Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
e90dc203
Commit
e90dc203
authored
Feb 03, 2016
by
Vladislav Sovrasov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update letter_recog sample to current version of opencv interfaces
parent
d579f080
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
30 additions
and
29 deletions
+30
-29
letter_recog.py
samples/python/letter_recog.py
+30
-29
No files found.
samples/python/letter_recog.py
View file @
e90dc203
...
...
@@ -65,13 +65,12 @@ class RTrees(LetterStatModel):
def
train
(
self
,
samples
,
responses
):
sample_n
,
var_n
=
samples
.
shape
var_types
=
np
.
array
([
cv2
.
ml
.
VAR_NUMERICAL
]
*
var_n
+
[
cv2
.
ml
.
VAR_CATEGORICAL
],
np
.
uint8
)
#CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER));
params
=
dict
(
max_depth
=
10
)
self
.
model
.
train
(
samples
,
cv2
.
ml
.
ROW_SAMPLE
,
responses
,
varType
=
var_types
,
params
=
params
)
self
.
model
.
setMaxDepth
(
20
)
self
.
model
.
train
(
samples
,
cv2
.
ml
.
ROW_SAMPLE
,
responses
.
astype
(
int
))
def
predict
(
self
,
samples
):
return
[
self
.
model
.
predict
(
s
)
for
s
in
samples
]
ret
,
resp
=
self
.
model
.
predict
(
samples
)
return
resp
.
ravel
()
class
KNearest
(
LetterStatModel
):
...
...
@@ -79,10 +78,10 @@ class KNearest(LetterStatModel):
self
.
model
=
cv2
.
ml
.
KNearest_create
()
def
train
(
self
,
samples
,
responses
):
self
.
model
.
train
(
samples
,
responses
)
self
.
model
.
train
(
samples
,
cv2
.
ml
.
ROW_SAMPLE
,
responses
)
def
predict
(
self
,
samples
):
retval
,
results
,
neigh_resp
,
dists
=
self
.
model
.
find
_n
earest
(
samples
,
k
=
10
)
retval
,
results
,
neigh_resp
,
dists
=
self
.
model
.
find
N
earest
(
samples
,
k
=
10
)
return
results
.
ravel
()
...
...
@@ -95,15 +94,15 @@ class Boost(LetterStatModel):
new_samples
=
self
.
unroll_samples
(
samples
)
new_responses
=
self
.
unroll_responses
(
responses
)
var_types
=
np
.
array
([
cv2
.
ml
.
VAR_NUMERICAL
]
*
var_n
+
[
cv2
.
ml
.
VAR_CATEGORICAL
,
cv2
.
ml
.
VAR_CATEGORICAL
],
np
.
uint8
)
#CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0 )
params
=
dict
(
max_depth
=
5
)
#, use_surrogates=False
)
self
.
model
.
train
(
new_samples
,
cv2
.
ml
.
ROW_SAMPLE
,
new_responses
,
varType
=
var_types
,
params
=
params
)
self
.
model
.
setMaxDepth
(
5
)
self
.
model
.
train
(
cv2
.
ml
.
TrainData_create
(
new_samples
,
cv2
.
ml
.
ROW_SAMPLE
,
new_responses
.
astype
(
int
),
varType
=
var_types
)
)
def
predict
(
self
,
samples
):
new_samples
=
self
.
unroll_samples
(
samples
)
pred
=
np
.
array
(
[
self
.
model
.
predict
(
s
,
returnSum
=
True
)
for
s
in
new_samples
]
)
pred
=
pred
.
reshape
(
-
1
,
self
.
class_n
)
.
argmax
(
1
)
return
pred
ret
,
resp
=
self
.
model
.
predict
(
new_samples
)
return
resp
.
ravel
()
.
reshape
(
-
1
,
self
.
class_n
)
.
argmax
(
1
)
class
SVM
(
LetterStatModel
):
...
...
@@ -111,13 +110,14 @@ class SVM(LetterStatModel):
self
.
model
=
cv2
.
ml
.
SVM_create
()
def
train
(
self
,
samples
,
responses
):
params
=
dict
(
kernel_type
=
cv2
.
ml
.
SVM_LINEAR
,
svm_type
=
cv2
.
ml
.
SVM_C_SVC
,
C
=
1
)
self
.
model
.
train
(
samples
,
responses
,
params
=
params
)
self
.
model
.
setType
(
cv2
.
ml
.
SVM_C_SVC
)
self
.
model
.
setC
(
1
)
self
.
model
.
setKernel
(
cv2
.
ml
.
SVM_LINEAR
)
self
.
model
.
train
(
samples
,
cv2
.
ml
.
ROW_SAMPLE
,
responses
.
astype
(
int
)
)
def
predict
(
self
,
samples
):
return
self
.
model
.
predict_all
(
samples
)
.
ravel
()
ret
,
resp
=
self
.
model
.
predict
(
samples
)
return
resp
.
ravel
()
class
MLP
(
LetterStatModel
):
...
...
@@ -127,22 +127,23 @@ class MLP(LetterStatModel):
def
train
(
self
,
samples
,
responses
):
sample_n
,
var_n
=
samples
.
shape
new_responses
=
self
.
unroll_responses
(
responses
)
.
reshape
(
-
1
,
self
.
class_n
)
layer_sizes
=
np
.
int32
([
var_n
,
100
,
100
,
self
.
class_n
])
self
.
model
.
create
(
layer_sizes
)
# CvANN_MLP_TrainParams::BACKPROP,0.001
params
=
dict
(
term_crit
=
(
cv2
.
TERM_CRITERIA_COUNT
,
300
,
0.01
),
train_method
=
cv2
.
ml
.
ANN_MLP_TRAIN_PARAMS_BACKPROP
,
bp_dw_scale
=
0.001
,
bp_moment_scale
=
0.0
)
self
.
model
.
train
(
samples
,
np
.
float32
(
new_responses
),
None
,
params
=
params
)
self
.
model
.
setLayerSizes
(
layer_sizes
)
self
.
model
.
setTrainMethod
(
cv2
.
ml
.
ANN_MLP_BACKPROP
)
self
.
model
.
setBackpropMomentumScale
(
0
)
self
.
model
.
setBackpropWeightScale
(
0.001
)
self
.
model
.
setTermCriteria
((
cv2
.
TERM_CRITERIA_COUNT
,
300
,
0.01
))
self
.
model
.
setActivationFunction
(
cv2
.
ml
.
ANN_MLP_SIGMOID_SYM
)
self
.
model
.
train
(
samples
,
cv2
.
ml
.
ROW_SAMPLE
,
np
.
float32
(
new_responses
))
def
predict
(
self
,
samples
):
ret
,
resp
=
self
.
model
.
predict
(
samples
)
return
resp
.
argmax
(
-
1
)
if
__name__
==
'__main__'
:
import
getopt
import
sys
...
...
@@ -155,7 +156,7 @@ if __name__ == '__main__':
args
,
dummy
=
getopt
.
getopt
(
sys
.
argv
[
1
:],
''
,
[
'model='
,
'data='
,
'load='
,
'save='
])
args
=
dict
(
args
)
args
.
setdefault
(
'--model'
,
'
rtrees
'
)
args
.
setdefault
(
'--model'
,
'
svm
'
)
args
.
setdefault
(
'--data'
,
'../data/letter-recognition.data'
)
print
(
'loading data
%
s ...'
%
args
[
'--data'
])
...
...
@@ -173,8 +174,8 @@ if __name__ == '__main__':
model
.
train
(
samples
[:
train_n
],
responses
[:
train_n
])
print
(
'testing...'
)
train_rate
=
np
.
mean
(
model
.
predict
(
samples
[:
train_n
])
==
responses
[:
train_n
])
test_rate
=
np
.
mean
(
model
.
predict
(
samples
[
train_n
:])
==
responses
[
train_n
:])
train_rate
=
np
.
mean
(
model
.
predict
(
samples
[:
train_n
])
==
responses
[:
train_n
]
.
astype
(
int
)
)
test_rate
=
np
.
mean
(
model
.
predict
(
samples
[
train_n
:])
==
responses
[
train_n
:]
.
astype
(
int
)
)
print
(
'train rate:
%
f test rate:
%
f'
%
(
train_rate
*
100
,
test_rate
*
100
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment