp in stack until the gr
e
y level >= pixel_val
// keep merging top two comp in stack until the gr
a
y level >= pixel_val
for
(;;)
{
comptr
--
;
ConnectedComp
::
merge
(
comptr
+
1
,
comptr
,
comptr
,
histptr
++
,
ptr0
);
if
(
curr_gray
<=
comptr
[
0
].
gr
e
y_level
)
comptr
->
merge
(
comptr
,
comptr
+
1
,
histptr
,
wp
);
if
(
curr_gray
<=
comptr
[
0
].
gr
a
y_level
)
break
;
if
(
curr_gray
<
comptr
[
-
1
].
gr
e
y_level
)
if
(
curr_gray
<
comptr
[
-
1
].
gr
a
y_level
)
{
// check the stablity here otherwise it wouldn't be an ER
if
(
comptr
->
isStable
(
params
)
)
{
msers
.
push_back
(
vector
<
Point
>
());
vector
<
Point
>&
mser
=
msers
.
back
();
Rect
box
=
comptr
->
capture
(
ptr0
,
step
,
mser
);
bboxvec
.
push_back
(
box
);
}
comptr
->
growHistory
(
histptr
++
);
comptr
[
0
].
grey_level
=
curr_gray
;
comptr
->
growHistory
(
histptr
,
wp
,
curr_gray
,
false
);
break
;
}
}
}
}
}
for
(
;
comptr
->
gray_level
!=
256
;
comptr
--
)
{
comptr
->
growHistory
(
histptr
,
wp
,
256
,
true
,
true
);
}
}
Mat
tempsrc
;
...
...
modules/features2d/test/test_descriptors_regression.cpp
View file @
ef8182e1
...
...
@@ -347,3 +347,97 @@ TEST( Features2d_DescriptorExtractor_AKAZE, regression )
Hamming
(),
AKAZE
::
create
());
test
.
safe_run
();
}
TEST
(
Features2d_DescriptorExtractor
,
batch
)
{
string
path
=
string
(
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
"detectors_descriptors_evaluation/images_datasets/graf"
);
vector
<
Mat
>
imgs
,
descriptors
;
vector
<
vector
<
KeyPoint
>
>
keypoints
;
int
i
,
n
=
6
;
Ptr
<
ORB
>
orb
=
ORB
::
create
();
for
(
i
=
0
;
i
<
n
;
i
++
)
{
string
imgname
=
format
(
"%s/img%d.png"
,
path
.
c_str
(),
i
+
1
);
Mat
img
=
imread
(
imgname
,
0
);
imgs
.
push_back
(
img
);
}
orb
->
detect
(
imgs
,
keypoints
);
orb
->
compute
(
imgs
,
keypoints
,
descriptors
);
ASSERT_EQ
((
int
)
keypoints
.
size
(),
n
);
ASSERT_EQ
((
int
)
descriptors
.
size
(),
n
);
for
(
i
=
0
;
i
<
n
;
i
++
)
{
EXPECT_GT
((
int
)
keypoints
[
i
].
size
(),
100
);
EXPECT_GT
(
descriptors
[
i
].
rows
,
100
);
}
}
TEST
(
Features2d_Feature2d
,
no_crash
)
{
const
String
&
pattern
=
string
(
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
"shared/*.png"
);
vector
<
String
>
fnames
;
glob
(
pattern
,
fnames
,
false
);
sort
(
fnames
.
begin
(),
fnames
.
end
());
Ptr
<
AKAZE
>
akaze
=
AKAZE
::
create
();
Ptr
<
ORB
>
orb
=
ORB
::
create
();
Ptr
<
KAZE
>
kaze
=
KAZE
::
create
();
Ptr
<
BRISK
>
brisk
=
BRISK
::
create
();
size_t
i
,
n
=
fnames
.
size
();
vector
<
KeyPoint
>
keypoints
;
Mat
descriptors
;
orb
->
setMaxFeatures
(
5000
);
for
(
i
=
0
;
i
<
n
;
i
++
)
{
printf
(
"%d. image: %s:
\n
"
,
(
int
)
i
,
fnames
[
i
].
c_str
());
if
(
strstr
(
fnames
[
i
].
c_str
(),
"MP.png"
)
!=
0
)
continue
;
bool
checkCount
=
strstr
(
fnames
[
i
].
c_str
(),
"templ.png"
)
==
0
;
Mat
img
=
imread
(
fnames
[
i
],
-
1
);
printf
(
"
\t
AKAZE ... "
);
fflush
(
stdout
);
akaze
->
detectAndCompute
(
img
,
noArray
(),
keypoints
,
descriptors
);
printf
(
"(%d keypoints) "
,
(
int
)
keypoints
.
size
());
fflush
(
stdout
);
if
(
checkCount
)
{
EXPECT_GT
((
int
)
keypoints
.
size
(),
0
);
}
ASSERT_EQ
(
descriptors
.
rows
,
(
int
)
keypoints
.
size
());
printf
(
"ok
\n
"
);
printf
(
"
\t
KAZE ... "
);
fflush
(
stdout
);
kaze
->
detectAndCompute
(
img
,
noArray
(),
keypoints
,
descriptors
);
printf
(
"(%d keypoints) "
,
(
int
)
keypoints
.
size
());
fflush
(
stdout
);
if
(
checkCount
)
{
EXPECT_GT
((
int
)
keypoints
.
size
(),
0
);
}
ASSERT_EQ
(
descriptors
.
rows
,
(
int
)
keypoints
.
size
());
printf
(
"ok
\n
"
);
printf
(
"
\t
ORB ... "
);
fflush
(
stdout
);
orb
->
detectAndCompute
(
img
,
noArray
(),
keypoints
,
descriptors
);
printf
(
"(%d keypoints) "
,
(
int
)
keypoints
.
size
());
fflush
(
stdout
);
if
(
checkCount
)
{
EXPECT_GT
((
int
)
keypoints
.
size
(),
0
);
}
ASSERT_EQ
(
descriptors
.
rows
,
(
int
)
keypoints
.
size
());
printf
(
"ok
\n
"
);
printf
(
"
\t
BRISK ... "
);
fflush
(
stdout
);
brisk
->
detectAndCompute
(
img
,
noArray
(),
keypoints
,
descriptors
);
printf
(
"(%d keypoints) "
,
(
int
)
keypoints
.
size
());
fflush
(
stdout
);
if
(
checkCount
)
{
EXPECT_GT
((
int
)
keypoints
.
size
(),
0
);
}
ASSERT_EQ
(
descriptors
.
rows
,
(
int
)
keypoints
.
size
());
printf
(
"ok
\n
"
);
}
}
modules/features2d/test/test_matchers_algorithmic.cpp
View file @
ef8182e1
...
...
@@ -543,3 +543,13 @@ TEST( Features2d_DescriptorMatcher_FlannBased, regression )
DescriptorMatcher
::
create
(
"FlannBased"
),
0.04
f
);
test
.
safe_run
();
}
TEST
(
Features2d_DMatch
,
read_write
)
{
FileStorage
fs
(
".xml"
,
FileStorage
::
WRITE
+
FileStorage
::
MEMORY
);
vector
<
DMatch
>
matches
;
matches
.
push_back
(
DMatch
(
1
,
2
,
3
,
4.5
f
));
fs
<<
"Match"
<<
matches
;
String
str
=
fs
.
releaseAndGetString
();
ASSERT_NE
(
strstr
(
str
.
c_str
(),
"4.5"
),
(
char
*
)
0
);
}
modules/features2d/test/test_mser.cpp
View file @
ef8182e1
...
...
@@ -41,171 +41,121 @@
//M*/
#include "test_precomp.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#if 0
#include "opencv2/highgui.hpp"
#include <vector>
#include <string>
using
namespace
std
;
using
namespace
cv
;
class CV_MserTest : public cvtest::BaseTest
{
public:
CV_MserTest();
protected:
void run(int);
int LoadBoxes(const char* path, vector<CvBox2D>& boxes);
int SaveBoxes(const char* path, const vector<CvBox2D>& boxes);
int CompareBoxes(const vector<CvBox2D>& boxes1,const vector<CvBox2D>& boxes2, float max_rel_diff = 0.01f);
};
CV_MserTest::CV_MserTest()
{
}
#undef RENDER_MSERS
#define RENDER_MSERS 0
int CV_MserTest::LoadBoxes(const char* path, vector<CvBox2D>& boxes)
#if defined RENDER_MSERS && RENDER_MSERS
static
void
renderMSERs
(
const
Mat
&
gray
,
Mat
&
img
,
const
vector
<
vector
<
Point
>
>&
msers
)
{
boxes.clear();
FILE* f = fopen(path,"r");
if (f==NULL)
cvtColor
(
gray
,
img
,
COLOR_GRAY2BGR
);
RNG
rng
((
uint64
)
1749583
);
for
(
int
i
=
0
;
i
<
(
int
)
msers
.
size
();
i
++
)
{
return 0;
uchar
b
=
rng
.
uniform
(
0
,
256
);
uchar
g
=
rng
.
uniform
(
0
,
256
);
uchar
r
=
rng
.
uniform
(
0
,
256
);
Vec3b
color
(
b
,
g
,
r
);
const
Point
*
pt
=
&
msers
[
i
][
0
];
size_t
j
,
n
=
msers
[
i
].
size
();
for
(
j
=
0
;
j
<
n
;
j
++
)
img
.
at
<
Vec3b
>
(
pt
[
j
])
=
color
;
}
while (!feof(f))
{
CvBox2D box;
int values_read = fscanf(f,"%f,%f,%f,%f,%f\n",&box.angle,&box.center.x,&box.center.y,&box.size.width,&box.size.height);
CV_Assert(values_read == 5);
boxes.push_back(box);
}
fclose(f);
return 1;
}
#endif
int CV_MserTest::SaveBoxes(const char* path, const vector<CvBox2D>& box
es)
TEST
(
Features2d_MSER
,
cas
es
)
{
FILE* f = fopen(path,"w");
if (f==NULL)
{
return 0;
}
for (int i=0;i<(int)boxes.size();i++)
uchar
buf
[]
=
{
fprintf(f,"%f,%f,%f,%f,%f\n",boxes[i].angle,boxes[i].center.x,boxes[i].center.y,boxes[i].size.width,boxes[i].size.height);
}
fclose(f);
return 1;
}
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
0
,
0
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
255
};
Mat
big_image
=
imread
(
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
"mser/puzzle.png"
,
0
);
Mat
small_image
(
14
,
26
,
CV_8U
,
buf
);
static
const
int
thresharr
[]
=
{
0
,
70
,
120
,
180
,
255
};
const
int
kDelta
=
5
;
Ptr
<
MSER
>
mserExtractor
=
MSER
::
create
(
kDelta
);
vector
<
vector
<
Point
>
>
msers
;
vector
<
Rect
>
boxes
;
int CV_MserTest::CompareBoxes(const vector<CvBox2D>& boxes1,const vector<CvBox2D>& boxes2, float max_rel_diff)
{
if (boxes1.size() != boxes2.size())
return 0;
RNG
rng
((
uint64
)
123456
);
for
(int i=0; i<(int)boxes1.size();i++
)
for
(
int
i
=
0
;
i
<
100
;
i
++
)
{
float rel_diff;
if (!((boxes1[i].angle == 0.0f) && (abs(boxes2[i].angle) < max_rel_diff)))
{
float angle_diff = (float)fmod(boxes1[i].angle - boxes2[i].angle, 180);
// for angular correctness, it makes no sense to use a "relative" error.
// a 1-degree error around 5 degrees is equally bas as around 250 degrees.
// in correct cases, angle_diff can now be a bit above 0 or a bit below 180
if (angle_diff > 90.0f)
{
angle_diff -= 180.0f;
}
rel_diff = (float)fabs(angle_diff);
if (rel_diff > max_rel_diff)
return i;
}
if (!((boxes1[i].center.x == 0.0f) && (abs(boxes2[i].center.x) < max_rel_diff)))
{
rel_diff = abs(boxes1[i].center.x-boxes2[i].center.x)/abs(boxes1[i].center.x);
if (rel_diff > max_rel_diff)
return i;
}
if (!((boxes1[i].center.y == 0.0f) && (abs(boxes2[i].center.y) < max_rel_diff)))
{
rel_diff = abs(boxes1[i].center.y-boxes2[i].center.y)/abs(boxes1[i].center.y);
if (rel_diff > max_rel_diff)
return i;
}
if (!((boxes1[i].size.width == 0.0f) && (abs(boxes2[i].size.width) < max_rel_diff)))
{
rel_diff = abs(boxes1[i].size.width-boxes2[i].size.width)/abs(boxes1[i].size.width);
if (rel_diff > max_rel_diff)
return i;
}
bool
use_big_image
=
rng
.
uniform
(
0
,
7
)
!=
0
;
bool
invert
=
rng
.
uniform
(
0
,
2
)
!=
0
;
bool
binarize
=
use_big_image
?
rng
.
uniform
(
0
,
5
)
!=
0
:
false
;
bool
blur
=
rng
.
uniform
(
0
,
2
)
!=
0
;
int
thresh
=
thresharr
[
rng
.
uniform
(
0
,
5
)];
if (!((boxes1[i].size.height == 0.0f) && (abs(boxes2[i].size.height) < max_rel_diff))
)
/*if( i == 0
)
{
rel_diff = abs(boxes1[i].size.height-boxes2[i].size.height)/abs(boxes1[i].size.height);
if (rel_diff > max_rel_diff)
return i;
}
}
use_big_image = true;
invert = binarize = blur = false;
}*/
return -1
;
}
const
Mat
&
src0
=
use_big_image
?
big_image
:
small_image
;
Mat
src
=
src0
.
clone
();
void CV_MserTest::run(int)
{
string image_path = string(ts->get_data_path()) + "mser/puzzle.png";
int
kMinArea
=
use_big_image
?
256
:
10
;
int
kMaxArea
=
(
int
)
src
.
total
()
/
4
;
Mat img = imread( image_path );
if (img.empty())
{
ts->printf( cvtest::TS::LOG, "Unable to open image mser/puzzle.png\n");
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
mserExtractor
->
setMinArea
(
kMinArea
);
mserExtractor
->
setMaxArea
(
kMaxArea
);
Mat yuv;
cvtColor(img, yuv, COLOR_BGR2YCrCb);
vector<vector<Point> > msers;
MSER()(yuv, msers);
if
(
invert
)
bitwise_not
(
src
,
src
);
if
(
binarize
)
threshold
(
src
,
src
,
thresh
,
255
,
THRESH_BINARY
);
if
(
blur
)
GaussianBlur
(
src
,
src
,
Size
(
5
,
5
),
1.5
,
1.5
);
vector<CvBox2D> boxes;
vector<CvBox2D> boxes_orig;
for ( size_t i = 0; i < msers.size(); i++ )
{
RotatedRect box = fitEllipse(msers[i]);
box.angle=(float)CV_PI/2-box.angle;
boxes.push_back(box);
}
int
minRegs
=
use_big_image
?
7
:
2
;
int
maxRegs
=
use_big_image
?
1000
:
15
;
if
(
binarize
&&
(
thresh
==
0
||
thresh
==
255
)
)
minRegs
=
maxRegs
=
0
;
string boxes_path = string(ts->get_data_path()) + "mser/boxes.txt";
string calc_boxes_path = string(ts->get_data_path()) + "mser/boxes.calc.txt";
mserExtractor
->
detectRegions
(
src
,
msers
,
boxes
);
int
nmsers
=
(
int
)
msers
.
size
();
ASSERT_EQ
(
nmsers
,
(
int
)
boxes
.
size
());
if (!LoadBoxes(boxes_path.c_str(),boxes_orig))
{
SaveBoxes(boxes_path.c_str(),boxes);
ts->printf( cvtest::TS::LOG, "Unable to open data file mser/boxes.txt\n");
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
if
(
maxRegs
<
nmsers
||
minRegs
>
nmsers
)
{
printf
(
"%d. minArea=%d, maxArea=%d, nmsers=%d, minRegs=%d, maxRegs=%d, "
"image=%s, invert=%d, binarize=%d, thresh=%d, blur=%d
\n
"
,
i
,
kMinArea
,
kMaxArea
,
nmsers
,
minRegs
,
maxRegs
,
use_big_image
?
"big"
:
"small"
,
(
int
)
invert
,
(
int
)
binarize
,
thresh
,
(
int
)
blur
);
#if defined RENDER_MSERS && RENDER_MSERS
Mat
image
;
imshow
(
"source"
,
src
);
renderMSERs
(
src
,
image
,
msers
);
imshow
(
"result"
,
image
);
waitKey
();
#endif
}
const float dissimularity = 0.01f;
int n_box = CompareBoxes(boxes_orig,boxes,dissimularity);
if (n_box < 0)
{
ts->set_failed_test_info(cvtest::TS::OK);
}
else
{
SaveBoxes(calc_boxes_path.c_str(), boxes);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
ts->printf( cvtest::TS::LOG, "Incorrect correspondence in box %d\n",n_box);
ASSERT_LE
(
minRegs
,
nmsers
);
ASSERT_GE
(
maxRegs
,
nmsers
);
}
}
TEST(Features2d_MSER, DISABLED_regression) { CV_MserTest test; test.safe_run(); }
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment