Commit ed1b293d authored by Marina Kolpakova's avatar Marina Kolpakova

refactored GPU LBP cascade. Added support for big images. Fixed bug in connected…

refactored GPU LBP cascade. Added support for big images. Fixed bug in connected components function
parent 469ec7c5
......@@ -315,7 +315,24 @@ namespace cv { namespace gpu { namespace device
DevMem2D_<int4> objects,
unsigned int* classified);
int connectedConmonents(DevMem2D_<int4> candidates, DevMem2D_<int4> objects,int groupThreshold, float grouping_eps, unsigned int* nclasses);
void classifyStumpFixed(const DevMem2Db& mstages,
const int nstages,
const DevMem2Di& mnodes,
const DevMem2Df& mleaves,
const DevMem2Di& msubsets,
const DevMem2Db& mfeatures,
const int workWidth,
const int workHeight,
const int clWidth,
const int clHeight,
float scale,
int step,
int subsetSize,
DevMem2D_<int4> objects,
unsigned int* classified,
const int maxX);
int connectedConmonents(DevMem2D_<int4> candidates, int ncandidates, DevMem2D_<int4> objects,int groupThreshold, float grouping_eps, unsigned int* nclasses);
void bindIntegral(DevMem2Di integral);
void unbindIntegral();
}
......@@ -337,8 +354,8 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
GpuMat candidates(1 , image.cols >> 1, CV_32SC4);
// GpuMat candidates(1 , defaultObjSearchNum, CV_32SC4);
// used for debug
// candidates.setTo(cv::Scalar::all(0));
// objects.setTo(cv::Scalar::all(0));
candidates.setTo(cv::Scalar::all(0));
objects.setTo(cv::Scalar::all(0));
if (maxObjectSize == cv::Size())
maxObjectSize = image.size();
......@@ -349,16 +366,50 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
unsigned int* dclassified;
cudaMalloc(&dclassified, sizeof(int));
cudaMemcpy(dclassified, classified, sizeof(int), cudaMemcpyHostToDevice);
int step;
int step = 2;
cv::gpu::device::lbp::bindIntegral(integral);
for( double factor = 1; ; factor *= scaleFactor )
cv::Size scaledImageSize(image.cols, image.rows);
cv::Size processingRectSize( scaledImageSize.width - NxM.width + 1, scaledImageSize.height - NxM.height + 1 );
cv::Size windowSize(NxM.width, NxM.height);
double factor = 1;
for (; processingRectSize.width / step >= 256;)
{
// std::cout << "IN FIXED: factor " << factor << " size " << processingRectSize.width << " " << processingRectSize.height << std::endl;
// if (factor > 2.0) break;
cv::Size windowSize(cvRound(NxM.width * factor), cvRound(NxM.height * factor));
cv::Size scaledImageSize(cvRound( image.cols / factor ), cvRound( image.rows / factor ));
cv::Size processingRectSize( scaledImageSize.width - NxM.width + 1, scaledImageSize.height - NxM.height + 1 );
if (processingRectSize.width <= 0 || processingRectSize.height <= 0 )
break;
if( windowSize.width > maxObjectSize.width || windowSize.height > maxObjectSize.height )
break;
// if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height )
// continue;
GpuMat scaledImg(resuzeBuffer, cv::Rect(0, 0, scaledImageSize.width, scaledImageSize.height));
GpuMat scaledIntegral(integral, cv::Rect(0, 0, scaledImageSize.width + 1, scaledImageSize.height + 1));
GpuMat currBuff = integralBuffer;
cv::gpu::resize(image, scaledImg, scaledImageSize, 0, 0, CV_INTER_LINEAR);
cv::gpu::integralBuffered(scaledImg, scaledIntegral, currBuff);
step = (factor <= 2.) + 1;
cv::gpu::device::lbp::classifyStumpFixed(stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat, leaves_mat, subsets_mat, features_mat,
processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, factor, step, subsetSize, candidates, dclassified, processingRectSize.width);
factor *= scaleFactor;
windowSize = cv::Size(cvRound(NxM.width * factor), cvRound(NxM.height * factor));
scaledImageSize = cv::Size(cvRound( image.cols / factor ), cvRound( image.rows / factor ));
processingRectSize = cv::Size(scaledImageSize.width - NxM.width + 1, scaledImageSize.height - NxM.height + 1 );
}
for (; /*processingRectSize.width / step >= 128*/;)
{
// std::cout << "In FLOATING: factor " << factor << " size " << processingRectSize.width << " " << processingRectSize.height << std::endl;
// if (factor > 2.0) break;
if (processingRectSize.width <= 0 || processingRectSize.height <= 0 )
break;
......@@ -379,12 +430,19 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
cv::gpu::device::lbp::classifyStump(stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat, leaves_mat, subsets_mat, features_mat,
processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, factor, step, subsetSize, candidates, dclassified);
factor *= scaleFactor;
windowSize = cv::Size(cvRound(NxM.width * factor), cvRound(NxM.height * factor));
scaledImageSize = cv::Size(cvRound( image.cols / factor ), cvRound( image.rows / factor ));
processingRectSize = cv::Size(scaledImageSize.width - NxM.width + 1, scaledImageSize.height - NxM.height + 1 );
}
cv::gpu::device::lbp::unbindIntegral();
if (groupThreshold <= 0 || objects.empty())
return 0;
cv::gpu::device::lbp::connectedConmonents(candidates, objects, groupThreshold, grouping_eps, dclassified);
cudaMemcpy(classified, dclassified, sizeof(int), cudaMemcpyDeviceToHost);
// std::cout << "!!! CLASSIFIED " << *classified << std::endl;
cv::gpu::device::lbp::connectedConmonents(candidates, *classified, objects, groupThreshold, grouping_eps, dclassified);
cudaMemcpy(classified, dclassified, sizeof(int), cudaMemcpyDeviceToHost);
cudaSafeCall( cudaDeviceSynchronize() );
step = *classified;
......
This diff is collapsed.
......@@ -61,6 +61,7 @@ __device__ __forceinline__ T __atomicInc(T* address, T val)
count = tag | (count + 1);
*address = count;
} while (*address != count);
return (count & TAG_MASK) - 1;
}
......@@ -85,6 +86,7 @@ __device__ __forceinline__ T __atomicMin(T* address, T val)
{
*address = count;
} while (*address > count);
return count;
}
......@@ -151,7 +153,6 @@ __device__ __forceinline__ T __atomicMin(T* address, T val)
}
}
__syncthreads();
// printf("tid %d label %d\n", tid, labels[tid]);
}
} // lbp
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment