Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
ed941365
Commit
ed941365
authored
Feb 06, 2018
by
Dmitry Kurtaev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
OpenCV face detection network using Inference Engine backend
parent
398ebbac
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
150 additions
and
45 deletions
+150
-45
OpenCVDetectInferenceEngine.cmake
cmake/OpenCVDetectInferenceEngine.cmake
+3
-0
perf_net.cpp
modules/dnn/perf/perf_net.cpp
+10
-0
dnn.cpp
modules/dnn/src/dnn.cpp
+74
-10
batch_norm_layer.cpp
modules/dnn/src/layers/batch_norm_layer.cpp
+4
-6
prior_box_layer.cpp
modules/dnn/src/layers/prior_box_layer.cpp
+1
-1
op_inf_engine.cpp
modules/dnn/src/op_inf_engine.cpp
+45
-26
test_backends.cpp
modules/dnn/test/test_backends.cpp
+12
-0
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+1
-2
No files found.
cmake/OpenCVDetectInferenceEngine.cmake
View file @
ed941365
...
...
@@ -20,6 +20,9 @@ if(NOT INF_ENGINE_ROOT_DIR OR NOT EXISTS "${INF_ENGINE_ROOT_DIR}/inference_engin
if
(
DEFINED ENV{INTEL_CVSDK_DIR}
)
list
(
APPEND ie_root_paths
"$ENV{INTEL_CVSDK_DIR}"
)
endif
()
if
(
DEFINED INTEL_CVSDK_DIR
)
list
(
APPEND ie_root_paths
"
${
INTEL_CVSDK_DIR
}
"
)
endif
()
if
(
WITH_INF_ENGINE AND NOT ie_root_paths
)
list
(
APPEND ie_root_paths
"/opt/intel/deeplearning_deploymenttoolkit/deployment_tools"
)
...
...
modules/dnn/perf/perf_net.cpp
View file @
ed941365
...
...
@@ -150,6 +150,7 @@ PERF_TEST_P_(DNNTestNetwork, SSD)
PERF_TEST_P_
(
DNNTestNetwork
,
OpenFace
)
{
if
(
backend
==
DNN_BACKEND_HALIDE
)
throw
SkipTestException
(
""
);
processNet
(
"dnn/openface_nn4.small2.v1.t7"
,
""
,
""
,
Mat
(
cv
::
Size
(
96
,
96
),
CV_32FC3
),
""
,
"torch"
);
}
...
...
@@ -197,6 +198,15 @@ PERF_TEST_P_(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages)
Mat
(
cv
::
Size
(
368
,
368
),
CV_32FC3
),
""
,
"caffe"
);
}
PERF_TEST_P_
(
DNNTestNetwork
,
opencv_face_detector
)
{
if
(
backend
==
DNN_BACKEND_HALIDE
||
backend
==
DNN_BACKEND_DEFAULT
&&
target
==
DNN_TARGET_OPENCL
)
throw
SkipTestException
(
""
);
processNet
(
"dnn/opencv_face_detector.caffemodel"
,
"dnn/opencv_face_detector.prototxt"
,
""
,
Mat
(
cv
::
Size
(
300
,
300
),
CV_32FC3
),
""
,
"caffe"
);
}
const
tuple
<
DNNBackend
,
DNNTarget
>
testCases
[]
=
{
#ifdef HAVE_HALIDE
tuple
<
DNNBackend
,
DNNTarget
>
(
DNN_BACKEND_HALIDE
,
DNN_TARGET_CPU
),
...
...
modules/dnn/src/dnn.cpp
View file @
ed941365
...
...
@@ -1077,35 +1077,72 @@ struct Net::Impl
}
}
#ifdef HAVE_INF_ENGINE
// Before launching Inference Engine graph we need to specify output blobs.
// This function requests output blobs based on inputs references of
// layers from default backend or layers from different graphs.
void
addInfEngineNetOutputs
(
LayerData
&
ld
)
{
Ptr
<
InfEngineBackendNet
>
layerNet
;
if
(
ld
.
backendNodes
.
find
(
preferableBackend
)
!=
ld
.
backendNodes
.
end
())
{
Ptr
<
BackendNode
>
node
=
ld
.
backendNodes
[
preferableBackend
];
if
(
!
node
.
empty
())
{
Ptr
<
InfEngineBackendNode
>
ieNode
=
node
.
dynamicCast
<
InfEngineBackendNode
>
();
CV_Assert
(
!
ieNode
.
empty
(),
!
ieNode
->
net
.
empty
());
layerNet
=
ieNode
->
net
;
}
}
// For an every input reference we check that it belongs to one of
// the Inference Engine backend graphs. Request an output blob if it is.
// Do nothing if layer's input is from the same graph.
for
(
int
i
=
0
;
i
<
ld
.
inputBlobsId
.
size
();
++
i
)
{
LayerData
&
inpLd
=
layers
[
ld
.
inputBlobsId
[
i
].
lid
];
Ptr
<
BackendNode
>
inpNode
=
inpLd
.
backendNodes
[
preferableBackend
];
if
(
!
inpNode
.
empty
())
{
Ptr
<
InfEngineBackendNode
>
ieInpNode
=
inpNode
.
dynamicCast
<
InfEngineBackendNode
>
();
CV_Assert
(
!
ieInpNode
.
empty
(),
!
ieInpNode
->
net
.
empty
());
if
(
layerNet
!=
ieInpNode
->
net
)
{
// layerNet is empty or nodes are from different graphs.
ieInpNode
->
net
->
addOutput
(
inpLd
.
name
);
}
}
}
}
#endif // HAVE_INF_ENGINE
void
initInfEngineBackend
()
{
// Build Inference Engine networks from sets of layers that support this
// backend.
If an internal layer isn't supported we'll use default
//
implementation of it but build a new network after it
.
// backend.
Split a whole model on several Inference Engine networks if
//
some of layers is not implemented
.
CV_TRACE_FUNCTION
();
CV_Assert
(
preferableBackend
==
DNN_BACKEND_INFERENCE_ENGINE
,
haveInfEngine
());
#ifdef HAVE_INF_ENGINE
MapIdToLayerData
::
iterator
it
;
Ptr
<
InfEngineBackendNet
>
net
;
// Set of all input and output blobs wrappers for current network.
std
::
map
<
int
,
Ptr
<
BackendWrapper
>
>
netBlobsWrappers
;
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
++
it
)
{
LayerData
&
ld
=
it
->
second
;
ld
.
skip
=
true
;
ld
.
skip
=
true
;
// Initially skip all Inference Engine supported layers.
Ptr
<
Layer
>
layer
=
ld
.
layerInstance
;
if
(
!
layer
->
supportBackend
(
preferableBackend
))
{
for
(
int
i
=
0
;
i
<
ld
.
outputBlobsWrappers
.
size
();
++
i
)
{
auto
dataPtr
=
infEngineDataNode
(
ld
.
outputBlobsWrappers
[
i
]);
dataPtr
->
name
=
ld
.
name
;
}
addInfEngineNetOutputs
(
ld
);
ld
.
skip
=
false
;
net
=
Ptr
<
InfEngineBackendNet
>
();
netBlobsWrappers
.
clear
();
continue
;
}
// C
heck what all inputs are from the same network or from default backend
.
// C
reate a new network if one of inputs from different Inference Engine graph
.
for
(
int
i
=
0
;
i
<
ld
.
inputBlobsId
.
size
();
++
i
)
{
LayerData
&
inpLd
=
layers
[
ld
.
inputBlobsId
[
i
].
lid
];
...
...
@@ -1113,10 +1150,36 @@ struct Net::Impl
if
(
!
inpNode
.
empty
())
{
Ptr
<
InfEngineBackendNode
>
ieInpNode
=
inpNode
.
dynamicCast
<
InfEngineBackendNode
>
();
CV_Assert
(
!
ieInpNode
.
empty
(),
net
.
empty
()
||
net
==
ieInpNode
->
net
);
CV_Assert
(
!
ieInpNode
.
empty
(),
!
ieInpNode
->
net
.
empty
());
if
(
ieInpNode
->
net
!=
net
)
{
net
=
Ptr
<
InfEngineBackendNet
>
();
netBlobsWrappers
.
clear
();
break
;
}
}
}
// The same blobs wrappers cannot be shared between two Inference Engine
// networks because of explicit references between layers and blobs.
// So we need to rewrap all the external blobs.
for
(
int
i
=
0
;
i
<
ld
.
inputBlobsId
.
size
();
++
i
)
{
int
lid
=
ld
.
inputBlobsId
[
i
].
lid
;
LayerData
&
inpLd
=
layers
[
lid
];
auto
it
=
netBlobsWrappers
.
find
(
lid
);
if
(
it
==
netBlobsWrappers
.
end
())
{
ld
.
inputBlobsWrappers
[
i
]
=
wrap
(
*
ld
.
inputBlobs
[
i
]);
auto
dataPtr
=
infEngineDataNode
(
ld
.
inputBlobsWrappers
[
i
]);
dataPtr
->
name
=
inpLd
.
name
;
netBlobsWrappers
[
lid
]
=
ld
.
inputBlobsWrappers
[
i
];
}
else
ld
.
inputBlobsWrappers
[
i
]
=
it
->
second
;
}
netBlobsWrappers
[
ld
.
id
]
=
ld
.
outputBlobsWrappers
[
0
];
bool
fused
=
false
;
Ptr
<
BackendNode
>
node
;
if
(
!
net
.
empty
())
...
...
@@ -1153,6 +1216,7 @@ struct Net::Impl
if
(
!
fused
)
net
->
addLayer
(
ieNode
->
layer
);
addInfEngineNetOutputs
(
ld
);
}
// Initialize all networks.
...
...
modules/dnn/src/layers/batch_norm_layer.cpp
View file @
ed941365
...
...
@@ -277,14 +277,12 @@ public:
#ifdef HAVE_INF_ENGINE
InferenceEngine
::
LayerParams
lp
;
lp
.
name
=
name
;
lp
.
type
=
"
BatchNormalization
"
;
lp
.
type
=
"
ScaleShift
"
;
lp
.
precision
=
InferenceEngine
::
Precision
::
FP32
;
std
::
shared_ptr
<
InferenceEngine
::
BatchNormalizationLayer
>
ieLayer
(
new
InferenceEngine
::
BatchNormalization
Layer
(
lp
));
std
::
shared_ptr
<
InferenceEngine
::
ScaleShiftLayer
>
ieLayer
(
new
InferenceEngine
::
ScaleShift
Layer
(
lp
));
size_t
numChannels
=
weights_
.
total
();
ieLayer
->
epsilon
=
epsilon
;
ieLayer
->
_weights
=
wrapToInfEngineBlob
(
blobs
[
1
],
{
numChannels
});
ieLayer
->
_biases
=
wrapToInfEngineBlob
(
blobs
[
0
],
{
numChannels
});
ieLayer
->
_weights
=
wrapToInfEngineBlob
(
weights_
);
ieLayer
->
_biases
=
wrapToInfEngineBlob
(
bias_
);
return
Ptr
<
BackendNode
>
(
new
InfEngineBackendNode
(
ieLayer
));
#endif // HAVE_INF_ENGINE
...
...
modules/dnn/src/layers/prior_box_layer.cpp
View file @
ed941365
...
...
@@ -550,7 +550,7 @@ public:
for
(
int
i
=
1
;
i
<
_variance
.
size
();
++
i
)
ieLayer
->
params
[
"variance"
]
+=
format
(
",%f"
,
_variance
[
i
]);
ieLayer
->
params
[
"step"
]
=
"0"
;
ieLayer
->
params
[
"step"
]
=
_stepX
==
_stepY
?
format
(
"%f"
,
_stepX
)
:
"0"
;
ieLayer
->
params
[
"step_h"
]
=
_stepY
;
ieLayer
->
params
[
"step_w"
]
=
_stepX
;
...
...
modules/dnn/src/op_inf_engine.cpp
View file @
ed941365
...
...
@@ -116,31 +116,6 @@ InferenceEngine::Precision InfEngineBackendNet::getPrecision() noexcept
// Assume that outputs of network is unconnected blobs.
void
InfEngineBackendNet
::
getOutputsInfo
(
InferenceEngine
::
OutputsDataMap
&
outputs_
)
noexcept
{
if
(
outputs
.
empty
())
{
for
(
const
auto
&
l
:
layers
)
{
// Add all outputs.
for
(
const
InferenceEngine
::
DataPtr
&
out
:
l
->
outData
)
{
// TODO: Replace to uniquness assertion.
if
(
outputs
.
find
(
out
->
name
)
==
outputs
.
end
())
outputs
[
out
->
name
]
=
out
;
}
// Remove internally connected outputs.
for
(
const
InferenceEngine
::
DataWeakPtr
&
inp
:
l
->
insData
)
{
outputs
.
erase
(
InferenceEngine
::
DataPtr
(
inp
)
->
name
);
}
}
CV_Assert
(
layers
.
empty
()
||
!
outputs
.
empty
());
}
outBlobs
.
clear
();
for
(
const
auto
&
it
:
outputs
)
{
CV_Assert
(
allBlobs
.
find
(
it
.
first
)
!=
allBlobs
.
end
());
outBlobs
[
it
.
first
]
=
allBlobs
[
it
.
first
];
}
outputs_
=
outputs
;
}
...
...
@@ -216,7 +191,18 @@ InferenceEngine::StatusCode
InfEngineBackendNet
::
addOutput
(
const
std
::
string
&
layerName
,
size_t
outputIndex
,
InferenceEngine
::
ResponseDesc
*
resp
)
noexcept
{
CV_Error
(
Error
::
StsNotImplemented
,
""
);
for
(
const
auto
&
l
:
layers
)
{
for
(
const
InferenceEngine
::
DataPtr
&
out
:
l
->
outData
)
{
if
(
out
->
name
==
layerName
)
{
outputs
[
out
->
name
]
=
out
;
return
InferenceEngine
::
StatusCode
::
OK
;
}
}
}
CV_Error
(
Error
::
StsObjectNotFound
,
"Cannot find a layer "
+
layerName
);
return
InferenceEngine
::
StatusCode
::
OK
;
}
...
...
@@ -254,6 +240,39 @@ size_t InfEngineBackendNet::getBatchSize() const noexcept
void
InfEngineBackendNet
::
initEngine
()
{
CV_Assert
(
!
isInitialized
());
// Add all unconnected blobs to output blobs.
InferenceEngine
::
OutputsDataMap
unconnectedOuts
;
for
(
const
auto
&
l
:
layers
)
{
// Add all outputs.
for
(
const
InferenceEngine
::
DataPtr
&
out
:
l
->
outData
)
{
// TODO: Replace to uniquness assertion.
if
(
unconnectedOuts
.
find
(
out
->
name
)
==
unconnectedOuts
.
end
())
unconnectedOuts
[
out
->
name
]
=
out
;
}
// Remove internally connected outputs.
for
(
const
InferenceEngine
::
DataWeakPtr
&
inp
:
l
->
insData
)
{
unconnectedOuts
.
erase
(
InferenceEngine
::
DataPtr
(
inp
)
->
name
);
}
}
CV_Assert
(
layers
.
empty
()
||
!
unconnectedOuts
.
empty
());
for
(
auto
it
=
unconnectedOuts
.
begin
();
it
!=
unconnectedOuts
.
end
();
++
it
)
{
outputs
[
it
->
first
]
=
it
->
second
;
}
// Set up output blobs.
outBlobs
.
clear
();
for
(
const
auto
&
it
:
outputs
)
{
CV_Assert
(
allBlobs
.
find
(
it
.
first
)
!=
allBlobs
.
end
());
outBlobs
[
it
.
first
]
=
allBlobs
[
it
.
first
];
}
engine
=
InferenceEngine
::
InferenceEnginePluginPtr
(
"libMKLDNNPlugin.so"
);
InferenceEngine
::
ResponseDesc
resp
;
InferenceEngine
::
StatusCode
status
=
engine
->
LoadNetwork
(
*
this
,
&
resp
);
...
...
modules/dnn/test/test_backends.cpp
View file @
ed941365
...
...
@@ -206,9 +206,21 @@ TEST_P(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages)
TEST_P
(
DNNTestNetwork
,
OpenFace
)
{
if
(
backend
==
DNN_BACKEND_HALIDE
)
throw
SkipTestException
(
""
);
processNet
(
"dnn/openface_nn4.small2.v1.t7"
,
""
,
Size
(
96
,
96
),
""
,
"torch"
);
}
TEST_P
(
DNNTestNetwork
,
opencv_face_detector
)
{
if
(
backend
==
DNN_BACKEND_HALIDE
||
backend
==
DNN_BACKEND_DEFAULT
&&
target
==
DNN_TARGET_OPENCL
)
throw
SkipTestException
(
""
);
Mat
img
=
imread
(
findDataFile
(
"gpu/lbpcascade/er.png"
,
false
));
Mat
inp
=
blobFromImage
(
img
,
1.0
,
Size
(),
Scalar
(
104.0
,
177.0
,
123.0
),
false
,
false
);
processNet
(
"dnn/opencv_face_detector.caffemodel"
,
"dnn/opencv_face_detector.prototxt"
,
inp
,
"detection_out"
,
"caffe"
);
}
const
tuple
<
DNNBackend
,
DNNTarget
>
testCases
[]
=
{
#ifdef HAVE_HALIDE
tuple
<
DNNBackend
,
DNNTarget
>
(
DNN_BACKEND_HALIDE
,
DNN_TARGET_CPU
),
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
ed941365
...
...
@@ -279,9 +279,8 @@ TEST(Test_TensorFlow, Inception_v2_SSD)
normAssert
(
detections
,
ref
);
}
OCL_TEST
(
Test_TensorFlow
,
MobileNet_SSD
)
OCL_TEST
(
Test_TensorFlow
,
DISABLED_
MobileNet_SSD
)
{
throw
SkipTestException
(
"TODO: test is failed"
);
std
::
string
netPath
=
findDataFile
(
"dnn/ssd_mobilenet_v1_coco.pb"
,
false
);
std
::
string
netConfig
=
findDataFile
(
"dnn/ssd_mobilenet_v1_coco.pbtxt"
,
false
);
std
::
string
imgPath
=
findDataFile
(
"dnn/street.png"
,
false
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment