Commit e9e66e57 authored by Vladislav Vinogradov's avatar Vladislav Vinogradov

added VIBE_GPU (background subtraction) to gpu module

parent 0f8e2715
......@@ -324,9 +324,9 @@ Class used for background/foreground segmentation. ::
std::vector< std::vector<cv::Point> > foreground_regions;
};
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [FGD2003]_.
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [FGD2003]_.
The results are available through the class fields:
The results are available through the class fields:
.. ocv:member:: cv::gpu::GpuMat background
......@@ -406,13 +406,15 @@ Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm. ::
void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;
void release();
int history;
float varThreshold;
float backgroundRatio;
float noiseSigma;
};
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [MOG]_.
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [MOG2001]_.
.. seealso:: :ocv:class:`BackgroundSubtractorMOG`
......@@ -432,7 +434,7 @@ Default constructor sets all parameters to default values.
gpu::MOG_GPU::operator()
------------------------
Updates the background model and returns the foreground mask
Updates the background model and returns the foreground mask.
.. ocv:function:: void gpu::MOG_GPU::operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = 0.0f, Stream& stream = Stream::Null())
......@@ -456,6 +458,14 @@ Computes a background image.
gpu::MOG_GPU::release
---------------------
Releases all inner buffer's memory.
.. ocv:function:: void gpu::MOG_GPU::release()
gpu::MOG2_GPU
-------------
.. ocv:class:: gpu::MOG2_GPU
......@@ -473,13 +483,15 @@ Gaussian Mixture-based Background/Foreground Segmentation Algorithm. ::
void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;
void release();
// parameters
...
};
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [MOG2]_.
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [MOG2004]_.
Here are important members of the class that control the algorithm, which you can set after constructing the class instance:
Here are important members of the class that control the algorithm, which you can set after constructing the class instance:
.. ocv:member:: float backgroundRatio
......@@ -511,7 +523,7 @@ Gaussian Mixture-based Background/Foreground Segmentation Algorithm. ::
.. ocv:member:: float fTau
Shadow threshold. The shadow is detected if the pixel is a darker version of the background. ``Tau`` is a threshold defining how much darker the shadow can be. ``Tau= 0.5`` means that if a pixel is more than twice darker then it is not shadow. See [ShadowDetect]_.
Shadow threshold. The shadow is detected if the pixel is a darker version of the background. ``Tau`` is a threshold defining how much darker the shadow can be. ``Tau= 0.5`` means that if a pixel is more than twice darker then it is not shadow. See [ShadowDetect2003]_.
.. ocv:member:: bool bShadowDetection
......@@ -534,8 +546,8 @@ Default constructor sets all parameters to default values.
gpu::MOG2_GPU::operator()
------------------------
Updates the background model and returns the foreground mask
-------------------------
Updates the background model and returns the foreground mask.
.. ocv:function:: void gpu::MOG2_GPU::operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = 0.0f, Stream& stream = Stream::Null())
......@@ -559,6 +571,84 @@ Computes a background image.
gpu::MOG2_GPU::release
----------------------
Releases all inner buffer's memory.
.. ocv:function:: void gpu::MOG2_GPU::release()
gpu::VIBE_GPU
-------------
.. ocv:class:: gpu::VIBE_GPU
Class used for background/foreground segmentation. ::
class VIBE_GPU
{
public:
explicit VIBE_GPU(unsigned long rngSeed = 1234567);
void initialize(const GpuMat& firstFrame, Stream& stream = Stream::Null());
void operator()(const GpuMat& frame, GpuMat& fgmask, Stream& stream = Stream::Null());
void release();
...
};
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [VIBE2011]_.
gpu::VIBE_GPU::VIBE_GPU
-----------------------
The constructor.
.. ocv:function:: gpu::VIBE_GPU::VIBE_GPU(unsigned long rngSeed = 1234567)
:param rngSeed: Value used to initiate a random sequence.
Default constructor sets all parameters to default values.
gpu::VIBE_GPU::initialize
-------------------------
Initialize background model and allocates all inner buffers.
.. ocv:function:: void gpu::VIBE_GPU::initialize(const GpuMat& firstFrame, Stream& stream = Stream::Null())
:param firstFrame: First frame from video sequence.
:param stream: Stream for the asynchronous version.
gpu::VIBE_GPU::operator()
-------------------------
Updates the background model and returns the foreground mask
.. ocv:function:: void gpu::VIBE_GPU::operator()(const GpuMat& frame, GpuMat& fgmask, Stream& stream = Stream::Null())
:param frame: Next video frame.
:param fgmask: The output foreground mask as an 8-bit binary image.
:param stream: Stream for the asynchronous version.
gpu::VIBE_GPU::release
----------------------
Releases all inner buffer's memory.
.. ocv:function:: void gpu::VIBE_GPU::release()
gpu::VideoWriter_GPU
---------------------
Video writer class.
......@@ -999,6 +1089,7 @@ Parse next video frame. Implementation must call this method after new frame was
.. [Brox2004] T. Brox, A. Bruhn, N. Papenberg, J. Weickert. *High accuracy optical flow estimation based on a theory for warping*. ECCV 2004.
.. [FGD2003] Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian. *Foreground Object Detection from Videos Containing Complex Background*. ACM MM2003 9p, 2003.
.. [MOG] P. KadewTraKuPong and R. Bowden, *An improved adaptive background mixture model for real-time tracking with shadow detection*, Proc. 2nd European Workshop on Advanced Video-Based Surveillance Systems, 2001
.. [MOG2] Z.Zivkovic, *Improved adaptive Gausian mixture model for background subtraction*, International Conference Pattern Recognition, UK, August, 2004
.. [ShadowDetect] Prati, Mikic, Trivedi and Cucchiarra, *Detecting Moving Shadows...*, IEEE PAMI, 2003
.. [MOG2001] P. KadewTraKuPong and R. Bowden. *An improved adaptive background mixture model for real-time tracking with shadow detection*. Proc. 2nd European Workshop on Advanced Video-Based Surveillance Systems, 2001
.. [MOG2004] Z. Zivkovic. *Improved adaptive Gausian mixture model for background subtraction*. International Conference Pattern Recognition, UK, August, 2004
.. [ShadowDetect2003] Prati, Mikic, Trivedi and Cucchiarra. *Detecting Moving Shadows...*. IEEE PAMI, 2003
.. [VIBE2011] O. Barnich and M. Van D Roogenbroeck. *ViBe: A universal background subtraction algorithm for video sequences*. IEEE Transactions on Image Processing, 20(6) :1709-1724, June 2011
......@@ -1992,6 +1992,9 @@ public:
//! computes a background image which are the mean of all background gaussians
void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;
//! releases all inner buffers
void release();
int history;
float varThreshold;
float backgroundRatio;
......@@ -2032,6 +2035,9 @@ public:
//! computes a background image which are the mean of all background gaussians
void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;
//! releases all inner buffers
void release();
// parameters
// you should call initialize after parameters changes
......@@ -2100,6 +2106,41 @@ private:
GpuMat bgmodelUsedModes_; //keep track of number of modes per pixel
};
/*!
* The class implements the following algorithm:
* "ViBe: A universal background subtraction algorithm for video sequences"
* O. Barnich and M. Van D Roogenbroeck
* IEEE Transactions on Image Processing, 20(6) :1709-1724, June 2011
*/
class CV_EXPORTS VIBE_GPU
{
public:
//! the default constructor
explicit VIBE_GPU(unsigned long rngSeed = 1234567);
//! re-initiaization method
void initialize(const GpuMat& firstFrame, Stream& stream = Stream::Null());
//! the update operator
void operator()(const GpuMat& frame, GpuMat& fgmask, Stream& stream = Stream::Null());
//! releases all inner buffers
void release();
int nbSamples; // number of samples per pixel
int reqMatches; // #_min
int radius; // R
int subsamplingFactor; // amount of random subsampling
private:
Size frameSize_;
unsigned long rngSeed_;
GpuMat randStates_;
GpuMat samples_;
};
////////////////////////////////// Video Encoding //////////////////////////////////
// Works only under Windows
......
......@@ -516,6 +516,68 @@ INSTANTIATE_TEST_CASE_P(Video, MOG2_getBackgroundImage, testing::Combine(
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")),
testing::Values(Channels(1), Channels(3), Channels(4))));
//////////////////////////////////////////////////////
// VIBE
GPU_PERF_TEST(VIBE, cv::gpu::DeviceInfo, std::string, Channels)
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1));
int cn = GET_PARAM(2);
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
cv::Mat frame;
cap >> frame;
ASSERT_FALSE(frame.empty());
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
cv::gpu::GpuMat d_frame(frame);
cv::gpu::VIBE_GPU vibe;
cv::gpu::GpuMat foreground;
vibe(d_frame, foreground);
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
if (cn != 3)
{
cv::Mat temp;
if (cn == 1)
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
else
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA);
cv::swap(temp, frame);
}
d_frame.upload(frame);
startTimer(); next();
vibe(d_frame, foreground);
stopTimer();
}
}
INSTANTIATE_TEST_CASE_P(Video, VIBE, testing::Combine(
ALL_DEVICES,
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")),
testing::Values(Channels(1), Channels(3), Channels(4))));
//////////////////////////////////////////////////////
// VideoWriter
......
......@@ -48,11 +48,13 @@ cv::gpu::MOG_GPU::MOG_GPU(int) { throw_nogpu(); }
void cv::gpu::MOG_GPU::initialize(cv::Size, int) { throw_nogpu(); }
void cv::gpu::MOG_GPU::operator()(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, float, Stream&) { throw_nogpu(); }
void cv::gpu::MOG_GPU::getBackgroundImage(GpuMat&, Stream&) const { throw_nogpu(); }
void cv::gpu::MOG_GPU::release() {}
cv::gpu::MOG2_GPU::MOG2_GPU(int) { throw_nogpu(); }
void cv::gpu::MOG2_GPU::initialize(cv::Size, int) { throw_nogpu(); }
void cv::gpu::MOG2_GPU::operator()(const GpuMat&, GpuMat&, float, Stream&) { throw_nogpu(); }
void cv::gpu::MOG2_GPU::getBackgroundImage(GpuMat&, Stream&) const { throw_nogpu(); }
void cv::gpu::MOG2_GPU::release() {}
#else
......@@ -151,6 +153,18 @@ void cv::gpu::MOG_GPU::getBackgroundImage(GpuMat& backgroundImage, Stream& strea
getBackgroundImage_gpu(backgroundImage.channels(), weight_, mean_, backgroundImage, nmixtures_, backgroundRatio, StreamAccessor::getStream(stream));
}
void cv::gpu::MOG_GPU::release()
{
frameSize_ = Size(0, 0);
frameType_ = 0;
nframes_ = 0;
weight_.release();
sortKey_.release();
mean_.release();
var_.release();
}
/////////////////////////////////////////////////////////////////
// MOG2
......@@ -250,4 +264,17 @@ void cv::gpu::MOG2_GPU::getBackgroundImage(GpuMat& backgroundImage, Stream& stre
getBackgroundImage2_gpu(backgroundImage.channels(), bgmodelUsedModes_, weight_, mean_, backgroundImage, StreamAccessor::getStream(stream));
}
void cv::gpu::MOG2_GPU::release()
{
frameSize_ = Size(0, 0);
frameType_ = 0;
nframes_ = 0;
weight_.release();
variance_.release();
mean_.release();
bgmodelUsedModes_.release();
}
#endif
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifndef HAVE_CUDA
cv::gpu::VIBE_GPU::VIBE_GPU(unsigned long) { throw_nogpu(); }
void cv::gpu::VIBE_GPU::initialize(const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::VIBE_GPU::operator()(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::VIBE_GPU::release() {}
#else
namespace cv { namespace gpu { namespace device
{
namespace vibe
{
void loadConstants(int nbSamples, int reqMatches, int radius, int subsamplingFactor);
void init_gpu(DevMem2Db frame, int cn, DevMem2Db samples, DevMem2D_<unsigned int> randStates, cudaStream_t stream);
void update_gpu(DevMem2Db frame, int cn, DevMem2Db fgmask, DevMem2Db samples, DevMem2D_<unsigned int> randStates, cudaStream_t stream);
}
}}}
namespace
{
const int defaultNbSamples = 20;
const int defaultReqMatches = 2;
const int defaultRadius = 20;
const int defaultSubsamplingFactor = 16;
}
cv::gpu::VIBE_GPU::VIBE_GPU(unsigned long rngSeed) :
frameSize_(0, 0), rngSeed_(rngSeed)
{
nbSamples = defaultNbSamples;
reqMatches = defaultReqMatches;
radius = defaultRadius;
subsamplingFactor = defaultSubsamplingFactor;
}
void cv::gpu::VIBE_GPU::initialize(const GpuMat& firstFrame, Stream& s)
{
using namespace cv::gpu::device::vibe;
CV_Assert(firstFrame.type() == CV_8UC1 || firstFrame.type() == CV_8UC3 || firstFrame.type() == CV_8UC4);
cudaStream_t stream = StreamAccessor::getStream(s);
loadConstants(nbSamples, reqMatches, radius, subsamplingFactor);
frameSize_ = firstFrame.size();
if (randStates_.size() != frameSize_)
{
cv::RNG rng(rngSeed_);
cv::Mat h_randStates(frameSize_, CV_8UC4);
rng.fill(h_randStates, cv::RNG::UNIFORM, 0, 255);
randStates_.upload(h_randStates);
}
int ch = firstFrame.channels();
int sample_ch = ch == 1 ? 1 : 4;
samples_.create(nbSamples * frameSize_.height, frameSize_.width, CV_8UC(sample_ch));
init_gpu(firstFrame, ch, samples_, randStates_, stream);
}
void cv::gpu::VIBE_GPU::operator()(const GpuMat& frame, GpuMat& fgmask, Stream& s)
{
using namespace cv::gpu::device::vibe;
CV_Assert(frame.depth() == CV_8U);
int ch = frame.channels();
int sample_ch = ch == 1 ? 1 : 4;
if (frame.size() != frameSize_ || sample_ch != samples_.channels())
initialize(frame);
fgmask.create(frameSize_, CV_8UC1);
update_gpu(frame, ch, fgmask, samples_, randStates_, StreamAccessor::getStream(s));
}
void cv::gpu::VIBE_GPU::release()
{
frameSize_ = Size(0, 0);
randStates_.release();
samples_.release();
}
#endif
......@@ -40,7 +40,6 @@
//
//M*/
#include <stdio.h>
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/vec_traits.hpp"
#include "opencv2/gpu/device/vec_math.hpp"
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/gpu/device/common.hpp"
namespace cv { namespace gpu { namespace device
{
namespace vibe
{
__constant__ int c_nbSamples;
__constant__ int c_reqMatches;
__constant__ int c_radius;
__constant__ int c_subsamplingFactor;
void loadConstants(int nbSamples, int reqMatches, int radius, int subsamplingFactor)
{
cudaSafeCall( cudaMemcpyToSymbol(c_nbSamples, &nbSamples, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_reqMatches, &reqMatches, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_radius, &radius, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_subsamplingFactor, &subsamplingFactor, sizeof(int)) );
}
__device__ __forceinline__ uint nextRand(uint& state)
{
const unsigned int CV_RNG_COEFF = 4164903690U;
state = state * CV_RNG_COEFF + (state >> 16);
return state;
}
__constant__ int c_xoff[9] = {-1, 0, 1, -1, 1, -1, 0, 1, 0};
__constant__ int c_yoff[9] = {-1, -1, -1, 0, 0, 1, 1, 1, 0};
__device__ __forceinline__ int2 chooseRandomNeighbor(int x, int y, uint& randState, int count = 8)
{
int idx = nextRand(randState) % count;
return make_int2(x + c_xoff[idx], y + c_yoff[idx]);
}
__device__ __forceinline__ uchar cvt(uchar val)
{
return val;
}
__device__ __forceinline__ uchar4 cvt(const uchar3& val)
{
return make_uchar4(val.x, val.y, val.z, 0);
}
__device__ __forceinline__ uchar4 cvt(const uchar4& val)
{
return val;
}
template <typename SrcT, typename SampleT>
__global__ void init(const DevMem2D_<SrcT> frame, PtrStep_<SampleT> samples, PtrStep_<uint> randStates)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= frame.cols || y >= frame.rows)
return;
uint localState = randStates(y, x);
for (int k = 0; k < c_nbSamples; ++k)
{
int2 np = chooseRandomNeighbor(x, y, localState, 9);
np.x = ::max(0, ::min(np.x, frame.cols - 1));
np.y = ::max(0, ::min(np.y, frame.rows - 1));
SrcT pix = frame(np.y, np.x);
samples(k * frame.rows + y, x) = cvt(pix);
}
randStates(y, x) = localState;
}
template <typename SrcT, typename SampleT>
void init_caller(DevMem2Db frame, DevMem2Db samples, DevMem2D_<uint> randStates, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(frame.cols, block.x), divUp(frame.rows, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(init<SrcT, SampleT>, cudaFuncCachePreferL1) );
init<SrcT, SampleT><<<grid, block, 0, stream>>>((DevMem2D_<SrcT>) frame, (DevMem2D_<SampleT>) samples, randStates);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
void init_gpu(DevMem2Db frame, int cn, DevMem2Db samples, DevMem2D_<uint> randStates, cudaStream_t stream)
{
typedef void (*func_t)(DevMem2Db frame, DevMem2Db samples, DevMem2D_<uint> randStates, cudaStream_t stream);
static const func_t funcs[] =
{
0, init_caller<uchar, uchar>, 0, init_caller<uchar3, uchar4>, init_caller<uchar4, uchar4>
};
funcs[cn](frame, samples, randStates, stream);
}
__device__ __forceinline__ int calcDist(uchar a, uchar b)
{
return ::abs(a - b);
}
__device__ __forceinline__ int calcDist(const uchar3& a, const uchar4& b)
{
return (::abs(a.x - b.x) + ::abs(a.y - b.y) + ::abs(a.z - b.z)) / 3;
}
__device__ __forceinline__ int calcDist(const uchar4& a, const uchar4& b)
{
return (::abs(a.x - b.x) + ::abs(a.y - b.y) + ::abs(a.z - b.z)) / 3;
}
template <typename SrcT, typename SampleT>
__global__ void update(const DevMem2D_<SrcT> frame, PtrStepb fgmask, PtrStep_<SampleT> samples, PtrStep_<uint> randStates)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= frame.cols || y >= frame.rows)
return;
uint localState = randStates(y, x);
SrcT imgPix = frame(y, x);
// comparison with the model
int count = 0;
for (int k = 0; (count < c_reqMatches) && (k < c_nbSamples); ++k)
{
SampleT samplePix = samples(k * frame.rows + y, x);
int distance = calcDist(imgPix, samplePix);
if (distance < c_radius)
++count;
}
// pixel classification according to reqMatches
fgmask(y, x) = (uchar) (-(count < c_reqMatches));
if (count >= c_reqMatches)
{
// the pixel belongs to the background
// gets a random number between 0 and subsamplingFactor-1
int randomNumber = nextRand(localState) % c_subsamplingFactor;
// update of the current pixel model
if (randomNumber == 0)
{
// random subsampling
int k = nextRand(localState) % c_nbSamples;
samples(k * frame.rows + y, x) = cvt(imgPix);
}
// update of a neighboring pixel model
randomNumber = nextRand(localState) % c_subsamplingFactor;
if (randomNumber == 0)
{
// random subsampling
// chooses a neighboring pixel randomly
int2 np = chooseRandomNeighbor(x, y, localState);
np.x = ::max(0, ::min(np.x, frame.cols - 1));
np.y = ::max(0, ::min(np.y, frame.rows - 1));
// chooses the value to be replaced randomly
int k = nextRand(localState) % c_nbSamples;
samples(k * frame.rows + np.y, np.x) = cvt(imgPix);
}
}
randStates(y, x) = localState;
}
template <typename SrcT, typename SampleT>
void update_caller(DevMem2Db frame, DevMem2Db fgmask, DevMem2Db samples, DevMem2D_<uint> randStates, cudaStream_t stream)
{
dim3 block(32, 8);
dim3 grid(divUp(frame.cols, block.x), divUp(frame.rows, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(update<SrcT, SampleT>, cudaFuncCachePreferL1) );
update<SrcT, SampleT><<<grid, block, 0, stream>>>((DevMem2D_<SrcT>) frame, fgmask, (DevMem2D_<SampleT>) samples, randStates);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
void update_gpu(DevMem2Db frame, int cn, DevMem2Db fgmask, DevMem2Db samples, DevMem2D_<uint> randStates, cudaStream_t stream)
{
typedef void (*func_t)(DevMem2Db frame, DevMem2Db fgmask, DevMem2Db samples, DevMem2D_<uint> randStates, cudaStream_t stream);
static const func_t funcs[] =
{
0, update_caller<uchar, uchar>, 0, update_caller<uchar3, uchar4>, update_caller<uchar4, uchar4>
};
funcs[cn](frame, fgmask, samples, randStates, stream);
}
}
}}}
......@@ -13,7 +13,8 @@ enum Method
{
FGD_STAT,
MOG,
MOG2
MOG2,
VIBE
};
int main(int argc, const char** argv)
......@@ -21,7 +22,7 @@ int main(int argc, const char** argv)
cv::CommandLineParser cmd(argc, argv,
"{ c | camera | false | use camera }"
"{ f | file | 768x576.avi | input video file }"
"{ m | method | mog | method (fgd_stat, mog, mog2) }"
"{ m | method | mog | method (fgd_stat, mog, mog2, vibe) }"
"{ h | help | false | print help message }");
if (cmd.get<bool>("help"))
......@@ -36,13 +37,13 @@ int main(int argc, const char** argv)
string file = cmd.get<string>("file");
string method = cmd.get<string>("method");
if (method != "fgd_stat" && method != "mog" && method != "mog2")
if (method != "fgd_stat" && method != "mog" && method != "mog2" && method != "vibe")
{
cerr << "Incorrect method" << endl;
return -1;
}
Method m = method == "fgd_stat" ? FGD_STAT : method == "mog" ? MOG : MOG2;
Method m = method == "fgd_stat" ? FGD_STAT : method == "mog" ? MOG : method == "mog2" ? MOG2 : VIBE;
VideoCapture cap;
......@@ -65,6 +66,7 @@ int main(int argc, const char** argv)
FGDStatModel fgd_stat;
MOG_GPU mog;
MOG2_GPU mog2;
VIBE_GPU vibe;
GpuMat d_fgmask;
GpuMat d_fgimg;
......@@ -87,12 +89,17 @@ int main(int argc, const char** argv)
case MOG2:
mog2(d_frame, d_fgmask);
break;
case VIBE:
vibe.initialize(d_frame);
break;
}
namedWindow("image", WINDOW_NORMAL);
namedWindow("foreground mask", WINDOW_NORMAL);
namedWindow("foreground image", WINDOW_NORMAL);
namedWindow("mean background image", WINDOW_NORMAL);
if (m != VIBE)
namedWindow("mean background image", WINDOW_NORMAL);
for(;;)
{
......@@ -119,6 +126,10 @@ int main(int argc, const char** argv)
mog2(d_frame, d_fgmask);
mog2.getBackgroundImage(d_bgimg);
break;
case VIBE:
vibe(d_frame, d_fgmask);
break;
}
d_fgimg.setTo(Scalar::all(0));
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment