Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
eb1f7797
Commit
eb1f7797
authored
Dec 13, 2018
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #13387 from dkurt:dnn_minor_ie_fixes
parents
aa666dfa
53f6198f
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
71 additions
and
17 deletions
+71
-17
op_inf_engine.cpp
modules/dnn/src/op_inf_engine.cpp
+4
-2
op_inf_engine.hpp
modules/dnn/src/op_inf_engine.hpp
+3
-0
test_caffe_importer.cpp
modules/dnn/test/test_caffe_importer.cpp
+1
-0
test_darknet_importer.cpp
modules/dnn/test/test_darknet_importer.cpp
+1
-1
test_halide_layers.cpp
modules/dnn/test/test_halide_layers.cpp
+1
-1
test_layers.cpp
modules/dnn/test/test_layers.cpp
+59
-11
test_torch_importer.cpp
modules/dnn/test/test_torch_importer.cpp
+2
-2
No files found.
modules/dnn/src/op_inf_engine.cpp
View file @
eb1f7797
...
...
@@ -152,6 +152,7 @@ InfEngineBackendNet::InfEngineBackendNet()
{
targetDevice
=
InferenceEngine
::
TargetDevice
::
eCPU
;
precision
=
InferenceEngine
::
Precision
::
FP32
;
hasNetOwner
=
false
;
}
InfEngineBackendNet
::
InfEngineBackendNet
(
InferenceEngine
::
CNNNetwork
&
net
)
...
...
@@ -162,6 +163,7 @@ InfEngineBackendNet::InfEngineBackendNet(InferenceEngine::CNNNetwork& net)
outputs
=
net
.
getOutputsInfo
();
layers
.
resize
(
net
.
layerCount
());
// A hack to execute InfEngineBackendNet::layerCount correctly.
netOwner
=
net
;
hasNetOwner
=
true
;
}
void
InfEngineBackendNet
::
Release
()
noexcept
...
...
@@ -178,12 +180,12 @@ void InfEngineBackendNet::setPrecision(InferenceEngine::Precision p) noexcept
InferenceEngine
::
Precision
InfEngineBackendNet
::
getPrecision
()
noexcept
{
return
precision
;
return
hasNetOwner
?
netOwner
.
getPrecision
()
:
precision
;
}
InferenceEngine
::
Precision
InfEngineBackendNet
::
getPrecision
()
const
noexcept
{
return
precision
;
return
hasNetOwner
?
netOwner
.
getPrecision
()
:
precision
;
}
// Assume that outputs of network is unconnected blobs.
...
...
modules/dnn/src/op_inf_engine.hpp
View file @
eb1f7797
...
...
@@ -134,6 +134,9 @@ private:
InferenceEngine
::
InferRequest
infRequest
;
// In case of models from Model Optimizer we need to manage their lifetime.
InferenceEngine
::
CNNNetwork
netOwner
;
// There is no way to check if netOwner is initialized or not so we use
// a separate flag to determine if the model has been loaded from IR.
bool
hasNetOwner
;
std
::
string
name
;
...
...
modules/dnn/test/test_caffe_importer.cpp
View file @
eb1f7797
...
...
@@ -471,6 +471,7 @@ TEST(Test_Caffe, shared_weights)
net
.
setInput
(
blob_1
,
"input_1"
);
net
.
setInput
(
blob_2
,
"input_2"
);
net
.
setPreferableBackend
(
DNN_BACKEND_OPENCV
);
Mat
sum
=
net
.
forward
();
...
...
modules/dnn/test/test_darknet_importer.cpp
View file @
eb1f7797
...
...
@@ -306,7 +306,7 @@ TEST_P(Test_Darknet_nets, TinyYoloVoc)
// batch size 1
testDarknetModel
(
config_file
,
weights_file
,
ref
.
rowRange
(
0
,
2
),
scoreDiff
,
iouDiff
);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE
=
= 2018040000
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE
>
= 2018040000
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
!=
DNN_TARGET_MYRIAD
)
#endif
// batch size 2
...
...
modules/dnn/test/test_halide_layers.cpp
View file @
eb1f7797
...
...
@@ -166,7 +166,7 @@ TEST_P(Deconvolution, Accuracy)
if
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
&&
targetId
==
DNN_TARGET_CPU
&&
dilation
.
width
==
2
&&
dilation
.
height
==
2
)
throw
SkipTestException
(
""
);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE
=
= 2018040000
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE
>
= 2018040000
if
(
backendId
==
DNN_BACKEND_INFERENCE_ENGINE
&&
targetId
==
DNN_TARGET_CPU
&&
hasBias
&&
group
!=
1
)
throw
SkipTestException
(
"Test is disabled for OpenVINO 2018R4"
);
...
...
modules/dnn/test/test_layers.cpp
View file @
eb1f7797
...
...
@@ -137,7 +137,7 @@ TEST_P(Test_Caffe_layers, Convolution)
TEST_P
(
Test_Caffe_layers
,
DeConvolution
)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE
=
= 2018040000
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE
>
= 2018040000
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_CPU
)
throw
SkipTestException
(
"Test is disabled for OpenVINO 2018R4"
);
#endif
...
...
@@ -918,8 +918,11 @@ INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_DWconv_Prelu, Combine(Values(3, 6), Val
// Using Intel's Model Optimizer generate .xml and .bin files:
// ./ModelOptimizer -w /path/to/caffemodel -d /path/to/prototxt \
// -p FP32 -i -b ${batch_size} -o /path/to/output/folder
TEST
(
Layer_Test_Convolution_DLDT
,
Accuracy
)
typedef
testing
::
TestWithParam
<
Target
>
Layer_Test_Convolution_DLDT
;
TEST_P
(
Layer_Test_Convolution_DLDT
,
Accuracy
)
{
Target
targetId
=
GetParam
();
Net
netDefault
=
readNet
(
_tf
(
"layer_convolution.caffemodel"
),
_tf
(
"layer_convolution.prototxt"
));
Net
net
=
readNet
(
_tf
(
"layer_convolution.xml"
),
_tf
(
"layer_convolution.bin"
));
...
...
@@ -930,6 +933,10 @@ TEST(Layer_Test_Convolution_DLDT, Accuracy)
Mat
outDefault
=
netDefault
.
forward
();
net
.
setInput
(
inp
);
net
.
setPreferableTarget
(
targetId
);
if
(
targetId
!=
DNN_TARGET_MYRIAD
)
{
Mat
out
=
net
.
forward
();
normAssert
(
outDefault
,
out
);
...
...
@@ -937,10 +944,18 @@ TEST(Layer_Test_Convolution_DLDT, Accuracy)
std
::
vector
<
int
>
outLayers
=
net
.
getUnconnectedOutLayers
();
ASSERT_EQ
(
net
.
getLayer
(
outLayers
[
0
])
->
name
,
"output_merge"
);
ASSERT_EQ
(
net
.
getLayer
(
outLayers
[
0
])
->
type
,
"Concat"
);
}
else
{
// An assertion is expected because the model is in FP32 format but
// Myriad plugin supports only FP16 models.
ASSERT_ANY_THROW
(
net
.
forward
());
}
}
TEST
(
Layer_Test_Convolution_DLDT
,
setInput_uint8
)
TEST
_P
(
Layer_Test_Convolution_DLDT
,
setInput_uint8
)
{
Target
targetId
=
GetParam
();
Mat
inp
=
blobFromNPY
(
_tf
(
"blob.npy"
));
Mat
inputs
[]
=
{
Mat
(
inp
.
dims
,
inp
.
size
,
CV_8U
),
Mat
()};
...
...
@@ -951,12 +966,25 @@ TEST(Layer_Test_Convolution_DLDT, setInput_uint8)
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
Net
net
=
readNet
(
_tf
(
"layer_convolution.xml"
),
_tf
(
"layer_convolution.bin"
));
net
.
setPreferableTarget
(
targetId
);
net
.
setInput
(
inputs
[
i
]);
if
(
targetId
!=
DNN_TARGET_MYRIAD
)
{
outs
[
i
]
=
net
.
forward
();
ASSERT_EQ
(
outs
[
i
].
type
(),
CV_32F
);
}
else
{
// An assertion is expected because the model is in FP32 format but
// Myriad plugin supports only FP16 models.
ASSERT_ANY_THROW
(
net
.
forward
());
}
}
if
(
targetId
!=
DNN_TARGET_MYRIAD
)
normAssert
(
outs
[
0
],
outs
[
1
]);
}
INSTANTIATE_TEST_CASE_P
(
/**/
,
Layer_Test_Convolution_DLDT
,
testing
::
ValuesIn
(
getAvailableTargets
(
DNN_BACKEND_INFERENCE_ENGINE
)));
// 1. Create a .prototxt file with the following network:
// layer {
...
...
@@ -980,14 +1008,17 @@ TEST(Layer_Test_Convolution_DLDT, setInput_uint8)
// net.save('/path/to/caffemodel')
//
// 3. Convert using ModelOptimizer.
typedef
testing
::
TestWithParam
<
tuple
<
int
,
int
>
>
Test_DLDT_two_inputs
;
typedef
testing
::
TestWithParam
<
tuple
<
int
,
int
,
Target
>
>
Test_DLDT_two_inputs
;
TEST_P
(
Test_DLDT_two_inputs
,
as_IR
)
{
int
firstInpType
=
get
<
0
>
(
GetParam
());
int
secondInpType
=
get
<
1
>
(
GetParam
());
// TODO: It looks like a bug in Inference Engine.
Target
targetId
=
get
<
2
>
(
GetParam
());
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE < 2018040000
if
(
secondInpType
==
CV_8U
)
throw
SkipTestException
(
""
);
throw
SkipTestException
(
"Test is enabled starts from OpenVINO 2018R4"
);
#endif
Net
net
=
readNet
(
_tf
(
"net_two_inputs.xml"
),
_tf
(
"net_two_inputs.bin"
));
int
inpSize
[]
=
{
1
,
2
,
3
};
...
...
@@ -998,11 +1029,21 @@ TEST_P(Test_DLDT_two_inputs, as_IR)
net
.
setInput
(
firstInp
,
"data"
);
net
.
setInput
(
secondInp
,
"second_input"
);
net
.
setPreferableTarget
(
targetId
);
if
(
targetId
!=
DNN_TARGET_MYRIAD
)
{
Mat
out
=
net
.
forward
();
Mat
ref
;
cv
::
add
(
firstInp
,
secondInp
,
ref
,
Mat
(),
CV_32F
);
normAssert
(
out
,
ref
);
}
else
{
// An assertion is expected because the model is in FP32 format but
// Myriad plugin supports only FP16 models.
ASSERT_ANY_THROW
(
net
.
forward
());
}
}
TEST_P
(
Test_DLDT_two_inputs
,
as_backend
)
...
...
@@ -1010,6 +1051,8 @@ TEST_P(Test_DLDT_two_inputs, as_backend)
static
const
float
kScale
=
0.5
f
;
static
const
float
kScaleInv
=
1.0
f
/
kScale
;
Target
targetId
=
get
<
2
>
(
GetParam
());
Net
net
;
LayerParams
lp
;
lp
.
type
=
"Eltwise"
;
...
...
@@ -1018,9 +1061,9 @@ TEST_P(Test_DLDT_two_inputs, as_backend)
int
eltwiseId
=
net
.
addLayerToPrev
(
lp
.
name
,
lp
.
type
,
lp
);
// connect to a first input
net
.
connect
(
0
,
1
,
eltwiseId
,
1
);
// connect to a second input
int
inpSize
[]
=
{
1
,
2
,
3
};
Mat
firstInp
(
3
,
&
inpSize
[
0
],
get
<
0
>
(
GetParam
()));
Mat
secondInp
(
3
,
&
inpSize
[
0
],
get
<
1
>
(
GetParam
()));
int
inpSize
[]
=
{
1
,
2
,
3
,
4
};
Mat
firstInp
(
4
,
&
inpSize
[
0
],
get
<
0
>
(
GetParam
()));
Mat
secondInp
(
4
,
&
inpSize
[
0
],
get
<
1
>
(
GetParam
()));
randu
(
firstInp
,
0
,
255
);
randu
(
secondInp
,
0
,
255
);
...
...
@@ -1028,15 +1071,20 @@ TEST_P(Test_DLDT_two_inputs, as_backend)
net
.
setInput
(
firstInp
,
"data"
,
kScale
);
net
.
setInput
(
secondInp
,
"second_input"
,
kScaleInv
);
net
.
setPreferableBackend
(
DNN_BACKEND_INFERENCE_ENGINE
);
net
.
setPreferableTarget
(
targetId
);
Mat
out
=
net
.
forward
();
Mat
ref
;
addWeighted
(
firstInp
,
kScale
,
secondInp
,
kScaleInv
,
0
,
ref
,
CV_32F
);
normAssert
(
out
,
ref
);
// Output values are in range [0, 637.5].
double
l1
=
(
targetId
==
DNN_TARGET_OPENCL_FP16
||
targetId
==
DNN_TARGET_MYRIAD
)
?
0.06
:
1e-6
;
double
lInf
=
(
targetId
==
DNN_TARGET_OPENCL_FP16
||
targetId
==
DNN_TARGET_MYRIAD
)
?
0.3
:
1e-5
;
normAssert
(
out
,
ref
,
""
,
l1
,
lInf
);
}
INSTANTIATE_TEST_CASE_P
(
/*nothing*/
,
Test_DLDT_two_inputs
,
Combine
(
Values
(
CV_8U
,
CV_32F
),
Values
(
CV_8U
,
CV_32F
)
Values
(
CV_8U
,
CV_32F
),
Values
(
CV_8U
,
CV_32F
),
testing
::
ValuesIn
(
getAvailableTargets
(
DNN_BACKEND_INFERENCE_ENGINE
))
));
class
UnsupportedLayer
:
public
Layer
...
...
modules/dnn/test/test_torch_importer.cpp
View file @
eb1f7797
...
...
@@ -136,7 +136,7 @@ TEST_P(Test_Torch_layers, run_reshape_change_batch_size)
TEST_P
(
Test_Torch_layers
,
run_reshape
)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE
=
= 2018040000
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE
>
= 2018040000
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_MYRIAD
)
throw
SkipTestException
(
"Test is disabled for OpenVINO 2018R4"
);
#endif
...
...
@@ -172,7 +172,7 @@ TEST_P(Test_Torch_layers, run_depth_concat)
TEST_P
(
Test_Torch_layers
,
run_deconv
)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE
=
= 2018040000
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE
>
= 2018040000
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE
&&
target
==
DNN_TARGET_MYRIAD
)
throw
SkipTestException
(
"Test is disabled for OpenVINO 2018R4"
);
#endif
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment