Commit ec793df3 authored by Andrey Kamaev's avatar Andrey Kamaev

#1205 fixed more bugs/typos in parameters

parent 008a1c91
This diff is collapsed.
...@@ -15,27 +15,27 @@ KeyPoint ...@@ -15,27 +15,27 @@ KeyPoint
Data structure for salient point detectors. Data structure for salient point detectors.
.. ocv:member:: Point2f pt .. ocv:member:: Point2f pt
coordinates of the keypoint coordinates of the keypoint
.. ocv:member:: float size .. ocv:member:: float size
diameter of the meaningful keypoint neighborhood diameter of the meaningful keypoint neighborhood
.. ocv:member:: float angle .. ocv:member:: float angle
computed orientation of the keypoint (-1 if not applicable) computed orientation of the keypoint (-1 if not applicable)
.. ocv:member:: float response .. ocv:member:: float response
the response by which the most strong keypoints have been selected. Can be used for further sorting or subsampling the response by which the most strong keypoints have been selected. Can be used for further sorting or subsampling
.. ocv:member:: int octave .. ocv:member:: int octave
octave (pyramid layer) from which the keypoint has been extracted octave (pyramid layer) from which the keypoint has been extracted
.. ocv:member:: int class_id .. ocv:member:: int class_id
object id that can be used to clustered keypoints by an object they belong to object id that can be used to clustered keypoints by an object they belong to
KeyPoint::KeyPoint KeyPoint::KeyPoint
...@@ -51,19 +51,19 @@ The keypoint constructors ...@@ -51,19 +51,19 @@ The keypoint constructors
.. ocv:pyfunction:: cv2.KeyPoint(x, y, _size[, _angle[, _response[, _octave[, _class_id]]]]) -> <KeyPoint object> .. ocv:pyfunction:: cv2.KeyPoint(x, y, _size[, _angle[, _response[, _octave[, _class_id]]]]) -> <KeyPoint object>
:param x: x-coordinate of the keypoint :param x: x-coordinate of the keypoint
:param y: y-coordinate of the keypoint :param y: y-coordinate of the keypoint
:param _pt: x & y coordinates of the keypoint :param _pt: x & y coordinates of the keypoint
:param _size: keypoint diameter :param _size: keypoint diameter
:param _angle: keypoint orientation :param _angle: keypoint orientation
:param _response: keypoint detector response on the keypoint (that is, strength of the keypoint) :param _response: keypoint detector response on the keypoint (that is, strength of the keypoint)
:param _octave: pyramid octave in which the keypoint has been detected :param _octave: pyramid octave in which the keypoint has been detected
:param _class_id: object id :param _class_id: object id
...@@ -309,7 +309,7 @@ Wrapping class for feature detection using the ...@@ -309,7 +309,7 @@ Wrapping class for feature detection using the
protected: protected:
... ...
}; };
DenseFeatureDetector DenseFeatureDetector
-------------------- --------------------
...@@ -317,18 +317,18 @@ DenseFeatureDetector ...@@ -317,18 +317,18 @@ DenseFeatureDetector
Class for generation of image features which are distributed densely and regularly over the image. :: Class for generation of image features which are distributed densely and regularly over the image. ::
class DenseFeatureDetector : public FeatureDetector class DenseFeatureDetector : public FeatureDetector
{ {
public: public:
DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1, DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
float featureScaleMul=0.1f, float featureScaleMul=0.1f,
int initXyStep=6, int initImgBound=0, int initXyStep=6, int initImgBound=0,
bool varyXyStepWithScale=true, bool varyXyStepWithScale=true,
bool varyImgBoundWithScale=false ); bool varyImgBoundWithScale=false );
protected: protected:
... ...
}; };
The detector generates several levels (in the amount of ``featureScaleLevels``) of features. Features of each level are located in the nodes of a regular grid over the image (excluding the image boundary of given size). The level parameters (a feature scale, a node size, a size of boundary) are multiplied by ``featureScaleMul`` with level index growing depending on input flags, viz.: The detector generates several levels (in the amount of ``featureScaleLevels``) of features. Features of each level are located in the nodes of a regular grid over the image (excluding the image boundary of given size). The level parameters (a feature scale, a node size, a size of boundary) are multiplied by ``featureScaleMul`` with level index growing depending on input flags, viz.:
* Feature scale is multiplied always. * Feature scale is multiplied always.
...@@ -380,11 +380,11 @@ Class for extracting blobs from an image. :: ...@@ -380,11 +380,11 @@ Class for extracting blobs from an image. ::
The class implements a simple algorithm for extracting blobs from an image: The class implements a simple algorithm for extracting blobs from an image:
#. Convert the source image to binary images by applying thresholding with several thresholds from ``minThreshold`` (inclusive) to ``maxThreshold`` (exclusive) with distance ``thresholdStep`` between neighboring thresholds. #. Convert the source image to binary images by applying thresholding with several thresholds from ``minThreshold`` (inclusive) to ``maxThreshold`` (exclusive) with distance ``thresholdStep`` between neighboring thresholds.
#. Extract connected components from every binary image by :ocv:func:`findContours` and calculate their centers. #. Extract connected components from every binary image by :ocv:func:`findContours` and calculate their centers.
#. Group centers from several binary images by their coordinates. Close centers form one group that corresponds to one blob, which is controlled by the ``minDistBetweenBlobs`` parameter. #. Group centers from several binary images by their coordinates. Close centers form one group that corresponds to one blob, which is controlled by the ``minDistBetweenBlobs`` parameter.
#. From the groups, estimate final centers of blobs and their radiuses and return as locations and sizes of keypoints. #. From the groups, estimate final centers of blobs and their radiuses and return as locations and sizes of keypoints.
...@@ -468,7 +468,7 @@ panorama series. ...@@ -468,7 +468,7 @@ panorama series.
``DynamicAdaptedFeatureDetector`` uses another detector, such as FAST or SURF, to do the dirty work, ``DynamicAdaptedFeatureDetector`` uses another detector, such as FAST or SURF, to do the dirty work,
with the help of ``AdjusterAdapter`` . with the help of ``AdjusterAdapter`` .
If the detected number of features is not large enough, If the detected number of features is not large enough,
``AdjusterAdapter`` adjusts the detection parameters so that the next detection ``AdjusterAdapter`` adjusts the detection parameters so that the next detection
results in a bigger or smaller number of features. This is repeated until either the number of desired features are found results in a bigger or smaller number of features. This is repeated until either the number of desired features are found
or the parameters are maxed out. or the parameters are maxed out.
...@@ -500,14 +500,14 @@ The constructor ...@@ -500,14 +500,14 @@ The constructor
:param max_features: Maximum desired number of features. :param max_features: Maximum desired number of features.
:param max_iters: Maximum number of times to try adjusting the feature detector parameters. For :ocv:class:`FastAdjuster` , this number can be high, but with ``Star`` or ``Surf`` many iterations can be time-comsuming. At each iteration the detector is rerun. :param max_iters: Maximum number of times to try adjusting the feature detector parameters. For :ocv:class:`FastAdjuster` , this number can be high, but with ``Star`` or ``Surf`` many iterations can be time-comsuming. At each iteration the detector is rerun.
AdjusterAdapter AdjusterAdapter
--------------- ---------------
.. ocv:class:: AdjusterAdapter .. ocv:class:: AdjusterAdapter
Class providing an interface for adjusting parameters of a feature detector. This interface is used by :ocv:class:`DynamicAdaptedFeatureDetector` . It is a wrapper for :ocv:class:`FeatureDetector` that enables adjusting parameters after feature detection. :: Class providing an interface for adjusting parameters of a feature detector. This interface is used by :ocv:class:`DynamicAdaptedFeatureDetector` . It is a wrapper for :ocv:class:`FeatureDetector` that enables adjusting parameters after feature detection. ::
class AdjusterAdapter: public FeatureDetector class AdjusterAdapter: public FeatureDetector
{ {
public: public:
...@@ -562,7 +562,7 @@ Example: :: ...@@ -562,7 +562,7 @@ Example: ::
AdjusterAdapter::good AdjusterAdapter::good
------------------------- -------------------------
Returns false if the detector parameters cannot be adjusted any more. Returns false if the detector parameters cannot be adjusted any more.
.. ocv:function:: bool AdjusterAdapter::good() const .. ocv:function:: bool AdjusterAdapter::good() const
......
...@@ -211,7 +211,7 @@ gpu::FAST_GPU::calcKeyPointsLocation ...@@ -211,7 +211,7 @@ gpu::FAST_GPU::calcKeyPointsLocation
------------------------------------- -------------------------------------
Find keypoints and compute it's response if ``nonmaxSupression`` is true. Find keypoints and compute it's response if ``nonmaxSupression`` is true.
.. int gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask) .. ocv:function:: int gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask)
:param image: Image where keypoints (corners) are detected. Only 8-bit grayscale images are supported. :param image: Image where keypoints (corners) are detected. Only 8-bit grayscale images are supported.
......
...@@ -769,7 +769,7 @@ Performs linear blending of two images. ...@@ -769,7 +769,7 @@ Performs linear blending of two images.
:param img1: First image. Supports only ``CV_8U`` and ``CV_32F`` depth. :param img1: First image. Supports only ``CV_8U`` and ``CV_32F`` depth.
:param img1: Second image. Must have the same size and the same type as ``img1`` . :param img2: Second image. Must have the same size and the same type as ``img1`` .
:param weights1: Weights for first image. Must have tha same size as ``img1`` . Supports only ``CV_32F`` type. :param weights1: Weights for first image. Must have tha same size as ``img1`` . Supports only ``CV_32F`` type.
...@@ -789,7 +789,7 @@ Composites two images using alpha opacity values contained in each image. ...@@ -789,7 +789,7 @@ Composites two images using alpha opacity values contained in each image.
:param img1: First image. Supports ``CV_8UC4`` , ``CV_16UC4`` , ``CV_32SC4`` and ``CV_32FC4`` types. :param img1: First image. Supports ``CV_8UC4`` , ``CV_16UC4`` , ``CV_32SC4`` and ``CV_32FC4`` types.
:param img1: Second image. Must have the same size and the same type as ``img1`` . :param img2: Second image. Must have the same size and the same type as ``img1`` .
:param dst: Destination image. :param dst: Destination image.
......
...@@ -78,13 +78,11 @@ Computes a matrix-matrix or matrix-scalar per-element product. ...@@ -78,13 +78,11 @@ Computes a matrix-matrix or matrix-scalar per-element product.
gpu::divide gpu::divide
--------------- -----------
Computes a matrix-matrix or matrix-scalar division. Computes a matrix-matrix or matrix-scalar division.
.. ocv:function:: void gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null()) .. ocv:function:: void gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null())
.. ocv:function:: void gpu::divide(const GpuMat& src1, const Scalar& src2, GpuMat& dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null())
.. ocv:function:: void gpu::divide(double src1, const GpuMat& src2, GpuMat& dst, int dtype = -1, Stream& stream = Stream::Null()) .. ocv:function:: void gpu::divide(double src1, const GpuMat& src2, GpuMat& dst, int dtype = -1, Stream& stream = Stream::Null())
:param src1: First source matrix or a scalar. :param src1: First source matrix or a scalar.
...@@ -104,9 +102,8 @@ This function, in contrast to :ocv:func:`divide`, uses a round-down rounding mod ...@@ -104,9 +102,8 @@ This function, in contrast to :ocv:func:`divide`, uses a round-down rounding mod
.. seealso:: :ocv:func:`divide` .. seealso:: :ocv:func:`divide`
gpu::addWeighted
addWeighted ----------------
---------------
Computes the weighted sum of two arrays. Computes the weighted sum of two arrays.
.. ocv:function:: void gpu::addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2, double beta, double gamma, GpuMat& dst, int dtype = -1, Stream& stream = Stream::Null()) .. ocv:function:: void gpu::addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2, double beta, double gamma, GpuMat& dst, int dtype = -1, Stream& stream = Stream::Null())
......
...@@ -47,6 +47,7 @@ Class computing the optical flow for two images using Brox et al Optical Flow al ...@@ -47,6 +47,7 @@ Class computing the optical flow for two images using Brox et al Optical Flow al
gpu::GoodFeaturesToTrackDetector_GPU gpu::GoodFeaturesToTrackDetector_GPU
------------------------------------ ------------------------------------
.. ocv:class:: gpu::GoodFeaturesToTrackDetector_GPU
Class used for strong corners detection on an image. :: Class used for strong corners detection on an image. ::
...@@ -120,6 +121,8 @@ Releases inner buffers memory. ...@@ -120,6 +121,8 @@ Releases inner buffers memory.
gpu::FarnebackOpticalFlow gpu::FarnebackOpticalFlow
------------------------- -------------------------
.. ocv:class:: gpu::FarnebackOpticalFlow
Class computing a dense optical flow using the Gunnar Farneback’s algorithm. :: Class computing a dense optical flow using the Gunnar Farneback’s algorithm. ::
class CV_EXPORTS FarnebackOpticalFlow class CV_EXPORTS FarnebackOpticalFlow
...@@ -179,6 +182,7 @@ Releases unused auxiliary memory buffers. ...@@ -179,6 +182,7 @@ Releases unused auxiliary memory buffers.
gpu::PyrLKOpticalFlow gpu::PyrLKOpticalFlow
--------------------- ---------------------
.. ocv:class:: gpu::PyrLKOpticalFlow
Class used for calculating an optical flow. :: Class used for calculating an optical flow. ::
......
...@@ -76,7 +76,8 @@ Description of the filter, which corresponds to the part of the object. ...@@ -76,7 +76,8 @@ Description of the filter, which corresponds to the part of the object.
vector describes penalty function (d_i in the paper) vector describes penalty function (d_i in the paper)
pf[0] * x + pf[1] * y + pf[2] * x^2 + pf[3] * y^2 pf[0] * x + pf[1] * y + pf[2] * x^2 + pf[3] * y^2
.. ocv:member:: int sizeX, sizeY .. ocv:member:: int sizeX
.. ocv:member:: int sizeY
Rectangular map (sizeX x sizeY), Rectangular map (sizeX x sizeY),
every cell stores feature vector (dimension = p) every cell stores feature vector (dimension = p)
......
...@@ -29,15 +29,6 @@ detail::ExposureCompensation::feed ...@@ -29,15 +29,6 @@ detail::ExposureCompensation::feed
.. ocv:function:: void detail::ExposureCompensation::feed(const std::vector<Point> &corners, const std::vector<Mat> &images, const std::vector<Mat> &masks) .. ocv:function:: void detail::ExposureCompensation::feed(const std::vector<Point> &corners, const std::vector<Mat> &images, const std::vector<Mat> &masks)
:param corners: Source image top-left corners
:param images: Source images
:param masks: Image masks to update
detail::ExposureCompensation::feed
----------------------------------
.. ocv:function:: void detail::ExposureCompensation::feed(const std::vector<Point> &corners, const std::vector<Mat> &images, const std::vector<std::pair<Mat,uchar> > &masks) .. ocv:function:: void detail::ExposureCompensation::feed(const std::vector<Point> &corners, const std::vector<Mat> &images, const std::vector<std::pair<Mat,uchar> > &masks)
:param corners: Source image top-left corners :param corners: Source image top-left corners
......
...@@ -10,7 +10,7 @@ The implemented stitching pipeline is very similar to the one proposed in [BL07] ...@@ -10,7 +10,7 @@ The implemented stitching pipeline is very similar to the one proposed in [BL07]
.. image:: StitchingPipeline.jpg .. image:: StitchingPipeline.jpg
References References
---------- ==========
.. [BL07] M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant Features. International Journal of Computer Vision, 74(1), pages 59-73, 2007. .. [BL07] M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant Features. International Journal of Computer Vision, 74(1), pages 59-73, 2007.
......
...@@ -245,4 +245,4 @@ Constructs a "best of 2 nearest" matcher. ...@@ -245,4 +245,4 @@ Constructs a "best of 2 nearest" matcher.
:param num_matches_thresh1: Minimum number of matches required for the 2D projective transform estimation used in the inliers classification step :param num_matches_thresh1: Minimum number of matches required for the 2D projective transform estimation used in the inliers classification step
:param num_matches_thresh1: Minimum number of matches required for the 2D projective transform re-estimation on inliers :param num_matches_thresh2: Minimum number of matches required for the 2D projective transform re-estimation on inliers
...@@ -204,6 +204,7 @@ Implementation of the camera parameters refinement algorithm which minimizes sum ...@@ -204,6 +204,7 @@ Implementation of the camera parameters refinement algorithm which minimizes sum
detail::BundleAdjusterRay detail::BundleAdjusterRay
------------------------- -------------------------
.. ocv:class:: detail::BundleAdjusterRay
Implementation of the camera parameters refinement algorithm which minimizes sum of the distances between the rays passing through the camera center and a feature. :: Implementation of the camera parameters refinement algorithm which minimizes sum of the distances between the rays passing through the camera center and a feature. ::
......
...@@ -101,7 +101,7 @@ Projects the image backward. ...@@ -101,7 +101,7 @@ Projects the image backward.
:param dst_size: Backward-projected image size :param dst_size: Backward-projected image size
:param dst_size: Backward-projected image :param dst: Backward-projected image
detail::RotationWarper::warpRoi detail::RotationWarper::warpRoi
------------------------------- -------------------------------
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment